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Abstract
In online learning a learner receives data in rounds and at each round predicts a label which is then
compared to the true binary label incurring a loss. The total loss over T rounds, when compared
to a loss over the best expert from a class of experts/forecasters, is called the regret. In this paper
we focus on logarithmic loss for the logistic function with unbounded d-dimensional weights, a
scenario that was largely unexplored. We introduce a regularized version of the average (fixed
design) minimax regret by imposing a soft-constraint on the weight norm via precise analysis of
the so-called Shtarkov sum. Our main results provide the first known precise characterization of
the Shtarkov sum and consequently the regularized regret with unbounded weights up to second
order asymptotics. Notably, unlike the d/2 log T regret growth known only for bounded weights,
our result implies that the regularized regret grows no faster than (1/2 + α/4)d log T when the
regularization parameter is of order Θ(T−α) for α ≤ 1/2. We accomplish it using tools from
analytic combinatorics, e.g., multidimensional Fourier, saddle point method, and Mellin transform.

1. Introduction

The problem of online learning under logarithmic loss and its regret analysis has been intensively
studied over the last decade Grunwald (2007); Rakhlin and Sridharan (2015); Foster et al. (2018);
Wu et al. (2022). However, even for logistic regression, there is a lack of precise second-order
asymptotics (especially for unbounded weights), with a possible exception of Jacquet et al. (2021)
which is restricted to categorical data. In this paper, we initiate the study to fill this gap.

To set the stage of our discussion, we recall that the online learning problem can be described as
a game between nature/environment and a learner/predictor. Broadly, the objective of the learner is
to process past observations to predict the next realization of nature’s labeling sequence. At each
round t ∈ N, the learner receives a d-dimensional data/feature vector xt ∈ Rd to make a prediction
ŷt ∈ [0, 1] of the true label yt ∈ {−1, 1}. The learner makes the prediction ŷt = gt(y

t−1,xt), where
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gt represents the strategy/algorithm of the learner to obtain its prediction based on prior observations
yt−1 and xt. Once a prediction is made, nature reveals the true label yt, and the learner incurs some
loss evaluated based on a predefined function ℓ : Ŷ × Y → R≥0, where Ŷ = [0, 1] and Y = {−1, 1}
are the prediction and label domains, respectively. In regret analysis, we are interested in comparing
the accumulated loss of the learner with that of the best strategy within a predefined class of expert
functions h : Rd 7→ Ŷ . After T rounds, the pointwise regret is defined as

R(gT , yT ,H|xT ) =
T∑
t=1

ℓ(ŷt, yt)− inf
h∈H

T∑
t=1

ℓ(h(xt), yt),

where ŷt = gt(y
t−1,xt). Throughout, we write yt = (y1, . . . , yt) and xt = (x1, . . . ,xt) for t ∈ [T ].

In this paper, we focus specifically on the logarithmic loss defined as: ℓ(ŷt, yt) = −1+yt
2 log(ŷt)−

1−yt
2 log(1− ŷt). Furthermore, we restrict our study to the class of experts:

Hp,w = {hw(x)
def
= p(⟨w,x⟩) : w,x ∈ Rd}, (1)

where w is a d-dimensional weight vector, ⟨w,x⟩ is the scalar product of x and w, and p(w) with
w = ⟨w,x⟩ is a probability function. To ease the presentation, we almost exclusively discuss logistic
regression with p(w) = (1 + exp(−w))−1 (Hazan et al., 2014; Shamir, 2020a) (see Appendix F for
possible extensions). While we assume that xt lies on a compact manifold Mx (e.g., Mx = [−1, 1]d,
the unit ball Bd, or the sphere Sd), we do not bound the weights w ∈ Rd, and this seems to have never
been analyzed in depth, to the best of our knowledge. Specifically, we assume that ∥w∥ ≤ R ≤ ∞.

We are interested in the fixed design regret where the feature vector xT is known in advance.
Specifically, for any given H and xT , the fixed design minimax regret is defined as

rT (H|xT ) := inf
gT

sup
yT

R(gT , yT ,H|xT ). (2)

This notion was also known in the literature as transductive online learning Cesa-Bianchi and Shamir
(2011). To decouple it from the feature vector xT , one either maximizes over all possible xT or
takes the average over the features. We study here the averaged fixed design minimax regret as
r̄T (H) := ExT [r∗T (H|xT )], where the feature vector xT is generated by an i.i.d. process.

As discussed in Jacquet et al. (2021); Shamir and Szpankowski (2021) the minimax regret rT (xT )
can be studied through the so called Shtarkov sum which for bounded ||w|| ≤ R becomes

S(xT ) =
∑
yT

sup
||w||≤R

P (yT |xT ,w) (3)

where P (yT |xT ,w) =
∏T

t=1 p(yt⟨xt,w⟩), and the regret is then rT (x
T ) = logS(xT ). While the

Shtarkov sum approach provides an exact solution, there are two main issues: computational and ana-
lytical. The optimization problem sup∥w∥≤R P (yT |xT ,w) is non-convex and, more problematically,
most of the optimal solutions w∗ = arg sup∥w∥≤R P (yT |xT ,w) lie on the boundary ∥w∥ = R. To
address these issues, one often resorts to regularization (see Jezequel et al. (2020); Hazan (2012)).

In view of these challenges, we introduce and study a regularized version of the minimax regret.
We first notice that for the logarithmic loss function we can write ℓ(ŷ, y) = − logP (ŷ|x,w) and
ℓ(h(x), y) = − logP (h(x)|x,w), leading to the regularized pointwise regret

Rε
T (ŷ

T , yT |xT ) = −
T∑
t=1

logP (ŷt|xt,w) + sup
w

T∑
t=1

logP (yt|xtw)e−ε||w||2 (4)
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where ε ≥ 0 and supw is unconstrained. Then, the regularized minimax regrets is defined as

rεT (x
T ) = inf

ŷT
max
yT

Rε
T (ŷ

T , yT |xT ), r̄εT (H) := ExT [rεT (H|xT )] (5)

and the generalized Shtarkov sum is

Sε(x
T ) =

∑
yT

sup
w

P (yT |xT ,w)e−ε||w||2 . (6)

Notice that the optimization w∗
ε := argw∈Rd P (yT |xT ,w)e−ε||w||2 is much easier to compute since

it is log-concave and ||w∗
ε || < ∞ holds always. We show in Section 2 that rεT (x

T ) = logSε(x
T )

holds as well.
In this paper, we present for the first time precise second-order asymptotics for the average

Shtarkov sum and consequently the regularized minimax regret as in (5) with ε > 0. While our
derivations do not directly work for ε = 0, we extend our findings to ε → 0 as long as ε ≫ T−1/2

showing a phase transition of the leading term of the regret. This result also shed light on the regular
minimax regret (i.e., ε = 0) in (3) when the weight norm R grows as O(T 1/4).

Related Work. Online learning under logarithmic loss can be viewed as universal compression
(source coding) with side information, as discussed in Barron et al. (1998); Takeuchi and Barron
(2006) and Drmota and Szpankowski (2024); Jacquet and Szpankowski (2004); Szpankowski and
Weinberger (2012); Xie and Barron (1997, 2000). The logistic-type class of experts, as in (1), was
studied extensively in Foster et al. (2018); Hazan et al. (2014); Rakhlin and Sridharan (2015); Shamir
(2020a); Wu et al. (2022) under various formulations of regret. In particular, it is known that for any
range R of the weight w, the minimax regret can be upper bounded by (d/2) log

(
TR2/d

)
for the

sequential regret, i.e., where both xT and yT are selected sequentially (Foster et al., 2018; Shamir,
2020b; Wu et al., 2022). Moreover, Foster et al. (2018) demonstrated that the logR dependency is
tight for sequential regrets. However, for the fixed design regret we study here, the precise dependency
on the weight norm R is largely unexplored. Several prior results, such as Shamir (2020b); Wu et al.
(2022); Mayo et al. (2022), have demonstrated that the regret lower bound grows as (d/2) log

(
T/d2

)
(with no dependency on R), which can deviate arbitrarily from the generic (d/2) log

(
TR2/d

)
upper

bound for R → ∞. Recently, Drmota et al. (2024) showed that for fixed design regret, the upper
bound can be improved to 2d log T for a general monotone class even with R = ∞. They also
demonstrated that for R ≥ Ω(

√
T ), a precise (1 + o(1))d log(T/d) regret (i.e., including both

upper and lower bounds) holds for logistic regression. This leaves open the question of precisely
characterizing the fixed design regret in the transition region 0 ≤ R ≤ O(

√
T ). To the best of our

knowledge, Drmota et al. (2024) is the only work that studies the precise characterization of fixed
design regret with unbounded weights. We should emphasize that studying the transition region
below O(

√
T ) poses substantial technical challenges if a precise characterization is desired (i.e.,

precise up to the second order asymptotic). Our findings are most closely related to Shamir and
Szpankowski (2021); Jacquet et al. (2021). In Jacquet et al. (2021), a precise maximal minimax
regret is analyzed, but only for a finite number of feature values. It should also be mentioned that
the general form of our minimax regret (i.e., its second-order term) is related to Fisher information
and was already known in information theory Takeuchi and Barron (2006), but only for fixed d and
bounded weights.
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Our Contributions. We first represent the regularized minimax regret as the logarithm of the
generalized Shtarkov sum. Then in Theorem 2 we present for the first time precise second-order
asymptotic expansion of the average Shtarkov sum and hence the regularized minimax regret as (5)
for logistic regression (see Appendix F for some extensions) with unbounded weights. We prove that
for ε ≫ T−1/2 the regularized minimax regret grows no faster than (d/2) log(2T/π) + logCd(ε)
where Cd(ε) has a complicated multidimensional integral representation which we explicitly evaluate
for ε → 0. In particular, for ε = Θ(T−α) with α ≤ 1/2, we show in Corollary 4 that the leading
term grows as ((1/2+α/4)d−α/2) log T . We also conjecture it reaches d log T for ε ∼ 1/T 2. We
accomplish it using powerful analytic techniques1 such as saddle point method, Mellin transform,
and multidimensional Fourier transform (see Flajolet and Sedgewick (2008); Szpankowski (2001)),
hopefully initiating an analytic learning theory (see Drmota and Szpankowski (2024)) in which
problems of machine learning are solved by tools of complex analysis.2 As mention above, Drmota
et al. (2024) proved that for ||w|| = Ω(

√
T ) the regular regret grows no faster than d log T +O(d),

demonstrating a transition from (d/2) log T to d log T for unbounded weights. Observe that, our
regularized regret in (5) can be interpreted as a soft-constraint on R = ||w|| with R ⪯ 1/

√
ε.

2. Main Results

In this section we present our main results with most proofs delegated to the Appendix. Before we
start our discussion, we derive the connection between the regularized regret (5) and generalized
Shtarkov sum (6). Note that, for any given xT , the predictor ŷt can be compactly represented as a
distribution Q over {−1,+1}T such that ŷt = Q(−1|yt−1,xt) and ℓ(ŷt, yt) = − logQ(yt|yt−1,xt).
Then the regularized regret can be written as

rεT (H|xT ) = min
Q

max
yT

[− logQ(yT |xT ) + sup
w

logP (yT |xT )e−ε||w||2 ]

= min
Q

max
yT

[− logQ(yT |xT ) + logP ∗
ε (y

T |xT )] + log
∑
vT

sup
w

P (vT |xT ,w)e−ε||w||2

(a)
= log

∑
yT

sup
w

P (yT |xT ,w)e−ε||w||2 = logSε(x
T ) (7)

where Sε(x
T ) is defined in (6) and P ∗

ε (y
T |xT ) := supw P (yT |xT ,w)e−ε||w||2∑

vT
supw P (vT |xT ,w)e−ε||w||2 is the generalized

maximum-likelihood distribution, while (a) follows since minQ is attained when Q = P ∗
ε .

Our objective is then to find precise asymptotics for the generalized Shtarkov sum Sε(x
T ). Note

that for a sequence of labels yT and a sequence of features xT we have for any ε > 0

P (yT |xT ,w) =
T∏
t=1

p(yt⟨xt,w⟩) and Pε(y
T |xT ,w) =

T∏
t=1

p(yt⟨xt,w⟩)e−ε∥w∥2 . (8)

We also define L(yT |xT ,w) = logP (yT |xT ,w) and Lε(y
T |xT ,w) = L(yT |xT ,w) + ε∥w∥2.

1. A. Odlyzko argued: “Analytic methods are extremely powerful and when they apply, they often yield estimates of
unparalleled precision.”

