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Abstract. We pursue the analysis of the maximum degree in a dynamic
duplication-divergence graph model defined by Solé et al. in which a
new node arriving at time t first randomly selects an existing node and
connects to its neighbors with probability p, and then connects to the
other nodes with probability r/t. This model is often said to capture the
growth of some real-world processes e.g. biological or social networks.
However, there are only a handful of rigorous results concerning this
model. Here we study the distribution of the maximum degree of a vertex
in graphs generated by this model.
In this paper we prove that for 1

2
< p < 1 with high probability the

maximum degree is asymptotically quite surely concentrated around tp,
i.e. it deviates from this value by at most a polylogarithmic factor. Our
findings are a step towards a better understanding of the overall structure
of graphs generated by this model, especially the degree distribution,
compression, and symmetry.

Keywords: Random graphs · Duplication-divergence model · Degree
distribution · Maximum degree · Large deviation.

1 Introduction

Studying structural properties of graphs (e.g., symmetry, compressibility, ver-
tex degree) is a popular topic of research in computer science and discrete
mathematics ever since the seminal work of Paul Erdős and Alfréd Rényi [8]
. Recently attention has turned to dynamic graphs such as preferential at-
tachment (Barabási-Albert) graphs [1], Watts-Strogatz small world graphs [25]
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or duplication-divergence graphs. Dynamic graphs, in which the edge- and/or
vertex-sets are functions of time, are ubiquitous in diverse application domains
ranging from biology to finance to social science. Deriving novel insights and
knowledge from dynamic structures is a key challenge and understanding the
structural properties of such dynamic graphs is critical for new characteriza-
tions and insights of the underlying dynamic processes.

Numerous networks in the real world change over time, in the sense that
nodes and edges enter and leave the networks. To explain their macroscopic
properties (e.g., subgraph frequencies, diameter, degree distribution, symmetry)
and to make predictions and other inferences (such as community detection,
graph compression, order of node arrivals), several generative models have been
proposed [19, 24]. Typically, one tries to capture the behavior of well-known
graph parameters under probability distributions induced by the models, e.g.
the distribution of the number of vertices with a given degree, the number of
connected components, the existence of Hamiltonian paths or other parameters
like clique number and chromatic number (see [3, 9, 13] for overviews of the main
results in the area).

In this paper we make further progress on structural properties of the du-
plication-divergence graph models, in which vertices arrive one by one, select
an existing node as a parent, connect to the some neighbors of its parent and
other vertices according to some pre-defined rule. More precisely, a newly arriv-
ing node at time t first selects randomly an existing node and connects to its
neighbors with probability p; and then connects to other nodes with probability
r/t. The particular model which we bring under consideration is a duplication-
divergence model, first defined by Solé, Pastor-Satorras et al. [21]. It has been
a popular object of study because it has been shown empirically that its degree
distribution, small subgraph (graphlets) counts and number of symmetries fit
very well with the structure of some real-world biological and social networks,
e.g. protein-protein and citation networks [5, 20, 22]. This suggests a possible
real-world significance for the duplication-divergence model, which further mo-
tivates the studies of its structural properties. However, it is also one of the least
understood models, much less so than the Erdős-Rényi or preferential attach-
ment models. At the moment there exist only a handful of results related to the
behavior of the degree distribution of the graphs generated by this model. Un-
like other dynamic graphs such as the preferential attachment model, the graphs
generated by the duplication-divergence model can be very symmetric or quite
asymmetric. In Figure 1 from [22] it is shown that there exist certain ranges of
the model parameters p and r such that the graphs generated from the model
are highly symmetric, and certain ranges such that the graphs are asymmetric.
Here the symmetry is measured by the size of the automorphism group |Aut(G)|,
i.e. the number of distinct mapping of vertices onto themselves preserving the
adjacency matrix. Still the basic question about the conditions under which the
generated graph is symmetric or not remains unanswered. We believe that prov-
ing results about the range of the maximum degree can be a stepping stone for
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Fig. 1. Symmetry of graphs (log |Aut(G)|) generated by the Solé-Pastor-Satorras
duplication-divergence model, based on simulations from [22].

rigorous general results regarding symmetries and compression, just as it has
been in the case for other random graph models.