2. Following Handmaid’s percept: “The shortest paths between two truths on the real line passes through the complex
plane."
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To ease the presentation, we focus on the logistic regression p(w) = (1 + exp(−w))−1 since
all interesting behavioral phenomena occurs for this function. For the logistic function we have
∇Lε(y

T |xT ,w) = −
∑T

t=1 p(−yt⟨xt,w⟩) yt xt + 2εw and

∇2Lε(y
T |xT ,w) =

T∑
t=1

p(⟨xt,w⟩))p(−⟨xt,w⟩))xt ⊗ xt + 2εI, (9)

where x⊗ x denotes the matrix (xixj)1,≤i,j≤d and I the identity matrix.
To study the Shtarkov sum, and ultimately the minimax regret, we need a better understanding of

of the optimal w∗
ε defined as w∗

ε = argminw∈Rd Lε(y
T |xT ,w) which is the (unique) solution of

the equation ∇Lε(y
T |xT ,w) = 0. Similarly, for every a ∈ Rd the equation

∇Lε(y
T |xT ,w) = a (10)

has a unique solution w∗
ε(a). Furthermore, if we denote GyT |xT ,ε(w) := ∇Lε(y

T |xT ,w), then we
have w∗

ε = G−1
yT |xT ,ε

(0).
We shall analyze the Shtarkov sum via a multidimensional Fourier transform method. The first key

issue is its existence, which we address next. We set hyT |xT (a) = exp
(
−Lε(y

T |xT , G−1
yT |xT ,ε

(a))
)

.

The goal is to show that (for every yT and xT ) the Fourier transform

h̃yT |xT (z) =

∫
Rd

hyT |xT (a)e−i⟨a,z⟩ da

of hyT |xT (a) exists and that the inverse Fourier transform has an absolute convergent integral
representation

hyT |xT (a) =
1

(2π)d

∫
Rd

h̃yT |xT (z)ei⟨a,y⟩ dz.

Observe that by (10) (for w = G−1
yT |xT ,ε

(a)) we have a = −
∑T

t=1 p (−yt⟨xt,w⟩) ytxt+2εw =

O(1) + 2εw. Note that the O(1)-term depends on yT ,xT .
Thus G−1

yT |xT ,ε
(a) = 1

2εa+O(1) which directly implies that

hyT |xT (a) = O
(
e−

1
4ε

∥a∥2
)
. (11)

Hence the Fourier transform h̃yT |xT (z) certainly exists. In the Appendix A we formally establish the
following lemma proving the existence of the Fourier transform and its inverse exist for ε > 0.

Lemma 1 For every fixed yT , xT , ε > 0 and for all non-negative integers k1, . . . , kd we have

∂k1+···kd

∂ak11 · · · ∂akdd
hyT |xT (a) = O

(
e−

1
4ε

∥a∥2∥a∥k1+···+kd
)
.

Furthermore, h̃yT |xT (z) =
∫
Rd hyT |xT (a)e−i⟨a,z⟩ da of hyT |xT (a) exists and satisfies

h̃yT |xT (z) = O
(
|z1|−k1 · · · |zd|−kd

)
for all non-negative integers k1, . . . , kd. Consequently the inverse Fourier transform is given by

hyT |xT (a) =
1

(2π)d

∫
Rd

h̃yT |xT (z)ei⟨a,z⟩ dz.

5
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Granted the existence of the Fourier hyT |xT (z) we can proceed to evaluate the Shtarkov sum. We
first observe that

sup
w∈Rd

Pε(y
T |xT ,w) = Pε

(
yT |xT , G−1

yT |xT ,ε
(0))

)
= exp

(
−L(yT |xT , G−1

yT |xT ,ε
(0))

)
= (2π)−d

∫
Rd

h̃yT |xT (z) dz = (2π)−d

∫
Rd

∫
Rd

hyT |xT (a)e−i⟨a,z⟩ da dz

= (2π)−d

∫
Rd

∫
Rd

exp
(
−Lε(y

T |xT , G−1
yT |xT ,ε

(a))
)
e−i⟨a,z⟩ da dz

= (2π)−d

∫
Rd

∫
Rd

P (yT |xT ,w)e−i⟨∇L(yT |xT ,w),z⟩e−ε∥w∥2−2iε⟨w,z⟩det
(
∇2Lε(y

T |xT ,w)
)
dw dz

where we have used the substitution a = GyT |xT ,ε(w) = ∇Lε(y
T |xT ,w). To complete our

derivation, we first observe that

∑
yT∈{−1,1}T

P (yT |xT ,w) exp
(
−i⟨∇L(yT |xT ,w), z⟩

)
=

T∏
t=1

f(w,xt, z),

where f(w,xt, z) denotes

f(w,xt, z) = p(⟨x,w⟩)e−ip(−⟨x,w⟩) ⟨x,z⟩ + p(−⟨x,w⟩)eip(⟨x,w⟩) ⟨x,z⟩. (12)

This leads to our integral representation of the Shtarkov sum

Sε(x
T ) = (2π)−d

∫
Rd

∫
Rd

T∏
t=1

f(w,xt, z) e
−ε∥w∥2−2iε⟨w,z⟩det

(
∇2Lε(·|xT ,w)

)
dw dz. (13)

We now assume that the vectors x1, . . . ,xT are iid random vectors X1, . . . ,XT that follow a
probability distribution over bounded support. Furthermore since P and ∇2Lε are bounded in a
bounded domain it follows that

ESε(X
T ) = (2π)−d

∫
Rd

∫
Rd

E

[
T∏
t=1

f(w,Xt, z) det
(
∇2Lε(·|XT ,w)

)]
e−ε∥w∥2−2iε⟨w,z⟩ dw dz.

(14)
This expression is the main tool that we will use to study asymptotically the minimax regret. The
asymptotic evaluation of (14) is very challenging due to different behavior of the double multi-
dimensional integrals for various ranges of w and z which both can be unbounded.

Our main result of his paper can be summarized as follows which we prove in Section 3 and in
the Appendix E.

Theorem 2 Let w ∈ Rd and ε > 0. Assume features xt are generated by a uniform distribution
over the d-dimensional ball Bd and p(w) = (1 + exp{−w})−1 is the logistic function.
(i) For ε ≫ max(1/

√
T , 1/T 2/(d+1)) there exists β(d) > 0 such that3

E[Sε(xT )] =

(
T

2π

)d/2 ∫
Rd

√
det(B̄(w)) e−ε∥w∥2(1 +O(T−β(d))). (15)

3. We expect that the theorem is valid at least for ε ≫ 1/
√
T , however the proof would need some extra work, see

Section 3.
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with

B̄(w) =
1

Vol(Bd)

∫
Bd

p(⟨w|x⟩)(1− p(⟨w|x⟩))x⊗ xdx, (16)

where x⊗ x = xxτ being the tensor product of xt with τ denoting the transpose.
(ii) Furthermore,

r̄εT = E
[
logSε(XT )

]
≤ logE[Sε(XT )] =

d

2
log T + logCd(ε) +O(T−β(d))

where

Cd(ε) =

∫
Rd

√
det(B̄(w)) e−ε∥w∥2 dw.

Observe that for our second main finding presented in Corollary 4 we only need the upper bound
for E

[
logSε(XT )

]
but there are strong indications that actually (see next section):

E
[
logSε(XT )

]
∼ logE[Sε(XT )].

Another question is whether from Theorem 2 we can recover the original regret with ε = 0. First,
we observe that our proof Theorem 2 works only for ε ≫ 1/

√
T which basically translates to the

radius R of w of order O(T 1/4). Second, from Drmota et al. (2024) we know that for R ≫
√
T the

leading term of the minimax regret is d log T , not (d/2) log T , thus there is a gap for R ∈ (0, T 1/2]
where we conjecture the leading term at log T grows from d/2 to d.

In order to study the behaviour of the regularized regret for ε → 0 we need some asymptotic
information about B(w). We recall that X is uniformly distributed in the d-dimensional ball Bd and
that B(w) = Θ(1, |w|−3) for d = 1. The proof of the following lemma is given in Appendix C.

Lemma 3 (i) Suppose that d ≥ 2 and let u = w/||w|| and set q(x) = p(x)p(−x) = p(x)(1−p(x)).
Then we have the following expression B̄(w) = ϕ(w)(Id − u⊗ u) + λ(w)u⊗ u where Id is the
identity operator on Rd (thus Id − u⊗ u is the identity operator on the hyperplane orthogonal to u)
with

λ(w) =
dsd−1

sd

∫ 1

0

∫ π

0
td−1 cos(θ)2 sin(θ)d−2q(t cos(θ)∥w∥)dθ dt, (17)

and

ϕ(w) =
dsd−1

sd

∫ 1

0

∫ π

0
td−1 sin(θ)

d

d− 1
q(t cos(θ)∥w∥)dθ dt (18)

are the eigenvalues of B̄(w) with multiplicity 1 and d− 1, respectively, and sd denotes the area of
the unit sphere Sd.

(ii) The eigenvalue λ(w) is asympotically of order Θ(∥w∥−2) for d = 2, of order Θ(∥w∥−3 log ∥w∥)
for d = 3 and of order Θ(∥w∥−3) for d > 3 whereas the eigenvalue ϕ(w) is of order Θ(∥w∥−1)
for every d ≥ 2. Consequently the determinant detB̄(w) = λ(w) · ϕd−1(w) is of order Θ(∥w∥−3)
for d = 2, of order Θ(∥w∥−5 log ∥w∥) for d = 3, and of order O(∥w∥−d−2) for d > 3.

This leads to the following surprising conclusion which is our second main result.

7
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Corollary 4 Suppose that Theorem 2 holds for ε ≫ T−1/2. The we have in this range

E[Sε(xT )] =


Θ(T

d
2 ε−

d
4
+ 1

2 ) d > 3,
Θ(T 1/2) d = 1,
Θ(Tε−1/4) d = 2,
Θ(T 3/2ε−1/4

√
log(1/ε)) d = 3.

In particular, for ε = Θ(T−α) with α ≤ 1
2 , we have r̄εT ≤ ((12 + α

4 )d−
α
2 ) log T +O(1).

Proof This follows by Lemma 3 and the following simple calculations (that we do only for d > 3)∫
Rd

√
detB(w)e−ε∥w∥2dw ≈

∫
∥w∥≥1

∥w∥−(d+2)/2e−ε∥w∥2dw ≈
∫ ∞

1
rd−1r−(d+2)/2e−εr2dr

≈ ε−d/4+1/2

∫ ∞

0
ud−1u−(d+2)/2e−u2

du ≈ ε−d/4+1/2

by using substitution u = r
√
ε for ε ≫ T−1/2. The last part then follows from Theorem 2 (ii).

3. Sketch of the Proof of Theorem 2

In this subsection we present ingredients of the proof of our main result. The proof is long, tedious,
and very technical4. To help the reader, we focus here on d = 1. Extension for d > 1 is presented in
Appendix E

In what follows we will use the notation f(w, z) = Ef(w,X, z). For the case d = 1 we have

f(w, z) = Ef(w,X, z) =
1

2

∫ 1

−1

(
e−ixz/(1+exw)

1 + e−xw
+

eixz/(1+e−xw)

1 + exw

)
dx (19)

and, thus, ESε(X
T ) is given by

ESε(X
T ) =

1

2π

∫ ∞

−∞

∫ ∞

−∞
E

[
T∏
t=1

f(w,Xt, z)∇2Lε(·|XT , w)

]
e−εw2−2iεwz dw dz

(a)
=

T∑
s=1

1

2π

∫ ∞

−∞

∫ ∞

−∞
E

[
T∏
t=1

f(w,Xt, z) p(xsw)p(−xsw)x
2
s

]
e−εw2−2iεwz dw dz

+
2ε

2π

∫ ∞

−∞

∫ ∞

−∞
E

[
T∏
t=1

f(w,Xt, z)

]
e−εw2−2iεwz dw dz

=
T

2π

∫ ∞

−∞

∫ ∞

−∞
f(w, z)T−1B(z, w)e−εw2−2iεwz dw dz +

2ε

2π

∫ ∞

−∞

∫ ∞

−∞
f(w, z)T e−εw2−2iεwz dw dz,

=: T · J0 + 2ε · J1, (20)

where B(z, w) abbreviates B(z, w) = E
[
f(w,X, z) p(Xw)p(−Xw)X2

]
and (a) follows by (9).

We start with three technical lemmas regarding f(w, z) with proofs presented in Appendix B.

4. If requested, we will be happy to provide our notes with detailed derivations.

8
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Lemma 5 Set

B(w) = E
[
p(xw)p(−xw)x2

]
=

1

2

∫ 1

−1

x2

(1 + e−xw)(1 + exw)
dx. (21)

Then we uniformly have B(w) = Θ
(
min(1, |w|−3)

)
and for c1 > 0

f(w, z) = 1−Θ
(
z2min(1, |w|−3)

)
(for |z| ≤ max(1, c1|w|))

= 1− z2

2
B(w) +O

(
z3min(1, |w|−4)

)
= e−

1
2
z2B(w)

(
1 +O

(
z3min(1, |w|−4)

)
+O

(
z4min(1, |w|−6)

))
.