In particular, the parameters such as the maximum degree of a random graph
and the degree of a given vertex are parameters that are studied not only for
their own sake, but it turns out that their analysis opens the way to further
results. Let us recall here two examples of these insights related to the questions
of graph asymmetry and incompressibility.

First, Łuczak et al. [17] used the estimation of these parameters to prove that
the preferential attachment model with m ≥ 3 (where m is the number of edges
added when a new node arrives) generates asymmetric graphs (i.e. graphs with
only one automorphism) with high probability. This was achieved by proving two
properties: (A) for any pair of early vertices t1 and t2 the degrees of both nodes
t1 and t2 are distinct, and (B) for any pair of late vertices their corresponding
neighbors are not the same, in particular, they have different sets of early neigh-
bors (and therefore, a permutation of t1 and t2 does not produce symmetry).
We believe that this approach to asymmetry analysis can be extended to the
duplication-divergence model and it requires knowledge of the maximum degree
which is exactly the topic of this paper.

A second usage of these parameters was presented by Chierichetti et al. in [4].
For example, for the preferential attachment model they used an upper bound on
the maximum degree and the degree of a vertex arriving at time s to show that
the entropy over all graphs on t vertices generated by this model is bounded
by Ω(t log t). They also used their bound on vertex degrees to provide lower
bounds on graph entropy for several other random graph models known in the
literature, e.g. the copying model or ACL model (see also [18] for the preferential
attachment graph compression algorithm).
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Therefore, we turn our attention to the asymptotic behavior of the distri-
bution of degrees of vertices in random graphs generated by the duplication-
divergence model. Let us recall that, for example, for Erdős-Rényi model ER(t, p)
it is known that the degree distribution approximately follows the Poisson dis-
tribution with a tail decreasing exponentially [2]. Clearly, the degree of each
vertex is a random variable with the binomial distribution, so it is highly con-
centrated around its mean (t−1)p. Moreover, the maximum degree is also highly
concentrated around (t− 1)p+

√
2p(1− p)(t− 1) log t [9, Theorem 3.5]. For the

preferential attachment model PA(t,m) it was proved that the degree distribu-
tion exhibits scale-free behaviour, i.e. the number of vertices with degree k is
proportional to k−3 [3]. In addition, if we consider a vertex arriving at time s, its
degree in graph on t vertices is proportional to

√
t/s on average and with high

probability it does not exceed
√
t/s log3 t [6]. In the next section we discuss in

some details recent results regarding the degree distribution of the duplication-
divergence graph model.

Here we provide analogous results for the duplication-divergence model. The
paper is organized as follows: in Section 2 we present a formal definition of the
duplication-divergence model, recall previous results related to the properties
of the degree distribution and introduce our main results. In Section 3.1 and
Section 3.2 we prove upper bounds for the degrees for earlier and later vertices
arriving in the graph, respectively. Finally, in Section 3.3 we give a proof of the
lower bound for the maximum degree in the graph.

2 Model definition and main results

We formally define the duplication-divergence model DD(t, p, r), introduced by
Solé et al. [21]. Then we summarize our main results about high-probability
bounds on the the maximum degree.

Throughout the paper we use standard graph notation from [7], e.g. V (G)
denotes the vertex set of a graph G, degG(s) – the degree of node s in G and
∆(G) – the maximum degree of a vertex in G. All graphs considered in the paper
are simple.

Gt denotes a graph on t vertices. Because in the paper we deal with graphs
that are dynamically generated, we assume that the vertices are identified with
the natural numbers according to their arrival time. We use the notation degt(s)
for the random variable denoting the degree of vertex s at time t i.e. after t
vertices have been added in total.