Lemma 6 If |w| ≤ 1 we uniformly have |f(z, w)| ≤ min
(
1, C

|z|

)
and for |w| ≥ 1 we have

|f(z, w)| ≤ min

(
1,

C1√
|wz|

+
C2e

|w|

|wz|

)
.

Lemma 7 Suppose that c1 > 0 is a given constant. Then there exist c2 > 0 such that
∣∣f(z, w)∣∣ ≤

1− c2
|w| uniformly for |z| ≥ c1|w|.

Granted these lemmas, we first prove our main result for ESε(X
T ) in the case d = 1 which we

formulate next.

Proposition 8 Suppose that d = 1 and that X is uniformly distributed on [−1, 1]. Then

ESε(X
T ) =

T 1/2

√
2π

∫ ∞

−∞
B(w)

1/2
e−εw2−2ε2w2/(TB(w)) dw +O (log T )

provided that ε ≫ T−1/2, where B(w) is given in (21).

Note that∫ ∞

−∞
B(w)

1/2
e−εw2−2ε2w2/(TB(w)) dw =

∫ ∞

−∞
B(w)

1/2
e−εw2

dw +O
(
T−1/10

)
.

Thus, the integral in Proposition 8 can be replaced by the integral
∫∞
−∞B(w)

1/2
e−εw2

dw as stated
in Theorem 2.

The rest of this subsection is devoted to the proof of the Proposition 8. We recall from (20) the
representation ESε(X

T ) = T · J0 + 2ε · J1, where

J1 =
1

2π

∫
R2

f(w, z)T e−εw2−2iεwz dw dz, J0 =
1

2π

∫
R2

B(z, w)f(w, z)T−1e−εw2−2iεwz dw dz.

The main challenge in the computation of the integral(s) J0 and J1 are the parts that correspond to
large w. We first discuss the integral J1 in detail. For any constant C3 > 0, we consider the following
cases:

A: The case |w| ≤ C3. If |w| ≤ C3 then we have the uniform bound |f(z, w)| ≤ C/|z|. We first
look at the case, where |z| ≤ 2C. Here we certainly have the uniform representation (see Lemma 5)

9
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f(z, w) = e−
z2

2
B(w)

(
1 +O(z3)

)
and by continuity |f(z, w)| ≤ e−c1z2 for some constant c1 > 0. If

|z| ≥ 2C then we have the trivial estimate |f(z, w)| ≤ C/|z| ≤ 1/2 (see Lemma 6). Consequently,

I1 =
1

2π

∫ ∞

−∞

∫ C3

−C3

f(w, z)T e−εw2−2iεwz dw dz

=
1

2π

∫ C3

−C3

∫
|z|≤T−1/3

e−TB(w) z
2

2
(
1 +O(Tz3)

)
e−εw2−2iεwz dz dw

+
1

2π

∫ C3

−C3

∫
T−1/3≤|z|≤2C

O
(
e−c1Tz2

)
e−εw2

dz dw +
1

2π

∫ C3

−C3

∫
|z|≥2C

(C/|z|)T e−εw2
dz dw

=
1√
2πT

∫ C3

−C3

B(w)−1/2e−εw2
dw +O

(
T−1

)
.

B: The case C3 ≤ |w| ≤ ηT . Next we consider the range C3 ≤ |w| ≤ ηT , where η = η(T ) → 0
will be fixed in the sequel. Furthermore we divide the integral over z into several parts.

The first part is the interval |z| ≤ z1 = |w|3/2T−1/2η−1/6, where we use Lemma 5

f(z, w)T = e−TB(w) z
2

2
+O(T |z3/w4|)+O(T |z4/w6|) = e−TB(w) z

2

2
(
1 +O(T |z3/w4|) +O(T |z4/w6|)

)
.

By using the substitution v = z
√

TB(w) = Θ
(
zT 1/2w−3/2

)
we have (with v1 = z1

√
TB(w) =

Θ(η−1/6))∫
|z|≤z1

e−TB(w) z
2

2
−2iεwz dz =

√
2π√

TB(w)
e−2ε2w2/(TB(w)) +O

(
|w|3/2η1/6

T 1/2
e−cη−1/3

)

for some c > 0. Similarly we obtain∫
|z|≤z1

e−TB(w) z
2

2 T |z3/w4| dz ≪ |w|1/2

T
,

∫
|z|≤z1

e−TB(w) z
2

2 T |z4/w6| dz ≪ |w|3/2

T 3/2
.

Summing up we find

I21 =
1

2π

∫
|z|≤z1

∫
C3≤|w|≤ηT

f(w, z)T e−εw2−2iεwz dw dz

=
1√
2πT

∫
|w|≥C3

B(w)−1/2e−2ε2w2/(TB(w))e−εw2
dw +O

(
ε−5/4T 3/2e−εη2T 2

+
ε−3/4

T
+

ε−5/4

T 2

)
.

Next suppose that z1 = |w|3/2T−1/2η−1/6 ≤ |z| ≤ c1|w|, where c1 sufficiently small which
ensures that (see Lemma 5)

B(w)
z2

2
≥ C

(
|z|3

|w|4
+

|z|4

|w|6

)
.

Recall that B(w) = Θ(|w|−3) for |w| ≥ 1. Hence, there exists a constant c > 0 such that
|f(z, w)| ≤ e−cz2/|w|3 uniformly for z1 ≤ |z| ≤ c1|w|. This implies that the corresponding integral

10
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is upper bounded by

I22 =
1

2π

∫
z1≤|z|≤c1|w|

∫
C3≤|w|≤ηT

f(w, z)T e−εw2−2iεwz dw dz

≪ η1/6e−cη−1/3

T 1/2

∫
C3≤|w|≤ηT

w3/2e−εw2
dw ≪ η1/6e−cη−1/3

ε5/4T 1/2
.

Next suppose that c1|w| ≤ |z| ≤ c3e
|w| for an arbitrary constant c3 > 0. Here we have the upper

bound |f(z, w)| ≤ 1− c2/|w| ≤ e−c2/|w| (see Lemma 7) and provided that ε ≫ T−1/2 we have

I23 =
1

2π

∫
c1|w|≤|z|≤c3e|w|

∫
C3≤|w|≤ηT

f(w, z)T e−εw2−2iεwz dw dz ≪
∫
C3≤|w|≤ηT

e−c2T/|w|+|w|−εw2
dw

≤
∫
C3≤|w|≤c2

√
T
e−(1−c2)

√
T−εw2

dw +

∫
c2
√
T≤|w|≤ηT

e−
ε
2
w2

dw

≪ ε−1/2e−(1−c2)
√
T + e−

ε
2
c22T ≪ e−c5

√
T ≪ 1

T
.

Finally if |z| ≥ c3e
|w|, where c3 is chosen sufficiently large, we have (for some constant C̃ ≤ C3)

f(z, w) ≤ C̃max

(
1√
|wz|

,
e|w|

|zw|

)
≤ 1

2
.

If c3e|w| ≤ |z| ≤ e2|w|/|w| then the first term 1/
√

|wz| dominates and we find

I24 =
1

2π

∫
c3e|w|≤|z|≤e2|w|/|w|

∫
C3≤|w|≤ηT

f(w, z)T e−εw2−2iεwz dw dz ≪ 1

T
.

Similarly we have for |z| ≥ e2|w|/|w|, where the second term dominates

I25 =
1

2π

∫
|z|≥e2|w|/|w|

∫
1≤|w|≤ηT

f(w, z)T e−εw2−2iεwz dw dz ≪ 1

T
.

Summing up we have

I2 =
1

2π

∫ ∞

−∞

∫
C3≤|w|≤ηT

f(w, z)T e−εw2−2iεwz dw dz = I21 + I22 + I23 + I24 + I25

=
1√
2πT

∫
|w|≥C3

B(w)
−1/2

e−εw2−2ε2w2/(TB(w)) dw

+O

(
ε−3/4

T
+

ε−5/4

T 2
+

η1/6e−cη−1/3

ε5/2T 1/2
+ ε−5/4T 3/2e−εη2T 2

)
.

C: The case |w| ≥ ηT . If |z| ≤ e2|w|/|w|, then |f(z, w)| ≤ 1 and obtain for ε ≫ T−1/2

I31 =
1

2π

∫
|z|≤e2|w|/|w|

∫
|w|≥ηT

f(w, z)T e−εw2−2iεwz dw dz

≪
∫
|w|≥ηT

e2|w|−εw2
dw ≪

∫
|w|≥ηT

e−
ε
2
w2

dw ≪ 1

εηT
e−

ε
2
(ηT )2 ≪ e−η2T .

11
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If |z| ≥ e2|w|/|w| we have |f(z, w)| ≤ C̃e|w|/|zw| and, thus,

I32 =
1

2π

∫
|z|≥e2|w|/|w|

∫
|w|≥ηT

f(w, z)T e−εw2−2iεwz dw dz ≪ 1

εηT 2
e−

ε
2
(ηT )2 ≪ e−η2T .

Consequently,

I3 =
1

2π

∫ ∞

−∞

∫
|w|≥ηT

f(w, z)T e−εw2−2iεwz dw dz ≪ e−η2T .

In conclusion, we arrive at

J1 = I1 + I2 + I3 =
1√
2πT

∫ ∞

−∞
B(w)

−1/2
e−εw2−2ε2w2/(TB(w)) dw +O

(
T−5/8

)
provided that ε ≫ T−1/2 and where η = η(T ) = c6(log T )

−3 for a sufficiently small positive
constant c6.

In a similar manner, with another few pages of calculations (see also Appendix E), we obtain the
asymptotics of J0 which we summarize as follows:

J0 =
1√
2πT

∫ ∞

−∞
B(w)

1/2
e−εw2−2ε2w2/(TB(w)) dw +O

(
log T

T

)
provided that ε ≫ T−1/2 and where we have set η = η(T ) = c6(log T )

−3 for a sufficiently small
positive constant c6. In summary, we prove Proposition 8 (and hence the first part of Theorem 2 for
d = 1).

Proof of Theorem 2(ii): Since the logarithm is concave it directly follows that E
[
log Sε(X

T )
]
≤

logE
[
Sε(X

T )
]

which provides the desired upper bound.
We now discuss a (potential) lower bound, but again to ease the presentation we just consider

the case d = 1 (with some details deferred to Appendix D). We partition Sε(x
T ) into two parts

Sε(x
T ) = Sε,1(x

T ) + Sε,2(x
T ), where Sε,1(x

T ) should play the dominant rôle. More precisely we
set

Sε,1(x
T ) =

1v≥cT 1/4

2π

∫
|z|≤1

∫
|w|≤T 1/4

T∏
t=1

f(w, xt, z)∇2Lε(·|xT , w)e−εw2−2iεwz dw dz,

where c > 0 is a proper constant and v abbreviates v =
∑T

t=1 x
2
t p(xtT

1/4)p(−xtT
1/4). Suppose

that y is a small real number and denote by A(y) the event that
∣∣Sε,2(X

T )/Sε,1(X
T )
∣∣ ≤ y. Then

we certainly have

E
[
log Sε(X

T )
]
= E log

∣∣Sε(X
T )
∣∣ ≥ E

[
1A(y) · log

∣∣Sε,1(X
T ) + Sε,2(X

T )
∣∣]

≥ E
[
1A(y) · log

(∣∣Sε,1(X
T )
∣∣ (1− y)

)]
≥ E

[
1A(y) · log

∣∣Sε,1(X
T )
∣∣]− 2y

= E
[
log
∣∣Sε,1(X

T )
∣∣]− 2y − E

[
1A(y)c · log

∣∣Sε,1(X
T )
∣∣]

≥ E
[
log
∣∣Sε,1(X

T )
∣∣]− 2y − P(A(y)c)

√
E
[
log2 |Sε,1(XT )|

]
.

12
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Thus, in order to make this estimate work we need an upper bound for

P(A(y)c) = P
(∣∣∣∣Sε,2(X

T )

Sε,1(XT )

∣∣∣∣ > y

)
≤ 1

y
E
∣∣∣∣Sε,2(X

T )

Sε,1(XT )

∣∣∣∣ .
The main term Sε,1(X

T ) behaves quite nicely. In particular we can prove the following property
(see Appendix D).

Lemma 9 Suppose that F (y) is defined for |y| ≥ 1 and satisfies the following growth property:
|F (y)| ≤ C1|y|D1 for positive constants C1, D1 and that y1 ∼ y2 → ∞ implies F (y1) ∼ F (y2).
Then we have

E
[
F (Sε,1(X

T ))
]
∼ F

(
ESε,1(X

T )
)
, and ESε,1(X

T ) ∼ T 1/2

√
2π

∫ ∞

−∞

√
B(w)e−εw2

dw.

The basis of the proof of Lemma 9 is the following formula (that follows directly from the
definition).

Lemma 10 We have uniformly for |z| ≤ 1, x ∈ [0, 1] and all w ∈ R(
T∏
t=1

f(w, xt, z)

)
∇2Lε(·|xT , w) = e−

1
2
Uz2(1+O(z))(U + 2ε),

where U abbreviates

U =

T∑
t=1

x2t p(xtw)p(−xtw) =: ∇2L(·|xt, w) (22)

By applying the methods from above it is easy to obtain an upper bound for E
[
Sε,2(X

T )
]
≪

log T , however the above methods seem to fail for getting upper bounds for E
[
|Sε,2(X

T )|
]
.
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Appendix A. Proof of Lemma 1

We start the proof of Lemma 1 with the following result.

Lemma 11 The determinant of the matrix matrix ∇2Lε(y
T |xT ,w) satisfies

det
(
∇2Lε(y

T |xT ,w)
)
≥ (2ε)d.

Proof By (9) we have for every vector v

〈
∇2Lε(y

T |xT ,w)v,v
〉
=

T∑
t=1

p(⟨xt,w⟩))p(−⟨xt,w⟩))⟨xt,v⟩2 + 2ε∥v∥2

≥ 2ε∥v∥2.

In particular if v is an eigenvector of ∇2Lε(y
T |xT ,w) with eigenvalue λ then

λ∥v∥2 ≥ 2ε∥v∥2.

Since ∇2Lε(y
T |xT ,w) is real symmetric, its determinant is just the product of all its eigenvalues.

This completes the proof of the lemma.

We can now show that all derivatives of hyT |xT (a) are absolutely integrable which is the first
part of Lemma 1 which we repeat below.

Lemma 12 For every fixed yT , xT , ε > 0 and for all non-negative integers k1, . . . , kd we have

∂k1+···kd

∂ak11 · · · ∂akdd
hyT |xT (a) = O

(
e−

1
4ε

∥a∥2∥a∥k1+···+kd
)
.

Proof By (11) the case k1 = · · · = kd = 0 is already covered. Next let us consider the first
derivatives of e−L(yT |xT ,w):

∇ exp
(
−L(yT |xT , G−1

yT |xT ,ε
(a))

)
= − exp

(
−L(yT |xT , G−1

yT |xT ,ε
(a))

)
∇L(yT |xT , G−1

yT |xT ,ε
(a))∇G−1

yT |xT ,ε
(a).

Clearly we have
exp

(
−L(yT |xT , G−1

yT |xT ,ε
(a))

)
≤ 1.

Since

∇L(yT |xT ,w) = −
T∑
t=1

p(−yt⟨xt,w⟩) yt xt = O(1)

uniformly for all w ∈ Rd we also have

∇L(yT |xT , G−1
yT |xT ,ε

(a)) = O(1).

Finally

∇G−1
yT |xT ,ε

(a) =
(
∇2L(yT |xT , G−1

yT |xT ,ε
(a))

)−1
.
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All entries of the matrix ∇2L(yT |xT ,w) are uniformly bounded as well as the reciprocal of its
determinant (see Lemma 11). This proves that

∇G−1
yT |xT ,ε

(a) = O(1)

and hence

∇ exp
(
−Lε(y

T |xT , G−1
yT |xT ,ε

(a))
)

= exp
(
−ε∥G−1

yT |xT ,ε
(a))∥2

)
∇ exp

(
−L(yT |xT , G−1

yT |xT ,ε
(a))

)
− exp

(
−ε∥G−1

yT |xT ,ε
(a))∥2 − L(yT |xT , G−1

yT |xT ,ε
(a))

)
2εG−1

yT |xT ,ε
(a))∇G−1

yT |xT ,ε
(a)

= O
(
e−

1
4ε

∥a∥2∥a∥
)

as proposed.
In a similar way we can compute higher derivatives. For all non-negative integers k1, . . . kd we

find
∂k1+···kd

∂ak11 · · · ∂akdd
exp

(
−L(yT |xT , G−1

yT |xT ,ε
(a))

)
= O(1).

The computations follow the same lines as above. It remains to note that

∂k1+···kd

∂ak11 · · · ∂akdd
exp

(
−ε∥G−1

yT |xT ,ε
(a))∥2

)
= O

(
e−

1
4ε

∥a∥2∥a∥k1+···+kd
)

and to apply the product rule. This completes the proof of the lemma.

This allows us to show that the Fourier transform exists proving Lemma 1 which we repeat
below.

Lemma 13 For every fixed yT , xT , and ε > 0 the Fourier transform

h̃yT |xT (z) =

∫
Rd

hyT |xT (a)e−i⟨a,z⟩ da

of hyT |xT (a) exists and satisfies

h̃yT |xT (z) = O
(
|z1|−k1 · · · |zd|−kd

)
for all non-negative integers k1, . . . , kd. Consequently the inverse Fourier transform is given by

hyT |xT (a) =
1

(2π)d

∫
Rd

h̃yT |xT (z)ei⟨a,z⟩ dz.

Proof Since

h̃yT |xT (z) =

∫
Rd

hyT |xT (a)e−i⟨a,z⟩ da

= (iz1)
−k1 · · · (izd)−kd

∫
Rd

∂k1+···kd

∂ak11 · · · ∂akdd
hyT |xT (a)e−i⟨a,z⟩ da

17
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and the latter integral exists by Lemma 12 it follows that the integral∫
Rd

h̃yT |xT (z)ei⟨a,z⟩ dz

exists. Since all involved functions are continuously differentiable this integral equals (up to the
factor (2π)−d) the original function hyT |xT (a).

Appendix B. Proof of Lemma 5–7

We start with the proof of Lemma 5.
Proof [Lemma 5] We use the representation (19) that we can rewrite to

f(w, z) =

∫ 1

0

(
e−ixz/(1+exw)

1 + e−xw
+

eixz/(1+e−xw)

1 + exw

)
dx.

By differentiation we directly obtain

f(w, 0) =

∫ 1

0

(
1

1 + e−xw
+

1

1 + exw

)
dx =

∫ 1

0
1 dx = 1,

∂f

∂z
(w, z) =

∫ 1

0

(
e−ixz/(1+exw)

1 + e−xw

−ix

1 + exw
+

eixz/(1+e−xw)

1 + exw
ix

1 + e−xw

)
dx,

∂f

∂z
(w, 0) =

∫ 1

0
0 dx = 0,

∂2f

∂z2
(w, z) =

∫ 1

0

(
e−ixz/(1+exw)

1 + e−xw

(
−ix

1 + exw

)2

+
eixz/(1+e−xw)

1 + exw

(
ix

1 + e−xw

)2
)

dx,

∂2f

∂z2
(w, 0) =

∫ 1

0

(
1

1 + e−xw

(
−ix

1 + exw

)2

+
1

1 + exw

(
ix

1 + e−xw

)2
)

dx,

= −
∫ 1

0

x2

(1 + e−xw)(1 + exw)

(
1

1 + e−xw
+

1

1 + exw

)
dx

= −
∫ 1

0

x2

(1 + e−xw)(1 + exw)
dx = −B(w),

∂3f

∂z3
(w, z) =

∫ 1

0

(
e−ixz/(1+exw)

1 + e−xw

(
−ix

1 + exw

)3

+
eixz/(1+e−xw)

1 + exw

(
ix

1 + e−xw

)3
)

dx.

Clearly we have

B(w) = Θ

(∫ 1

0
x2e−|xw| dx

)
= Θ

(
1

|w|3

∫ |w|

0
v3e−v dv

)
= Θ

(
min(1, |w|−3)

)
.

18
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Similarly it follows that

∂3f

∂z3
(w, z) ≪

∫ 1

0
x2e−|xw| dx ≪ min(1, |w|−4).

Thus, it immediately follows that

f(z, w) = 1− z2

2
B(w) +O

(
z3min(1, |w|−4)

)
.

and by expanding f(z, w) = elog f(z,w) we obtain the third representation for f(z, w) (where we use
z2min(1, |w|−6) as the order of z2B(w)2).

Finally, if |z| ≤ max(1, c1|w|) (for some sufficiently small constant c1 > 0) it follows that

z2B(w) ≥ z3min(1, |w|−4)

Thus we also get
f(w, z) = 1−Θ

(
z2min(1, |w|−3)

)
.

For the proof of Lemma 6 we need to further properties (that can be found in Huxley (1996)),

Lemma 14 Let β1, β be real numbers with β1 < β2. Assume that h is continuously differentiable
on [β1, β2] and has a monotone nonvanishing derivative. Then for each continuous function g we
have ∣∣∣∣∫ β2

β1

g(x)eih(x) dx

∣∣∣∣ ≤ 2
max[β1,β2] |g|+ V β2

β1
(g)

min[β1,β2] |h′|
, (23)

where V β
β1
(g) denotes the total variation of g on [β1, β2].

Lemma 15 Let β1, β be real numbers with β1 < β2. Assume that h is twice continuously differen-
tiable on [β1, β2] such that the second derivative is non-zero. Then for each continuous function g
we have ∣∣∣∣∫ β2

β1

g(x)eih(x) dx

∣∣∣∣ ≤ 8
max[β1,β2] |g|+ V β2

β1
(g)

min[β1,β2]

√
|h′′|

. (24)

The proof of Lemma 6 runs as follows.
Proof [Lemma 6] We consider the function

h(x) =
xz

1 + e−xw
= xzp(xw)

that satisfies

h′(x) = z
1 + e−xw + xwe−xw

(1 + e−xw)2
= z

1 + e−u + ue−u

(1 + e−u)2

and

h′′(x) = z

(
2

we−xw

(1 + e−xw)2
+ w2xe−xw 1− e−xw

(1 + e−xw)3

)
=

zue−u

x

2(1 + e−u) + u(1− e−u)

(1 + e−u)3
,

19
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where u abbreviates u = xw. Note that

f(x,w) =

∫ 1

0
p(−xw)eih(x) dx+

∫ 1

0
p(xw)eih(−x) dx.

First we consider the case w ≥ 0 (so that u = xw ≥ 0). Here we certainly have

|h′(x)| ≥ |z|
4

(25)

and that h′′(x) has the same sign as z. Hence, by a direct application of Lemma 14 we obtain∣∣∣∣∫ 1

0
p(−xw)eih(x) dx

∣∣∣∣ ≤ 8

|z|
. (26)

Note that the function p(−xw) is monotone and bounded by 1.
Next observe that there is u0 < −1 such that 1 + e−u + ue−u. Furthermore we also have that

2(1 + e−u) + u(1− e−u) ≥ 2− e−1 > 0

for u ≤ 0. Thus, if 0 ≤ w ≤ 1 and 0 ≤ x ≤ 1 we have

|h′(−x)| ≥ |z|
(1 + e)2

(27)

and consequently we get ∣∣∣∣∫ 1

0
p(xw)eih(−x) dx

∣∣∣∣ ≤ 2(1 + e)2

|z|
which implies

f(z, w) ≪ 1

|z|
.

Trivially we have |f(z, w)| ≤ 1. The case −1 ≤ w < 0 can be handled in completely the same way.
Thus, we have completed the case |w| ≤ 1.

If |w| ≥ 1 we have to be more careful. First we again have (25) which implies (26).
However, for the second integral we have to distinguish between three ranges. If 0 ≤ x ≤ 1/w

then we get again (27) and, thus,∣∣∣∣∣
∫ 1/w

0
p(xw)eih(−x) dx

∣∣∣∣∣ ≤ 2(1 + e)2

|z|

Secondly we consider the interval 1/w ≤ x ≤ (|u0|+ κ)/w (for some κ > 0) then h′(−x) is very
close to 0 (and actually equal to 0 for x = |u0|/w). So instead of Lemma 14 we apply Lemma 15
and obtain ∣∣∣∣∣

∫ (|u0|+κ)/w

1/w
p(xw)eih(−x) dx

∣∣∣∣∣≪ 1√
|zw|

since

|h′′(x)| = Θ

(
|z|
x

)
= Θ(|zw|)
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in this range.
Finally if (|u0|+ κ)/w ≤ x ≤ 1 we again apply Lemma 14. In this range we have

|h′(x)| ≫ |z| w
ew

which gives ∣∣∣∣∣
∫ 1

(|u0|+κ)/w
p(xw)eih(−x) dx

∣∣∣∣∣≪ ew

|zw|
.

This completes the proof of the lemma since the case w < −1 can be handled in completely the
same way.

Finally we give a proof of Lemma 7.
Proof [Lemma 7] We consider first the case |x| ≥ c′1|w|, where c′1 will be chosen sufficiently large.
As in the proof of Lemma 5 it follows (if w ≥ 0)∣∣∣∣∫ 1

0
p(−xw)eih(x) dx

∣∣∣∣≪ 1

|z|

and ∣∣∣∣∫ 1

0
p(xw)eih(−x) dx

∣∣∣∣ =
∣∣∣∣∣
(∫ 1/w

0
+

∫ (|u0|+η)/w

1/w
+

∫ 1

(|u0|+η)/w

)
p(xw)eih(−x) dx

∣∣∣∣∣
≤ 1− |u0|+ η

w
+O

(
1

|z|
+

1√
|zw|

)
.