Let us now formally define the model DD(t, p, r) as follows: let GT be a fixed
graph on T ≤ t vertices, with vertices having distinct labels from 1 to T . Let
also 0 ≤ p ≤ 1 and 0 ≤ r ≤ T be the parameters of the model. Now, for every
n = T, T +1, . . . , t− 1 we create Gn+1 from Gn according to the following rules:

1. we add a new vertex with label n+ 1 to the graph,
2. we choose a vertex u from Gn uniformly at random – and we denote u as

parent(n+ 1),
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3. for every vertex v:
(a) if v is adjacent to u in Gn, then add an edge between v and n+ 1 with

probability p,
(b) if v is not adjacent to u in Gn, then add an edge between v and n + 1

with probability r
n .

All edge additions are independent random Bernoulli variables.
We now review in some detail, recent results on the degree distribution. For

example, for p < 1 and r = 0, it is shown in [11] that even for large p the limiting
distribution of degree frequencies indicates that almost all vertices are isolated
as t → ∞. Moreover, from [16] we know that the number of vertices of degree
one is Ω(log t) but again the precise rate of growth of the number of vertices with
any fixed degree k > 0 is currently unknown. Recently, also for r = 0, in [14, 12]
the authors showed that for 0 < p < e−1 the non-trivial connected component
has a degree distribution that has a power-law behavior with the exponent is
equal to γ satisfying 3 = γ + pγ−2.

Now let us turn to results directly related to the question of maximum degree.
For example, in [23] it was shown that for any fixed s asymptotically as t→∞
it holds that

E[degt(s)] =

{
Θ(ln t) if p = 0 and r > 0,
Θ(tp) otherwise.

Note that by the close relation between parameters ∆(Gt) and degt(s) we can
establish easily that E[∆(Gt)] = Ω(tp) when p > 0 or r = 0, and E[∆(Gt)] =
Ω(ln t) otherwise.

It turns out that a lower bound on maximum degree is easily established
as a byproduct of existing results by Frieze et al. [10]: for 1

2 < p < 1 and
Gt ∼ DD(t, p, r) with p > 0 and s = O(1) it holds that

Pr

[
degt(s) ≤

C

A
tp log−3−ε(t)

]
= O(t−A)

for some fixed constant C > 0 and any A > 0. This lower bound holds for the
maximum degree because for any s it holds that degt(s) ≤ ∆(Gt). In the same
paper, Frieze et al. also proved that for 1

2 < p < 1, Gt ∼ DD(t, p, r) and s = O(1)
it holds that

Pr[degt(s) ≥ AC tp log
2(t)] = O(t−A)

for some fixed constant C > 0 and any A > 0. They also left as an open problem
the question of the behavior of the right tail of the maximum degree distribution
or, equivalently, of the upper bound on degt(s) for larger s that holds with high
probability.

In this paper, we solve this problem. More precisely, we obtain two major
results: first, we provide a bound degt(s) ≤ tppolylog(t) which holds quite surely
(i.e. at least 1 − O(t−A) for any given A > 0 [15]). We prove that this bound
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is valid for all vertices in Gt, not only for s = O(1) as before, leading to the
estimate ∆(Gt) ≤ tppolylog(t) for any ε > 0 with high probability. Next, we
provide a precise lower bound and we show that there exists an early vertex s
such that degt(s) ≥ (1 − ε)tp for any ε > 0 quite surely. Putting everything
together we obtain the main result of this paper, that is:

Theorem 1. Let 1
2 < p < 1. Asymptotically for Gt ∼ DD(t, p, r)

Pr[(1− ε)tp ≤ ∆(Gt) ≤ (1 + ε)tp log5−4p(t)] = O(t−A)

for any constants ε > 0 and A > 0,

In other words, we are now certain that the maximum degree of the graph is
concentrated in the sense that by moving only by some polylogarithmic factor
from the mean to both left and right we observe the tail decay which is greater
than any polynomial.

3 Analysis and proofs

3.1 Upper bound, early vertices

The main idea of the proof of the upper bound of the maximum degree is as
follows: we first find for small s (i.e. s ≤ t0) a Chernoff-type bound on the growth
of degτ (s) over an interval of certain length h.

Then, we introduce auxiliary deterministic sequences ti and Xti such that
t0 < . . . < tk−1 < t ≤ tk. The definition of these sequences stems from the bound
mentioned above, in particular from the relation between h and the growth of
the degree, guaranteed with high probability. Ultimately, we prove degτ (s) ≤ Xτ

with high probability for all s ≤ t0.
Let us start with providing a Chernoff-type bound on the growth of the

degree of a given early vertex (with proof in Appendix A):

Lemma 1. Let 1 ≤ s ≤ τ ≤ t. Let Xτ be any value such that degτ (s) ≤ Xτ .
Then for any h ≤ εXτ with ε ∈ (0, 1) it is true that

Pr
[
degτ+h(s) ≥ degτ (s) + (1 + 3ε) h(pXτ+r)τ

]
≤ exp

(
−hε

2(1+ε)(pXτ+r)
3τ

)
.

We can immediately deduce how large h has to be to get a polynomial tail:

Corollary 1. Let 1 ≤ s ≤ τ ≤ t. Let Xτ ≥ 0, ε ∈ (0, 1) be values such that
asymptotically for any A > 0, it holds that degτ (s) ≤ Xτ and 3Aτ log t ≤
ε3Xτ (pXτ + r). Then for any h ∈

[
3Aτ log t
ε2(pXτ+r)

, εXτ

]
it is true that

Pr
[
degτ+h(s) > degτ (s) + (1 + 3ε) h(pXτ+r)τ

]
= O(t−A).

Now we provide the definitions for two auxiliary sequences that we mentioned
earlier:



Degree Distribution for Duplication-Divergence Graphs 7

Definition 1. Let 0 < p < 1 be fixed with certain α, βi and φ. We define the
increasing sequences (ti)ki=0 and (Xti)

k
i=0 and an integer k in the following way:

t0 = φ, ti+1 = ti +
α ti log ti
Xti

, tk−1 < t ≤ tk,

Xt0 = t0, Xti+1
= Xti + βi log ti.

Note that α, βi and φ can be, and indeed we will specify them, as dependent on
t. However, for brevity, we assume the possible dependency on t as implicit.

Observe that inductively from the definition it follows that if α ≥ βi, then
Xti ≤ ti for all i = 0, 1, . . . , k.

Moreover, note that we do not specify the values of Xτ for τ other than
{t0, t1, . . . , tk, . . .}. In the rest of the paper we will be using precisely these values
in the proofs, so such a definition is sufficient for our purposes. For convenience,
we only assume that for any τ ∈ (tl, tl+1) for some l = 0, 1, . . . , k−1 the sequence
is completed in any way such that Xtl ≤ Xτ ≤ Xtl+1

.
Now we analyze the asymptotic properties of these sequences. We start with

a simple lower bound (see Appendix B for proof):

Lemma 2. Assume that φ ≥ log2 t, α ≤
√
φ and βi ≥ α(p − δ) for some

δ ∈ [0, p). Asymptotically as t→∞ for any i = 0, 1, . . . , k we have Xti ≥ t
p−δ
i .

It enables us to we prove (in Appendix C) the upper bound:

Lemma 3. Assume that φ ≥ log3 t, α(p − δ) ≤ βi ≤ αp + α
2 log ti

for some
δ ∈ [0, p). It holds asymptotically as t → ∞ that Xti ≤ φ1−ptpi log ti for all
i = 0, 1, . . . , k.

Corollary 2. If α ≤ φ, then for the value of k such that tk−1 < t ≤ tk it is true
that αk < t.

Proof. We know from the definition of ti and Lemma 3 that

t > tk−1 ≥ t0 +
k−2∑
i=0

αti log ti
φ1−ptpi log ti

≥ t0 +
k−2∑
i=0

α ≥ φ+ (k − 1)α > αk

as needed.

Here let us note (and prove in Appendix D) the relation between the last
elements of the sequences (ti)ki=0, (Xti)

k
i=0 and the final values themselves:

Lemma 4. Let ε be any positive constant. Assume that φ ≥ log3 t, α ≤
√
φ,

α(p−δ) < βi ≤ αp+ α
2 log ti

for some δ ∈ [0, p). It holds asymptotically as t→∞
that (1− ε)tk ≤ t ≤ (1 + ε)tk−1 and (1− ε)Xtk ≤ Xtk ≤ (1 + ε)Xtk−1

.