Thus, if |z| ≥ c′1w for a sufficiently large constant c′1 we have∣∣∣∣∫ 1

0

(
p(−xw)eih(x) + p(xw)eih(−x)

)
dx

∣∣∣∣ ≤ 1− c2
w
.

Next we consider the interval c1w ≤ |z| ≤ c′1w. With c = z/w we have

f(z, w) =

∫ 1

0

(
p(−xw)e−ixzp(xw) + p(xw)eixzp(−xw)

)
dx

=
1

w

∫ w

0

(
p(−v)e−icvp(v) + p(v)eicvp(−v)

)
dv.

By continuity it follows that uniformly for c1 ≤ c ≤ c′1∣∣∣∣∫ 1

0
p(−v)e−icvp(v) dv

∣∣∣∣ ≤ ∫ 1

0
p(−v) dv − c2

for some constant c2 > 0. Hence

|f(z, w)| ≤ 1

w

∫ w

0
(p(−v) + p(v)) dv − c2

w
= 1− c2

w
,

as proposed. (The case w < 0 is completely similar.)
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Appendix C. Proof of Lemma 3

We prove here Lemma 3. We recall that

B(w) =
d

sd

∫
Bd

q(⟨x,w⟩)x⊗ x dx.

We start with part (i). Let θ be the angle between x and u = w/∥w∥. We have the decomposition
x = t(cos(θ)u+ b) with b ∈ sin θSd−1(u) where Sd−1(u) is the unit hypersphere orthogonal to u
and t ∈ [0, 1]. Since x’s have a spheric symmetry in its distribution, so it is the case for the b’s in
sin θSd−1(u) for any given angle θ. Thus

B̄(w) =
d

sd

∫ 1

0

∫ π

0
td−1q(t∥w∥ cos θ)dθ

∫
sin θSd−1(u)

(b+ cos θu)⊗ (b+ cos θu)db dt (28)

=
d

sd

∫ π

0
td−1q(t∥w∥ cos θ)dθ

∫
sin θSd−1(u)

(b⊗ b+ (cos θ)2u⊗ u)db dt

+
d

sd

∫ 1

0

∫ π

0
td−1q(∥w∥ cos θ)dθ

∫
sin θSd−1(u)

cos θ(b⊗ u+ u⊗ b)db. (29)

Again due to the spheric symmetry of b we also have
∫
sin θSd−1(u)

b = 0 leading to

B̄(w) =
d

sd

∫ 1

0

∫ π

0
td−1q(t∥w∥ cos θ)dθ

∫
sin θSd−1(u)

(b⊗ b+ (cos θ)2u⊗ udb dt

=
d

sd

∫ 1

0

∫ π

0
td−1q(t∥w∥ cos θ)(sin θ)d−1dθ dt∫

Sd−1(u)
((sin θ)2b⊗ b+ (cos θ)2u⊗ u)db. (30)

The (sin θ)d−1 factor arises from the change of integration domain from sin θSd−1(u) to Sd−1(u).
The quantity

∫
Sd−1(u)

b⊗b is the (d−1)×(d−1) matrix whose (i, j) coefficient is
∫
Sd−1

bibjdb.
Clearly, by spheric symmetry of the b vectors

∫
Sd−1

bibjdb = 0 when i ̸= j. We also have for all
i ̸= j: ∫

Sd−1

(bi)
2db =

∫
Sd−1

(bj)
2db =

1

d− 1

∫
Sd−1

∥b∥2db =
sd−1

d− 1
. (31)

Thus ∫
Sd−1(u)

b⊗ bdb =
sd−1

d− 1
Id−1(u) (32)

and similarly ∫
Sd−1(u)

u⊗ udb = sd−1u⊗ u (33)

which completes the proof of part (i) of the lemma.
Now we move to part (ii) of Lemma 3. Both λ(w) and ϕ(w) are functions of w = ∥w∥. We

write λ(w) = λ(∥w∥) and ϕ(w) = ϕ(∥w∥). To capture the asymptotics of these functions we apply
Mellin transform which is an effective tool of analytic combinatorics for complex asymptotics. The
reader is refereed to Flajolet and Sedgewick (2008) and Szpankowski (2001) for detailed discussions.
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The Mellin transforms λ∗(s) and ϕ∗(s) of λ(w) and ϕ(w) are defined, respectively, as

λ∗(s) =

∫ ∞

0
λ(w)ws−1dw, ϕ∗(s) =

∫ ∞

0
ϕ(w)ws−1dw

Observe now that

λ(w) = 2
dsd−1

sd

∫ 1

0

∫ π/2

0
td−1q(t cos(θ)w) cos2(θ) sind−2(θ)dθ dt (34)

=
2dsd−1

sd

∫ 1

0

∫ 1

0
td−1y2(1− y2)(d−3)/2q(tyw)dy (35)

via the change of variable y = cos(θ). Thus we find

λ∗(s) =
2dsd−1

sd

∫ 1

0

∫ 1

0
td−1(1− y2)(d−3)/2y2

∫ ∞

0
q(tyw)xs−1dy dy dt (36)

=
2dsd−1

sd
q∗(s)

∫ 1

0
td−1−s dt

∫ 1

0
(1− y2)(d−3)/2y2−sdy (37)

=
2dsd−1

sd

q∗(s)

d− s
β∗
1(3− s) (38)

where q∗(s) is the Mellin transform of q(x) = p(x)(1− p(x) and β1(s) is the Mellin transform of
the function (1− y2)(d−3)/2y defined over [0, 1].

The Mellin transform β∗
1(s) is defined for Re(s) > 0 and being locally analytical it has poles

on the negative even integers, corresponding to the Taylor expansion of (1− y2)(d−3)/2. Actually it
can be written in terms of the Beta function and, thus, in terms of the Gamma function, and these
representations directly provide the corresponding meromorphic extension. The Mellin transform
q∗(s) of function q(x) is

q∗(s) = (s− 1)2(s− 2)h∗(s− 2)

where h∗(s) is the Mellin transform of function h(x) = log(1 + e−x) defined for Re(s) > 0. The
Mellin transform q∗(s) is defined for Re(s > 2 but the simple poles at s = 1 and s = 2 are canceled
by the factor (s− 1)(s− 2) thus is finally defined for Re(s) > 0. More precisely, we have

h∗(s) = (1− 2−s)ζ(s+ 1)Γ(s)

where Γ(s) is the Euler gamma function and ζ(s) is the Riemann zeta function.
If d = 2 the simple pole coming from the factor 1/(2 − s) dominates and shows that λ(w)

behaves as w−2 as w → ∞. If d = 2 the two simple poles at s = 3 (coming from 1/(3 − s) and
β∗
1(3− s)) correspond to the leading asymptotic behavior of the form w−3 logw. Finally, for d > 3

we just have a simple pole at s = 3 coming from β∗
1(3− s) and so λ(w) behaves as w−3 as w → ∞.

We can make a similar analysis for ϕ∗(s) and we arrive at

ϕ∗(s) = 2
dsd−1

(d− 1)sd

β∗
2(1− s)

d− s
q∗(s),

where β∗
2(s) is the Mellin transform of the function (1 − y2)(d−1)/2. For d ≥ 2 there is always a

dominant simple pole at s = 1 coming from β∗
2(s) which is reflected by the asymptotic order w−1

for ϕ(w) we w → ∞.
The Mellin transform ϕ∗(s) is also defined on Re(s) ∈]0, 3[ and has a simple pole at s = 3 with

residue −ζ(2)Γ(3)d−1
2 = −π2/6(d− 1). For both λ∗(s) and ϕ∗(s) the next pole is at s = 5. This

completes the proof of Lemma 3.
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Appendix D. Proof of Lemma 9

Before we prove Lemma 9 we recall the following fact (see Lemma 10): we have uniformly for
|z| ≤ 1, x ∈ [0, 1] and all w ∈ R(

T∏
t=1

f(w, xt, z)

)
∇2Lε(·|xT , w) = e−

1
2
Uz2(1+O(z))(U + 2ε),

where U abbreviates U =
∑T

t=1 x
2
t p(xtw)p(−xtw) =: ∇2L(·|xt, w).

We also recall that

Sε,1(x
T ) =

1v≥cT 1/4

2π

∫
|z|≤1

∫
|w|≤T 1/4

T∏
t=1

f(w, xt, z)∇2Lε(·|xT , w)e−εw2−2iεwz dw dz.

Now we are ready to prove Lemma 9 which we repeat below.

Lemma 16 Suppose that F (y) is defined for |y| ≥ 1 and satisfies the following growth property:

|F (y)| ≤ C1|y|D1

for positive constants C1, D1 and that y1 ∼ y2 → ∞ implies F (y1) ∼ F (y2). Then we have for
positive constants C1, D1 and that y1 ∼ y2 → ∞ implies F (y1) ∼ F (y2). Then we have

E
[
F (Sε,1(X

T ))
]
∼ F

(
ESε,1(X

T )
)

and

ESε,1(X
T ) ∼ T 1/2

√
2π

∫ ∞

−∞

√
B(w)e−εw2

dw.

Proof We consider now U (defined in (22)) as a random variable (actually a sum of T iid random
variables). By applying a proper Chernov bound it follows that (for some constant c > 0)

P
(
|U − TB(w)| ≥ y

)
≪ e−cy2 max(1,|w|5)/T

If we assume that |w| ≤ T 1/4 and y = B(w)T 3/4 it follows that

P
(
|U − TB(w)| ≥ B(w)T 3/4

)
≪ e−c′T 1/12

for some constant c′ > 0. Now we use the monotonicity of U in w and the values wj = j/T 2,
0 ≤ j ≤ T 9/4 to conclude that

P
(
∃ |w| ≤ T 1/4 : |U − TB(w)| ≥ B(w)T 3/4/2

)
≪ e−c′′T 1/12

for some constant c′′ > 0.
Denote by B the event that |U − TB(w)| < B(w)T 3/4/2 for all |w| ≤ T 1/4. Then we know

that P(B) ≥ 1 − e−c′′T 1/12
. Note that v is exactly U if w = T 1/4. Thus, if B holds then we also

have v ≥ cT 2/5 for a proper constant c. So we do not have to take of the indicator function 1v≥cT 2/5 .
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Now, if we condition on B we certainly have

U = TB(w)(1 +O(T−1/4).

Thus we obtain uniformly∫
|z|≤1

e−
1
2
Uz2(1+O(z))−2iεzw(U + 2ε) dz ∼

√
2πU ∼

√
2πTB(w)

and consequently

Sε,1(X
T ) ∼ T 1/2

√
2π

∫
|w|≤T 1/4

√
B(w)e−εw2

dw

∼ T 1/2

√
2π

∫ ∞

−∞

√
B(w)e−εw2

dw.

In general we certainly have the trivial upper bound∫
|z|≤1

e−
1
2
Uz2(1+O(z))(U + 2ε) dz ≤ η(U + 2ε) ≪ T

and so we find
Sε,1(X

T ) ≪ T 5/4.

We now prove a lower lower bound for which we need the introduced condition v ≥ cT 1/4.
Recall that v is U for w = T 1/4 so that we have U ≥ v ≥ cT 1/4 for all |w| ≤ T 1/4. We compute
the Gaussian type integral more precisely∫

|z|≤1
e−

1
2
Uz2(1+O(z))−2iεzw dz =

∫ ∞

−∞
e−

1
2
Uz2(1+O(z))−2iεzw dz +O

(
1

U

)
=

√
2π

U
e−2ε2w2/U +O

(
1

U

)
.

Now we observe that v ≥ cT 1/4 implies that 2ε2w2/U = o(εw2). Thus, the factor e−2ε2w2/U will
not play a rôle when we multiply with (U + 2ε)e−εw2

and integrate with respect to w. Consequently
we get a general lower bound for Sε,1(X

T ) of the form

Sε,1(X
T ) ≫

√
v

∫ T 1/4

0
e−εw2/2 dw ≫

√
v

ε
≫ T 1/8/

√
ε

provided that v ≥ cT 1/4 and ε ≫ T−1/2. We note again that the error term

O

(∫ T 1/4

0
e−εw2

dw

)
= O(1/

√
ε)

is negligible.

25



DRMOTA JACQUET WU SZPANKOWSKI

Finally in order to compute the expected value EF (Sε,1(X
T )) we consider the following parti-

tion:

E
[
F (Sε,1(X

T ))
]
= E

[
1v≥cT 1/4 · 1B · F (Sε,1(X

T ))
]
,

+ E
[
1v≥cT 1/4 · 1Bc · F (Sε,1(X

T ))
]
.

We now note that P(v ≤ cT 1/4) ≥ 1− e−c′′T 3/4
if c is properly chosen. Thus by assumption and the

properties of the events B and {v ≥ cT 1/4} it follows that

E
[
1v≥cT 1/4 · 1B · F (Sε,1(X

T ))
]
∼ F

(
T 1/2

√
2π

∫ ∞

−∞

√
B(w)e−εw2

dw

)
.

For the second term we use Cauchy-Schwarz’s inequality so that we have

E
[
1v≥cT 1/4 · 1Bc · F (Sε,1(X

T ))
]
≤
√
P(Bc)

√
E
[
1v≥cT 1/4 · |F (Sε,1(XT ))|2

]
.

Now we use the general upper bounds for Sε,1(X
T )) with gives

E
[
1v≥cT 1/4 · |F (Sε,1(X

T ))|2
]
≪ T 5D1/2

The lower bound ensures that |Sε,1(X
T )| ≥ 1 so that everything is well defined. This completes the

proof of the lemma.

Appendix E. Proof of Theorem 2 for general d

We fix d > 1 and consider first the expected value ESε(X
T ). By using the representation (14) and

by expanding the determinant we obtain (very similarly as in the case d = 1)

ESε(X
T ) =

d∑
j=0

T d−j J̃j(ε),

where J̃j(ε), j = 0, . . . , d, are proper linear combinations of integrals of the forms similar to J0
and J1 (from the case d = 0) together with proper powers of ε. In particular the dominant term
J̃0 = J0(ε) is given by

J̃0 =
1

(2π)d

∫
Rd

∫
Rd

f(w, z)T−ddet(B(z,w))e−ε∥w∥2−2iε⟨w,z⟩ dw dz,

where
B(z,w) = E [f(w,X,w)p(⟨x,w⟩)p(−⟨x,w⟩)X⊗X] .

For the sake of brevity we will only consider the term J0 (the other terms are similar but do not have
such a nice explicit form).
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E.1. Upper bounds for f(w, z)

We need analogous for Lemmas 5–7 for d > 1. Actually the situation is slightly more difficult.

Lemma 17 We have uniformly for z ∈ Rd

zτB(w)z ≫

{
∥z∥2 for ∥w∥ ≤ 1,
∥z∥2
∥w∥3 (| cosφ|+ ∥w∥| sinφ|)2 for ∥w∥ > 1,

where φ denotes the angle between w and z, that is cosφ = ⟨w, z⟩/(∥w∥ ∥z∥). Furthermore

log f(w, z) = −1

2
zτB(w)z

+

{
O(∥z∥3 + ∥z∥4) for ∥w∥ ≤ 1,

O
(

∥z∥3
∥w∥4 (| cosφ|+ ∥w∥| sinφ|)3 + ∥z∥4

∥w∥6 (| cosφ|+ ∥w∥| sinφ|)4
)

for ∥w∥ > 1.

Proof The case ∥w∥ ≤ 1 is easy to handle. We just use Taylor expansion and the property that

zτB(w)z = E
[
p(⟨X,w⟩)p(−⟨X,w⟩)⟨X, z⟩2

]
≫ E

[
⟨X, z⟩2

]
≫ ∥z∥2.

In the case ∥w∥ > 1 we have to be more careful. Let w0 = w/∥w∥ and w1 = w̃/∥w̃∥, where
w̃ = z − ⟨z,w⟩/∥w∥2w is orthogonal to w. We now represent x as x = x1w0 + x2w1 + x2,
where x2 is in the orthogonal to w and z. With the help of this notation we have

⟨x, z⟩ = x1
⟨z,w⟩
∥w∥2

+ x2∥w̃∥.

We also note that

A =
⟨z,w⟩
∥w∥

= ∥z∥ cosφ and B = ∥w̃∥ = ∥z∥ | sinφ|.

and that the integral

zτB(w)z = E
[
p(⟨X,w⟩)p(−⟨X,w⟩)⟨X, z⟩2

]
E
[
p(x1∥w∥)p(−x1∥w∥)(Ax1 +Bx2)

2
]

is a positive definite quadratic form in A,B. Thus, we get the lower bound

zτB(w)z ≫ A2E
[
p(x1∥w∥)p(−x1∥w∥)x21

]
+B2E

[
p(x1∥w∥)p(−x1∥w∥)x22

]
≫ A2

∥w∥3
+

B2

∥w∥
≫ ∥z∥2

∥w∥3
(| cosφ|+ ∥w∥| sinφ|)2

as proposed.
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The second part of the lemma follows by applying first Taylor expansion for f(w, z) and then by
taking the logarithm. The computations are very similar to the preceding ones. For example we have
for the third derivative

∂3f(w, z)

∂zj∂zk∂zℓ
=

iE
[
XjXkXℓp(⟨X,w⟩)p(−⟨X,w⟩)

(
p(−⟨X,w⟩)2e−i⟨X,z⟩p(−⟨X,w⟩) − p(⟨X,w⟩)2ei⟨X,z⟩p(⟨X,w⟩)

)]
which gives ∣∣∣∣∣∣

∑
i,j,k

∂3f(w, z

∂zi∂zj∂zk
zizjzk

∣∣∣∣∣∣≪ E
[
p(⟨X,w⟩)p(−⟨X,w⟩) |⟨X, z⟩|3

]
≪ 1

∥w∥4
(| cosφ|+ ∥w∥| sinφ|)3 .

This directly leads to the proposed asymptotic relation.

We recall that X is uniformly distributed on the unit ball Bd. The idea is to parametrise the unit
ball with the help of spherical coordinates

x1 = t cos(ϕ1)

x2 = t sin(ϕ1) cos(ϕ2)

x3 = t sin(ϕ1) sin(ϕ2) cos(ϕ3)

...

xd−1 = t sin(ϕ1) · · · sin(ϕd−2) cos(ϕd−1)

xc = r sin(ϕ1) · · · sin(ϕd−2) sin(ϕd−1),

where 0 ≤ t ≤ 1, 0 ≤ ϕj ≤ π (1 ≤ j ≤ d− 2), ≤ ϕd−1 ≤ 2π, and the determinant of the Jacobian
is given by

td−1 ·
d−1∏
k=2

(sin(ϕd−k))
k−1 .

Note that for t = 1 we also get a parametrisation of the sphere Sd.
We start with a simple lemma.

Lemma 18 Suppose that x ∈ Sd, that is ∥x∥ = 1. If |⟨x,w⟩| ≤ 1 then we have∫ 1

0
td−1f(w, tx, z) dt ≪ 1

|⟨x, z⟩|
(39)

whereas if |⟨x,w⟩| ≥ 1 we have∫ 1

0
td−1f(w, tx, z) dt ≪ 1√

|⟨x, z⟩⟨x,w⟩|
+

e|⟨x,w⟩|

|⟨x, z⟩⟨x,w⟩|
(40)
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Proof The proof follows that same lines as the proof of Lemma 6. We just use the (auxiliary)
function

h(t) = p(⟨tx,w⟩)⟨tx, z⟩

that satisfies

h′(t) = ⟨x, z⟩1 + e−⟨tx,w⟩ + ⟨tx,w⟩e−⟨tx,w⟩

(1 + e−⟨tx,w⟩)2

and

h′′(t) = ⟨x, z⟩⟨x,w⟩e−⟨tx,w⟩ 2(1 + e−⟨tx,w⟩) + ⟨tx,w⟩(e−⟨tx,w⟩ − 1)

(1 + e−⟨tx,w⟩)3
.

As a corollary we obtain the following upper bounds for f(z,w).

Lemma 19 If ∥w∥ ≤ 1 then we have

|f(z,w)| ≤ min

(
1, C1

log(∥z∥)
∥z∥

)
(41)

for some constant C1 > 0, whereas if ∥w∥ ≥ 1 we have

|f(z,w)| ≤ min

(
1, C2

log(∥z∥ ∥w∥) + e ∥w∥√
∥z∥ ∥w∥

)
. (42)

for some constant C2 > 0.

Proof We start with the case ∥w∥ ≤ 1. Note that ∥w∥ ≤ 1 implies |⟨x,w⟩| ≤ 1 for all x ∈ Sd. By
Lemma 18 we have

f(z,w) ≪
∫
Sd

min

(
1,

1

|⟨x, z⟩|

)
dx,

where the integral is considered as an (d− 1)-dimensional integral. Due to rotation symmetry we
can assume that z is parallel to the first axis. Thus, we have ⟨x, z⟩ = x1∥z∥ and consequently

f(z,w) ≪
∫ 1

−1
(1− x21)

d−3
2 min

(
1,

1

|x1| ∥z∥

)
dx1

≪ 1

∥z∥
+

1

∥z∥

∫ 1

1/∥z∥
(1− x21)

d−3
2 dx1

≪ log(∥z∥)
∥z∥

as proposed.
Now suppose that ∥w∥ ≥ 1. Then either (39) or (40) holds. But since ∥w∥ ≥ 1 then (39) implies

(40). Thus we have (40) in all cases. So we have to consider the two ((d− 1)-dimensional) integrals

K1 =

∫
Sd

min

(
1,

1√
|⟨x, z⟩⟨x,w⟩|

)
dx
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and

K2 =

∫
Sd

min

(
1,

e∥w∥

|⟨x, z⟩⟨x,w⟩|

)
dx.

Note that |⟨x,w⟩| ≤ ∥w∥ if x ∈ Sd.
We start with K1 and suppose first that z and w are parallel. Then we are in the same situation

as in the previous case and, thus, we obtain

K1 ≪
log(∥z∥ ∥w∥)√

∥z∥ ∥w∥
.

In general we distinguish between the cases

|⟨x, z⟩|
∥z∥

≤ |⟨x,w⟩|
∥w∥

and
|⟨x, z⟩|
∥z∥

>
|⟨x,w⟩|
∥w∥

and obtain
1√

|⟨x, z⟩⟨x,w⟩|
≤ 1

|⟨x, z⟩|

√
∥z∥
∥w∥

+
1

|⟨x,w⟩|

√
∥w∥
∥z∥

.

Thus, we get

K1 ≪
∫
Sd−1

min

(
1,

1

|⟨x, z⟩|

√
∥z∥
∥w∥

)
dx+

∫
Sd

min

(
1,

1

|⟨x,w⟩|

√
∥w∥
∥z∥

)
dx

≪
∫ 1

−1
(1− x21)

d−3
2 min

(
1,

1

|x1|
√
∥w∥ ∥z∥

)
dx1

≪ log(∥z∥ ∥w∥)√
∥z∥ ∥w∥

as proposed.
Finally we consider the integral K2, where we use the inequality

1

|⟨x, z⟩⟨x,w⟩|
≤ 1

|⟨x, z⟩|2
∥z∥
∥w∥

+
1

|⟨x,w⟩|2
∥w∥
∥z∥

and use the property∫ 1

−1
(1− x21)

d−3
2 min

(
1,

1

|x1|2∥w∥ ∥z∥

)
dx1 ≪

1√
∥z∥ ∥w∥

.

This completes the proof of the lemma.

Lemma 20 There exist constants c1 > 0 and c2 > 0 such that

|f(z,w)| ≤ 1− c2
∥w∥

(43)

uniformly for ∥z∥ ≥ c1∥w∥ log2 ∥w∥.
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Proof We consider first the integral
∫ 1
0 td−1f(w, tx, z)dt and assume that |⟨x,w⟩| > |u0|+ η. we

split up the integral into three intervals of the form (compare also with the proofs of Lemma 6 and 7):

[0, 1/|⟨x,w⟩|], [1/|⟨x,w⟩|, (|u0|+ η)/|⟨x,w⟩|], [(|u0|+ η)/|⟨x,w⟩|, 1]

and obtain (for some constant C ′ > 0)∣∣∣∣∫ 1

0
td−1f(w, tx, z)dt

∣∣∣∣ ≤ C ′max

(
1,

1√
|⟨x,w⟩ ⟨x, z⟩|

)
+

1

d

(
1−

(
|u0|+ η

|⟨x,w⟩|

)d
)
.

Note that we used a the trivial bound |f(w, tx, z)| ≤ 1 in the third interval.
We already observed that∫

Sd

max

(
1,

1√
|⟨x,w⟩ ⟨x, z⟩|

)
x ≪ log(∥z∥ ∥w∥)√

∥z∥ ∥w∥
.

Furthermore we have∫
Sd,|⟨x,w⟩|>|u0|+η

|⟨x,w⟩|−d dx ≫
∫ 1

(|u0|+η)/∥w∥
(x1∥w∥)−d(1− x21)

d−3
2 dx1

≫ 1

∥w∥
.

This directly leads to

|f(z,w)| ≤ 1− d1
∥w∥

+
d2 log(∥z∥ ∥w∥)√

∥z∥ ∥w∥

for proper constants d1, d2 > 0. Clearly if ∥z∥ ≥ c1∥w∥ log2 ∥w∥ for a properly chosen constant
c1 > 0 we obtain (43) for some constant c2 > 0.

Lemma 21 Suppose that c3 > 0 is a given constant. Then there exists c4 > 0 such that

|f(z,w)| ≤ 1− c4
∥z∥d

(44)

uniformly for ∥z∥ ≥ c3∥w∥. In particular it follows that

|f(z,w)| ≤ 1− c5

(∥w∥ log2 ∥w∥)d

uniformly for c3∥w∥ ≤ ∥z∥ ≤ c1∥w∥ log2 ∥w∥.