Observe that since we will use φ < t, it holds that k ≥ 1.
Let us denote by Ai(s) the event that degti(s) ≤ Xti for a fixed s ≤ ti. Now

we proceed with the main theorem:
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Theorem 2. For Gt ∼ DD(t, p, r) with 1
2 < p < 1 and s ∈ [1, 74529(A+1)2 log4 t]

it holds asymptotically that

Pr
[
degt(s) > (1 + ε)tp log5−4p t

]
= O(t−A)

for any constants ε > 0 and A > 0.

Proof. Throughout the proof we will use sequences (ti)
k
i=0 and (Xti)

k
i=0 with

α = 273p3(A + 1) log2 t, βi = αp + α
2 log ti

and φ = 74529(A + 1)2 log4 t and
tk−1 < t ≤ tk.

Observe that all the assumptions of Lemma 2, Lemma 3 and Corollary 2 are
met so we know that max{74529(A + 1)2 log4 t, tpi } ≤ Xti ≤ tpi log

5−4p t for all
i = 0, 1, . . . , k and also k < t

log2 t
. Moreover, if Ai(s) holds, then the assumptions

of Corollary 1 also are true for τ = ti and h = αti log ti
Xti

as ti →∞ since for any
constant A > 0 and ε = 1

9p log ti
it holds that

3Ati log t

ε2(pXti + r)
< h =

αti log ti
Xti

< εXti .

The left inequality is easy to verify as the left element is Θ
(
ti log

2 ti log t
Xti

)
and h

grows like Θ
(
ti log ti log

2 t
Xti

)
. The right inequality follows directly from Lemma 2,

provided we choose some δ ∈
[
0, p− 1

2

)
so that Xti grows sufficiently fast.

Moreover, since βi > αp, we know that for ε = 1
9p log ti

asymptotically

Xti+1
−Xti = βi log ti ≥ (1 + 3ε)

h(pXti + r)

ti
.

where h = 1
1+ 1

2p log ti

βiti log ti
pXti

≤ εXti .

Therefore, Corollary 1 implies that for any constant A > 0 and ε = 1
9p log ti

it is true that Pr[¬Ai+1(s)|Ai(s)] = O(t−A).
Clearly, for any 1 ≤ s ≤ t0 we know that A0(s) always holds so Pr[¬A0(s)] =

0. Finally, we obtain using Lemma 4 and Corollary 1 that

Pr[degt(s) > Xtk ] ≤ Pr[degtk(s) > Xtk ] = Pr[¬Ak(s)]

≤
k−1∑
i=0

Pr[¬Ai+1(s)|Ai(s)] + Pr[¬A0(s)] =

k−1∑
i=0

O(t−A) = O(t−A+1).

3.2 Upper bound, late vertices

In the second part of the proof we also use the sequences (ti)ki=0 and (Xti)
k
i=0 as

defined in Definition 1. Moreover, in their definition throughout this section we
use the same constants as in the proof of Theorem 2: α = 273p3(A + 1) log2 t,
βi = αp+ α

2 log ti
and φ = 74529(A+ 1)2 log4 t.
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The proof consists of showing that for s ∈ [ti, ti+1) for some i = 0, 1, . . . , k−1
the degree of the vertex when it appears in the graph (i.e. degs(s)) is with
high probability significantly smaller than its respective Xti+1 . Furthermore, we
show that the increase in the degree between degs(s) and degti+1

(s) with high
probability cannot compensate for this difference. Thus, Xt (or, to be more
precise, Xtk) gives us a good upper bound on degt(s) for all s – and therefore
also we obtain an upper bound for ∆(Gt).

Let us introduce an auxiliary event Bl(s) =
⋃s
τ=1Al(τ) = [degtl(s) ≤ Xtl for

any s and l such that s ≤ tl].