Proof The idea is to show that for some constant c3 > 0 we have∣∣∣∣∣
∫
[0,1/∥z∥]d

f(w,x, z) dx

∣∣∣∣∣ ≤ 1− c4
∥z∥d

(45)

uniformly for all z with ∥z∥ ≥ c3∥w. Clearly (45) implies (44).
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We apply the substitution u = ∥z∥x. Furthermore we set c = ∥w∥/∥z∥, z0 = z/∥z∥ and
w0 = w/∥w∥, and we also represent z0 as z0 = Sw0 for some rotation S. With these notations in
inequality (45) is equivalent to the inequality∣∣∣∣∣
∫
[0,1]d

(
p(c⟨u,w0⟩)e−ip(−c⟨u,w0⟩)⟨u,Sw0⟩ + p(−c⟨u,w0⟩)eip(c⟨u,w0⟩)⟨u,Sw0⟩

)
du

∣∣∣∣∣ ≤ 1− c4

that should now hold uniformly in c ∈ [0, 1/c2], w0, and S. However, this is trivial by a compactness
argument. Clearly for every choice of c ∈ [0, 1/c2], w0, and S the left hand side is smaller than 1,
and the left hand side is continous in c ∈ [0, 1/c2], w0, and S.

E.2. Asymptotics of J̃0

Based on the above properties we derive an asymptotic representation for the integral J0.

Proposition 22 We have

J̃0 ∼
1

(2πT )d/2

∫
Rd

√
det
(
B(w)

)
e−ε∥w∥2− 2ε2

T
wτB(w)−1w dw

provided that ε ≫ max(T−1/2, T−2/(d+1)), where B(w) is given by (16).

We recall that

B(z,w) =

∫
Bd

f(w,x, z)p(⟨x,w⟩)p(−⟨x,w⟩)x⊗ x dx

and we note that

B(0,w) = B(w).

Moreover B(0,w) is a positive matrix and all entries of B(z,w) satisfy

|B(z,w)i,j | ≤ B(w)i,j , 1 ≤ i, j ≤ d.

Furthermore it is an easy exercise to show (by expanding the determinant and by estimating all parts
absolutely) that

det (B(z,w)) ≤ min
(
1, ∥w∥−d−2

)
.

Furthermore by Taylor expansion (and similar computations) we have

det (B(z,w)) = det
(
B(w)

)
·
(
1 +O

(
∥z∥2min(1, ∥w∥−1)

))
(46)

= det
(
B(w)

)
+O

(
∥z∥2min(1, ∥w∥−d−3)

)
(47)

As in the case d = 1 we partition the 2d-dimensional integral into several parts.
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A: The case ∥w∥ ≤ 1. First suppose that ∥z∥ ≤ T−1/3:

I11 =
1

(2π)d

∫
∥z∥≤T−1/3

∫
∥w∥≤1

det(B(z,w))f(w, z)T−de−ε∥w∥2−2iε⟨w,z⟩ dw dz

=
1

(2π)d

∫
∥w∥≤1

det(B(w))∫
∥z∥≤T−1/3

e−(T−d) 1
2
zτB(w)z

(
1 +O(T∥z∥3) +O(∥z∥2)

)
e−ε∥w∥2−2iε⟨w,z⟩ dw dz

=
1

(2π)d

∫
∥w∥≤1

det(B(w))e−ε∥w∥2
(∫

Rd

e−(T−d) 1
2
zτB(w)z−2iε⟨w,z⟩ dz+O(e−cT 1/3

)

)
dw

+O

(∫
∥w∥≤1

det(B(w))e−ε∥w∥2
∫
Rd

e−(T−d) 1
2
zτB(w)zT∥z∥3 dz dw

)

+O

(∫
∥w∥≤1

det(B(w))e−ε∥w∥2
∫
Rd

e−(T−d) 1
2
zτB(w)z∥z∥2 dz dw

)

=
1

(2πT )d/2

∫
∥w∥≤1

√
det(B(w))e−ε∥w∥2− 2ε2

T
wτB(w)−1w dw +O

(
e−cT 1/3

+ T− d+1
2 + T− d+2

2

)
=

1

(2πT )d/2

∫
∥w∥≤1

√
det(B(w))e−ε∥w∥2− 2ε2

T
wτB(w)−1w dw +O

(
T− d+1

2

)

for some constant c > 0.
Next we consider the case T−1/3 ≤ ∥z∥ ≤ C, where C is chosen in a way that C/ logC ≥ 2C1,

where C1 is the constant from the inequality (41):

I12 =
1

(2π)d

∫
T−1/3≤∥z∥≤C

∫
∥w∥≤1

det(B(z,w))f(w, z)T−de−ε∥w∥2−2iε⟨w,z⟩ dw dz

≪
∫
T−1/3≤∥z∥≤C

∫
∥w∥≤1

e−c1T∥z∥2e−ε∥w∥2 dw dz ≪ e−c1T 1/3 ≪ T−d

for some constant c1 > 0. Finally for ∥z∥ ≥ C we have |f(z, w)| ≤ C1 log(∥z∥)/∥z∥ ≤ 1
2 and

consequently

I13 =
1

(2π)d

∫
∥z∥≥C

∫
∥w∥≤1

det(B(z,w))f(w, z)T−de−ε∥w∥2−2iε⟨w,z⟩ dw dz

≪
∫
∥z∥≥C

(
C1 log(∥z∥)

∥z∥

)T−d

dz

≪
∫ ∞

C
rd−1

(
C1 log r

r

)T−d

dr

≪ 1

T2T
≪ T−d.
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Summing up we have

I1 =
1

(2π)d

∫
Rd

∫
∥w∥≤1

det(B(z,w))f(w, z)T−de−ε∥w∥2−2iε⟨w,z⟩ dw dz

=
1

(2πT )d/2

∫
∥w∥≤1

√
det(B(w))e−ε∥w∥2− 2ε2

T
wτB(w)−1w dw +O

(
T− d+1

2

)
.

B: The case 1 ≤ ∥w∥ ≤ ηT .
We again assume that η = η(T )c6(log T )

−3 → 0 for a sufficiently small positive constant c6.
We start with the case ∥z∥ ≤ z1 = ∥w∥3/2T−1/2η−1/6. By Lemma 17 and by(47) we have∫

∥z∥≤z1

det(B(w, z))f(w, z)T−de−2iε⟨w,w⟩ dz

= det(B(w))

∫
∥z∥≤z1

e−(T−d) 1
2
zτB(w)z−2iεwz dz

+O

(
∥w∥−d−3

∫
∥z∥≤z1

∥z∥2e−(T−d) 1
2
zτB(w)z dz

)

+O

(
∥w∥−d−6

∫
∥z∥≤z1

∥z∥3e−(T−d) 1
2
zτB(w)z(1 + ∥w∥)3 dz

)

+O

(
∥w∥−d−8

∫
∥z∥≤z1

∥z∥4e−(T−d) 1
2
zτB(w)z(1 + ∥w∥)4 dz

)

=

√
det(B(w))

(
2π

T

)d/2

e−
2ε2

T
wτB(w)−1w

+O

(
∥w∥(d−4)/2

T d/2
e−cη−1/3

)
+O

(
∥w∥d/2

T (d+2)/2

)

+O

(
∥w∥(d+3)/2

T (d+3)/2

)
+O

(
∥w∥(d+4)/2

T (d+4)/2

)
.

This implies

I21 =
1

(2π)d

∫
1≤∥w∥≤ηT

∫
∥z∥≤z1

det(B(z,w))f(w, z)T−de−ε∥w∥2−2iε⟨w,w⟩ dw dz

=
1

(2πT )d/2

∫
1≤∥w∥≤ηT

√
det(B(w))e−ε∥w∥2− 2ε2

T
wτB(w)−1w) dw

+O

(
ε−3d/4+1e−cη1/3

T d/2

)
+O

(
ε−3d/4

T (d+2)/2

)
+O

(
ε−(3d+3)/4

T (d+3)/2

)
+O

(
ε−(3d+4)/4

T (d+4)/2

)

=
1

(2πT )d/2

∫
∥w∥≥1

√
det(B(w))e−ε∥w∥2− 2ε2

T
wτB(w)−1w) dw

+O

(
ε−3d/4+1e−cη1/3

T d/2

)
+O

(
ε−3d/4

T (d+2)/2

)
+O

(
ε−(3d+3)/4

T (d+3)/2

)
+O

(
ε−(3d+4)/4

T (d+4)/2

)
.
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Note that the integral is of order

Θ

(
ε−d/4+1/2

T d/2

)

that is asymptotically leading if ε ≫ T−2/(d+1).
Next suppose that z1 = ∥w∥3/2T−1/2η−1/6 ≤ ∥z∥ ≤ c1∥w∥, where c1 sufficiently small. Here

we know that (for a suitable constant c > 0)

|f(z,w)| ≤ e−c∥z∥2/∥w∥3

uniformly for z1 ≤ ∥z∥ ≤ c1∥w∥. This implies that the corresponding integral is upper bounded by

I22 =
1

(2π)d

∫
1≤∥w∥≤ηT

∫
z1≤∥z∥≤c1∥w∥

det(B(z,w))f(w, z)T−de−ε∥w∥2−2iε⟨w,w⟩ dw dz

≪
∫
1≤∥w∥≤ηT

∥w∥−d−2e−εw2

∫
z1≤∥z∥≤c1∥w∥

e−c(T−d)∥z∥2/∥w∥3 dz dw

≪ η−(d−2)/6e−cη−1/3

T d/2

∫
1≤∥w∥≤ηT

∥w∥d/2−2e−ε∥w∥2 dw

≪ η−(d−2)/6e−cη−1/3

T d/2
ε−3d/4+1.

In the next step we consider the case c1∥w∥ ≤ ∥z∥ ≤ c′1∥w∥ log2 ∥w∥. Here we have the upper
bound |f(z,w)| ≤ 1− c4/(∥w∥ log2 ∥w∥)d and, thus, we get

I23 =
1

(2π)d

∫
1≤∥w∥≤ηT

∫
c1∥w∥≤∥z∥≤c′1∥w∥ log2 ∥w∥

det(B(z,w))f(w, z)T−de−ε∥w∥2−2iε⟨w,w⟩ dw dz

≪
∫
1≤∥w∥≤ηT

∥w∥−d−2e−ε∥w∥2
∫
c1∥w∥≤∥z∥≤c′1∥w∥ log2 ∥w∥

e−Tc4/(∥w∥ log2 ∥w∥)d dz dw

≪
∫
1≤∥w∥≤ηT

(log ∥w∥)2d∥w∥−2e−Tc4/(∥w∥ log2 ∥w∥)d−ε∥w∥2 dw

≪
∫ ∞

1
(log r)2drd−3e−c4T/(r log r)d−εr2 dr.

We split the integral at r0 = (T/ε)1/(d+2) so that

T

(r0 log
2 r0)d

= (d+ 2)2
(T 2εd)1/(d+2)

log2(T/ε)
and εr20 = (T 2εd)1/(d+2).

Since ε ≫ T 2/(d+1) we obtain the upper bound

I23 ≪ e−c′′Tκ

for some constants c′′, κ > 0.
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Next suppose that c′1∥w∥ log2 ∥w∥ ≤ ∥z∥ ≤ c3e
4∥w∥ for an arbitrary constant c3 > 0. Here we

have the upper bound |f(z,w)| ≤ 1− c2/∥w∥ ≤ e−c2/∥w∥ and consequently

I24 =
1

(2π)d

∫
1≤∥w∥≤ηT

∫
c′1∥w∥ log2 ∥w∥≤∥z∥≤c3e4∥w∥

det(B(z,w))f(w, z)T−de−ε∥w∥2−2iε⟨w,w⟩ dw dz

≪
∫
1≤∥w∥≤ηT

∥w∥−d−2e−c2T/∥w∥+4d∥w∥−ε∥w∥2 dw

≤
∫
1≤∥w∥≤c2

√
T
∥w∥−d−2e−(1−c2)

√
T−ε∥w∥2 dw +

∫
c2
√
T≤∥w∥≤ηT

∥w∥−d−2e−ε/2∥w∥2 dw

≪ e−(1−c2)
√
T + e−(c22/2)εT

provided that ε ≫ T−1/2.
Finally if ∥z∥ ≥ c3e

4∥w∥, where c3 is chosen sufficiently large, we have

f(z,w) ≤ C̃
max

(
log(∥w∥), log(∥z∥), e∥w∥∥)√

∥w∥ ∥z∥
≤ 1

2
. (48)

In particular we assume that C̃/
√
c3 ≤ 1

2 . Thus we get

I25 =
1

(2π)d

∫
1≤∥w∥≤ηT

∫
∥z∥≥c3e4∥w∥

det(B(z,w))f(w, z)T−de−ε∥w∥2−2iε⟨w,z⟩dz dw

≪ C̃T−d

∫
1≤∥w∥≤ηT

∥w∥−d−2 (log(∥w∥))T−d

∥w∥(T−d)/2

∫
∥z∥≥c3e4∥w∥

∥z∥−(T−d)/2dz dw

+ C̃T−d

∫
1≤∥w∥≤ηT

∥w∥−d−2−(T−d)/2

∫
∥z∥≥c3e4∥w∥

(log(∥z∥))T−d

∥z∥(T−d)/2
dz dw

+ C̃T−d

∫
1≤∥w∥≤ηT

∥w∥−d−2−(T−d)/2e(T−d)∥w∥
∫
∥z∥≥c3e4∥w∥

∥z∥−(T−d)/2dz dw

≪ C̃T

Tc
T/2
3

∫ ∞

1
r

d
2
−3−(T−d)(log r)T−de−2(T−d)r+4r dr

+
C̃T

Tc
T/2
3

∫ ∞

1
r

d
2
−3−(T−d)(log

(
c3e

4r
)
)T−de−2(T−d)r+4r dr

+
C̃T

Tc
T/2
3

∫ ∞

1
r

d
2
−3−(T−d)e−(T−d)r+4r dr

≪ 1

T2T
.