Lemma 5. Let s ∈ (tl, tl+1] for some l = 0, 1, . . . , k−1. Then, for any ε ∈ (0, 1)

Pr
[
degs(s) ≥ (1 + ε)(pXtl+1

+ r)|Bl(tl) ∧ Bl+1(s− 1)
]
≤ exp

(
− ε

2(pXtl+1
+r)

3

)
.

Proof. First, we notice the fact that max{degtl+1
(τ) : 1 ≤ τ ≤ s − 1} ≤ Xtl+1

guarantees that max{degs(τ) : 1 ≤ τ ≤ s − 1} ≤ Xtl+1
. Therefore, degs(s) is

stochastically dominated by As ∼ Bin
(
s,
pXtl+1

+r

s

)
so for any ε ∈ (0, 1) we

obtain the result directly using the Chernoff bound with E[As] = pXtl+1
+ r.

Note that the result implies that with high probability at most slightly more
than a p fraction of the maximum allowed degree is already used at time s.
Therefore, we are interested in bounding the remaining part of the degree, i.e.
degtl+1

(s) − degs(s), by something smaller than the remaining (1 − p) fraction
of the maximum allowed degree.

Lemma 6. Let 1
2 < p < 1 and s ∈ (tl, tl+1] for some l = 0, 1, . . . , k − 1. Then

asymptotically as t→∞, for any constant A > 0 it holds that

Pr
[
degtl+1

(s) ≥ Xtl+1
|Bl(tl) ∧ Bl+1(s)

]
= O(t−A).

Lemma 7. Let 1
2 < p < 1 and s ∈ (tl, tl+1] for some l = 0, 1, . . . , k − 1. Then

asymptotically as t→∞, for any constant A > 0 it holds that

Pr [¬Bl+1(tl+1)|Bl(tl)] = O(t−A).

The proofs of both lemmas above are presented in Appendices E and F.

Theorem 3. Let 1
2 < p < 1. Then asymptotically as t → ∞, for any constant

A > 0 it holds that

Pr
[
∆(Gt) ≥ (1 + ε)tp log5−4p t

]
= O(t−A).

Proof. From Lemma 3 we know that Xtk ≤ (1+ε)tp log5−4p t holds quite surely.
It follows that

Pr
[
∆(Gt) ≥ (1 + ε)tp log5−4p t

]
≤ Pr [∆(Gt) ≥ Xtk ] ≤ Pr [¬Bk(tk)]
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≤
k−1∑
l=0

Pr [¬Bl+1(tl+1)|Bl(tl)] + Pr [¬B0(t0)] .

Now, from Theorem 2 and Lemma 7 we know that both Pr [¬B0(t0)] =
O(t−A) and Pr[¬Bl+1(tl)|Bl(tl)] = O(t−A) for any A > 0, respectively. Putting
this all together with Lemma 4 we obtain the result.

3.3 Lower bound

Here we proceed analogously to the case of the upper bound for early vertices.
First, we provide an appropriate Chernoff-type bound for the degree of a given
vertex with respect to some deterministic sequence. Then we again use a special
sequence, which has the desired rate of growth and serves as a lower bound on
degt(s). Note that we don’t need to extend our analysis for the late vertices since
a lower bound for the degree of any vertex s at time t is also a lower bound for
the minimum degree of Gt.

First, we note that if we start the whole process from a non-empty graph,
then there exists s ∈ [1, t0] such that degt0(s) ≥ 1. Moreover, even if the starting
graph is empty, but r > 0, then with high probability there exists a vertex
with positive degree, as the probability of adding another isolated vertex to an
empty graph on t vertices is at most (1− r

t )
t ≤ exp(−r), so within first A

r log t
vertices for any A > 0 we have a non-isolated vertex with probability at least
1−O(t−A). Of course, if we start from an empty graph and r = 0, then for any
p there cannot arise any edge in the duplication process. However, in this case
it trivially follows that ∆(Gt) = 0, so we omit this case in further analysis.

Let us now return to the aforementioned Chernoff-type lower bound:

Lemma 8. Let 1 ≤ s ≤ τ ≤ t. Let Xτ be any value such that degτ (s) ≥ Xτ .
Then for any h ≤ ετ with ε ∈

(
0, 13
)
it is true that

Pr

[
degτ+h(s) ≤ degτ (s) + (1− 2ε)

hpXτ

τ

]
≤ exp

(
−hε

2pXτ

3τ

)
.