Summing up we have

J2 =
1

(2π)d

∫
Rd

∫
1≤∥w∥≤ηT

det(B(z,w))f(w, z)T−de−ε∥w∥2−2iε⟨w,z⟩ dw dz

= J21 + J22 + J23 + J24 + J25

=
1√
2πT

∫
∥w∥≥1

√
det(B(w))e−

2ε2

T
wτB(w)−1we−ε∥w∥2 dw +O

(
ε−3d/4

T (d+2)/2

)
.
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C: The case ∥w∥ ≥ ηT . If ∥z∥ ≤ e4∥w∥ then we use the trivial bound |f(z, w)| ≤ 1 and obtain for
ε ≫ T−1/2

I31 =
1

(2π)d

∫
∥w∥≥ηT

∫
∥z∥≤e4∥w∥

det(B(z,w))f(w, z)T−de−ε∥w∥2−2iε⟨w,z⟩ dw dz

≪
∫
∥w∥≥ηT

∥w∥−d−2e4d∥w∥−ε∥w∥2 dw

≪
∫
r≥ηT

e−
ε
2
r2 dr ≪ 1

εηT
e−

ε
2
(ηT )2 ≪ e−η2T .

If ∥z∥ ≥ e4∥w∥ we again use the upper bound (48) and obtain

I32 =
1

(2π)d

∫
∥w∥≥ηT

∫
∥z∥≥e4∥w∥

det(B(z,w))f(w, z)T−de−ε∥w∥2−2iε⟨w,z⟩ dw dz

≪ C̃T

∫
|w|≥ηT

∥w∥−d−2−(T−d)/2e(T−d)∥w∥−ε∥w∥2
∫
∥z∥≥e4∥w∥

∥z∥−(T−d)/2 dz dw

≪ C̃T

T

∫
|w|≥ηT

∥w∥−d−2−(T−d)/2e(T−d)∥w∥e(d−(T−d)/2)4∥w∥ dw

≪ C̃T

T

∫
r≥ηT

e(3d−T )r ≪ e−
η
2
T 2
.

Consequently,

I3 =
1

2π

∫
Rd

∫
∥w∥≥ηT

det(B(z,w))f(w, z)T−de−ε∥w|∥2−2iε⟨w,z⟩ dw dz ≪ e−η2T .

D: The whole range.
Summing up we arrive at

J̃0 =
1

(2πT )d/2

∫
Rd

√
det(B(w)e−ε∥w∥2− 2ε2

T
wτB(w)−1w) dw ++O

(
ε−3d/4

T (d+2)/2

)

provided that

ε ≫ max
(
T−1/2, T−2/(d+1)

)
and where we have set

η = η(T ) = c6(log T )
−3

for a sufficiently small positive constant c6.

Appendix F. Extension: General Class Hp,w

We now discuss some possible extensions of Theorem 2 to a larger class of hypothesis class Hp,w

under the assumption that the functions − log p(⟨w|x⟩) and − log(1− p(⟨w|x⟩)) are convex with
bounded gradient and Hessian.
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In the logistic case for all yT we have ∇2L(yT |w) = B(w). In general, this is not the
case. In fact, ∇2L(yT |w) varies with yT , and when it is viewed as a random variable we have
E[Yt] = 1− 2p(w) and E[∇2L(yT |w)] = B(w). Indeed,

E[∇2L(yT |w)] =

T∑
t=1

(p′(⟨w|xt⟩)2

(1− p(⟨w|xt⟩))p(⟨w|xt⟩)
= B(w,xT ).

We now split ∇2L(yT |w) as ∇2L(yT |w) = A(w) + F(yT ) with F(yT ) =
∑T

t=1 ytFt where

A(w) =
1

2

∑
t

(
(p′(⟨w|xt⟩))2

(p(⟨w|xt⟩))2
+

(p′(⟨w|xt⟩))2

(1− p(⟨w|xt⟩))2
− p′′(⟨w|xt⟩)

(
1

p(⟨w|xt⟩)
− 1

1− p(⟨w|xt⟩)

))
xt ⊗ xt

Ft =
1

2

(
−(p′(⟨w|xt⟩))2

(p(⟨w|xt⟩))2
+

(p′(⟨w|xt⟩))2

(1− p(⟨w|xt⟩))2
ip′′(⟨w|xt⟩)

(
1

p(⟨w|xt⟩)
+

1

1− p(⟨w|xt⟩)

))
xt ⊗ xt.

We also have the following identity E[F(yT )] =
∑T

t=1(1− 2p(⟨w|xt⟩))Ft.
We now need a large deviation result for ∇2L(yT |w), that is, F(yT ) proved in the next lemma.

Lemma 23 If FT is a uniformly bounded sequence for all T , then for any A > 0 and α > 1/2
there exists B such that

P
(
∥F(yT )− E[F(yT )]∥ > AdTα

)
≤ 2d2e−BT 2α−1

(49)

where ∥.∥ is an arbitrary metric.

Proof Let Θ be a complex d× d matrix, and let F̃T (Θ) be the Laplace transform of F(yT ), that
is, F̃T (Θ) = E[eTr(ΘF(yT ))], where the trace Tr(·) is the classical expression for the dot product of
matrices. We have, when yT is viewed as a random variable with probability P (yT |w),

F̃T (Θ) =
∏
t

(
p(⟨w|xt⟩)e−Tr(ΘFt) + (1− p(⟨w|xt⟩))eTr(ΘFt)

)
. (50)

We will show that there exists a simply connected complex neighborhood U of the null matrix, such
that for all T the following Θ ∈ U implies that log F̃T (Θ) exists and is uniformly O(T ). Indeed by
rewriting (50)

p(⟨w|xt⟩)e−Tr(ΘFt) + (1− p(⟨w|xt⟩))eTr(ΘFt) = eTr(ΘFt)
(
1 + p(⟨w|xt⟩)(e−2Tr(ΘFt) − 1)

)
and notice that ∥Ft∥ < F for some F > 0 (here we take ∥Ft∥ =

√
Tr(F2

t ) with the classic matrix
dot product expression). Then taking ∥Θ∥ < 1

20F we have∣∣∣p(⟨w|xt⟩)(e−2Tr(ΘFt) − 1)
∣∣∣ < 1/2 and p(⟨w|xt⟩)(e−2Tr(ΘFt) − 1) ̸= 0.

Since U is simply connected, the logarithm of F̃T (Θ) exists, and it turns out that the logarithm is
always bounded by some C > 0, hence the logarithm of the product satisfies: | log F̃(Θ)| ≤ TC.
As a consequence, log F̃(Θ) is an analytic function on U and its derivatives are also O(T ), in
particular the second derivative. Since the first derivative of log F̃T (Θ) at its derivatives are also
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O(T ), in particular the second derivative. Since the first derivative of log F̃T (Θ) at Θ = 0 is exactly
E[F(yT )], we have the following Taylor expansion

log F̃(Θ) = Tr
(
ΘE[F(yT )]

)
+O(T∥Θ∥2) (51)

with O(T∥Θ∥2) ≤ RT∥Θ∥2 for some R > 0. We will use this estimate via the Chebychev
inequality. Having ∥F(yT )−E[F(yT )]∥ > AdTα implies to have one of d2 component of F(yT )−
E[F(yT )] greater than ATα or smaller than −ATα. For (i, j) ∈ {1, . . . , d}2 let F(yT )ij denote
the ij component of F(yT ). We look at P

(
F(yT )ij > E[F(yT )]ij +ATα

)
. If eij is the matrix

with all components equal to zero, except the (i, j)-th element which is equal to 1, then F(yT )ij =
Tr(eijF(y

T )) and for all θ > 0 by Markov inequality

P
(
F(yT )ij > E[F(yT )]ij +ATα

)
≤ E[eθTr(eijF(yT ))]

exp(θTr(eijF(yT )) + θATα)
.

Since E[eθTr(eijF(yT ))] = F̃(θeij), and thanks to the estimate (51) with ∥eij∥2 = 1, the right-
hand side is upper bounded by exp

(
RTθ2 − θATα

)
with the minimum exp

(
−A2T 2α−1/(4R)

)
.

Also with the minimum exp
(
−A2T 2α−1/(4R)

)
. Also P

(
F(yT )ij < E[F(yT )]ij −ATα

)
but with

θ < 0. This concludes the proof with B = A/(4R).

As a consequence of the above lemma and our previous analysis, we envision the following
extension of Theorem 2: Assume the sequences xt is generated by a distribution µ over the cube
[−1, 1]d. Then one should expect

E[Sε(xT )] =

(
T

2π

)d/2 ∫
Rd

√
det(B̄(w))e−ε∥w∥2− 2ε2

T
⟨w|B̄(w)−1w⟩dw× (1 +O(d2Tα−1)) (52)

with

B̄(w) =

∫
Rd

µ(x)
p′(⟨w|x⟩)2

p(⟨w|x⟩)(1− p(⟨w|x⟩))
x⊗ xdx.

Furthermore it should hold that

r̄εT = E[logS(XT )] ∼ logE[Sε
T (X

T )]. (53)

To see this, we notice that E[F(yT )] = B(w)−A(w) and by Lemma 23

P
(
∥∇2L(yT |w)−B(w))∥ > AdTα

)
≤ 2d2e−BT 2α−1

.

We have ∇2L(yT |w) and B(w,xT ) both of order T thus det(∇2L(yT |w)) and det(B(w,xT ) is
of order T d. When we choose α < 1, ∥∇2L(yT |w)−B(w)∥ is of order dTα hence of order smaller
than ∇2L(yT |w). By Jacobi formula for any matrix A we have ∇(det(A)) = det(A)A−1, as in
Bellman (1997). Thus for another matrix B we can write det(B) = det(A) +O(det(A)∥A−1∥ ·
∥B −A∥) or more precisely O(|det(A)| + |det(B)|) but det(A) suffices when det(A) ̸= 0 and
when ∥A−B∥o(∥A∥). We now can write∣∣det(∇2L(yT |w))− det(B(w,xT )

∣∣ =
∣∣det(B(w,xT )

∣∣ · ∥B(w,xT )−1∥O
(
∥∇2L(yT |w)−B(w,xT )∥

)
=

∣∣det(B(w,xT )
∣∣ · ∥B(w,xT )−1∥O(dATα)

= det(B(w,xT )O(d2Tα−1)
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since ∥B(w,xT )−1∥ = O(d/T ) (as long as the matrix B(w,xT )/T is not degenerate). Thus
det(∇2L(yT |w)) = det(B(w,xT )(1 + O(d2Tα−1)). We call Jα the set of sequences yT that
satisfies this property. We already know that

∑
yT /∈Jα

P (yT |w) < 2d2e−BT 2α−1
that exponentially

decays since α > 1/2. Therefore with O(d2Tα) we can approximate det(∇2L(yT |xT ,w)) by
det(B(w,xT )) which allows us to write

S(xT |w) =
1

(2π)d

∑
yT

det(∇2L(yT |xT ,w))

∫
Rd

exp
(
L(yT |xT ,w)− i⟨∇L(yT |xT ,w)|z⟩

)
dz

=
det(B(w,xT ))

(2π)d

∑
yT

∫
Rd

exp
(
L(yT |xT ,w)− i⟨∇L(yT |xT ,w)|z⟩

)
dz
(
1 +O(d2Tα−1)

)
=

det(B(w,xT ))

(2π)d

∏
t

f(w,xt, z)
(
(1 +O(d2Tα−1)

)
.

Since
Sε(xT ) = (2π)−d

∫
S(xT |w)e−ε∥w∥2

dw

we, thus, obtain a similar expression as in the logistic case. Hence, this is a strong indication that (52) holds.
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