Corollary 3. Let 1 ≤ s ≤ τ ≤ t. Let Xτ ≥ 0, A > 0, ε ∈
(
0, 13
)
be values such

that degτ (s) ≤ τ and 3A log t ≤ ε3pXτ . Then for any h ∈
[
3A log t
ε2pXτ

, ετ
]
it is true

that

Pr

[
degτ+h(s) ≤ degτ (s) + (1− 2ε)

hpXτ

τ

]
= O(t−A).

In the following, we again use sequences (ti)
k
i=1 and (Xti)

k
i=1 from Defini-

tion 1. Let us also define Ci(s) as the event that degti(s) ≥ Xti − φ + 1 for a
fixed s ≤ ti. This allows us to proceed with the main theorem of this section:

Theorem 4. For Gt ∼ DD(t, p, r) with 1
2 < p < 1 there exists s such that for

any constants ε > 0 and A > 0 it holds asymptotically that

Pr [degt(s) < (1− ε)tp] = O(t−A).
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Proof. Again let us use sequences (ti)
k
i=0 and (Xti)

k
i=0 with α = 12p3(A +

1) log2 t, βi = αp − α
log ti

and φ = 144(A + 1)2 log4 t. These parameters sat-
isfy the assumptions of Lemma 3 and Corollary 2.

Moreover, if Ci(s) holds, then the assumptions of Corollary 3 are also true for
τ = ti and h = αti log ti

Xti
as ti →∞, since for any constant A > 0 and ε = 1

2p log ti

3Aτ log t

ε2pXti

< h =
αti log ti
Xti

< εti.

The left inequality is easy to verify as the left hand side is Θ
(
ti log

2 ti log t
Xti

)
and h

grows like Θ
(
ti log ti log

2 t
Xti

)
. The right inequality follows directly from Lemma 2.

Next, Xti+1 − Xti = βi log ti = (1 − 2ε)
hpXti
ti

, where h = 1
1− 1

p log ti

βiti log ti
pXti

.

Therefore, Corollary 3 implies that for any constant A > 0 and ε = 1
2p log ti

it is
true that Pr[¬Ci+1(s)|Ci(s)] = O(t−A). Note that we apply this with a sequence
Xti − φ+ 1, not with Xti itself this time. This is so because to use Corollary 3
we need degt0(s) ≥ Xt0 − φ+ 1 = 1, which holds with high probability – as e.g.
degt0(s) ≥ Xt0 is false with high probability.

SinceXt0 = 144(A+1)2 log4 t we know that C0(s) holds with high probability:
either the starting graph is nonempty, or r > 0 and some edges appear before
t0. Using Lemma 4 and Corollary 3 for any ε > 0 and A > 0 we get

Pr[degt(s) <(1− ε)tp] ≤ Pr[degt(s) < Xtk−1
− φ+ 1] ≤ Pr[¬Ck−1(s)]

≤
k−2∑
i=0

Pr[¬Ci+1(s)|Ci(s)] + Pr[¬C0(s)] =
k−1∑
i=0

O(t−A) = O(t−A+1).

We conclude our analysis with the following corollary.

Corollary 4. For Gt ∼ DD(t, p, r) with 1
2 < p < 1 for any constants ε > 0 and

A > 0 it holds asymptotically that

Pr [∆(Gt) ≤ (1− ε)tp] = O(t−A).
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A Proof of Lemma 1

First, recall that for i = 0, 1, . . . , h− 1 we have degτ+i+1(s) = degτ+i(s) + Iτ+i

where Iτ+i ∼ Be
(
p degτ+i(s)+r

τ+i

)
. Also clearly degτ+i(s) ≤ degτ (s) + i for any

i = 0, 1, . . . , h, so we have

degτ+i(s)

τ + i
≤ degτ (s) + i

τ
≤
(
1 +

i

Xτ

)
Xτ

τ
≤
(
1 +

h

Xτ

)
Xτ

τ
≤ (1 + ε)

Xτ

τ
.

Therefore for any i = 0, 1, . . . , h−1 we know that Iτ+i is stochastically dominated
by I∗τ+i ∼ Be

(
(1 + ε)pXτ+rτ

)
.

Now, from the well known Chernoff bounds we know that for any ε ∈ (0, 1)

Pr

[
degτ+h(s)− degτ (s) ≥ (1 + ε)E

[
h−1∑
i=0

I∗τ+i

]]
≤ exp

(
−ε

2

3
E

[
h−1∑
i=0

I∗τ+i

])

and therefore

Pr

[
degτ+h(s) ≥ degτ (s) + (1 + 3ε)

h(pXτ + r)

τ

]
≤ Pr

[
degτ+h(s) ≥ degτ (s) + (1 + ε)2

h(pXτ + r)

τ

]
≤ exp

(
−hε

2(1 + ε)(pXτ + r)

3τ

)
.

This completes the proof.

B Proof of Lemma 2

Let us define Yτ = τp−δ. By definition we know that Xt0 = φ ≥ Yt0 .
Now, let us assume that Xti ≥ Yti holds for some i ≥ 0. Let us also denote

by h = ti+1 − ti = α ti log ti
Xti

. Then we have asymptotically

Yti+1
− Yti = (ti + h)p−δ − tp−δi = tp−δi

((
1 +

h

ti

)p−δ
− 1

)
≤ tp−δi

(p− δ)h
ti

,

for any δ ∈ [0, p), because Xti ≥ φ ≥ log2 t, so h
ti

= α log ti
Xti

≤ α log ti
φ ≤ log t√

φ
≤ 1.

Thus,

Yti
(p− δ)h

ti
≤ Xti

(p− δ)h
ti

= α(p− δ) log ti ≤ βi log ti = Xti+1
−Xti ,

so clearly Xti+1
≥ Yti+1

holds as well, which completes the inductive step.
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C Proof of Lemma 3

We again proceed by induction. Clearly, Xt0 = t0 ≤ t0 log t0.
Directly from the definition we get

φ1−ptpi+1 log ti+1 −Xti+1
= φ1−ptpi+1 log ti+1 −Xti − βi log ti

≥ φ1−ptpi+1 log ti+1 − φ1−ptpi log ti − βi log ti

= φ1−ptpi log ti

((
1 +

α log ti
Xti

)p(
1 +

log(1 + α log ti/Xti)

log ti

)
− 1

)
− βi log ti.

Now we use the inequalities (1+x)p ≥ 1+px− p(1−p)x2

2 +O(x3) and log(1+
x) ≥ x−O(x2), true for any p ∈ [0, 1] and any x→ 0. In particular, in our case
x = α log ti

Xti
≤ 1√

log t
since α ≤

√
φ and Xti ≥ φ ≥ log3 t. Therefore

φ1−ptpi+1 log ti+1 −Xti+1

≥ φ1−ptpi log ti
(
αp log ti
Xti

+
α

Xti

(1− o(1))− α2 p(1− p) log2 ti
2X2

ti

(1− o(1))
)

− βi log ti

≥ α log ti

p+ 1

log ti
(1− o(1))− p(1− p) log ti

2
√
tp−δi

(1− o(1))

− βi log ti,
where in the last line we used Xti ≥

√
φtp−δi ≥ α

√
tp−δi – derived as the geo-

metric mean between the bounds from Definition 1 and Lemma 2.
Finally, we note the assumption βi ≤ αp+ α

2 log ti
ensures that for sufficiently

large t last expression is clearly non-negative, which completes the proof.

D Proof of Lemma 4

Clearly from the previous lemmas we know that for any constant ε > 0 it is true
that

tk
tk−1

= 1 +
α log tk−1
Xtk−1

≤ 1 +
α log tk−1√

φtp−δk−1

∈ (1, 1 + ε).

The first claim follows from this and from the fact that tk−1 < t ≤ tk.
Similarly, for any constant ε > 0 the second claim follows from the fact that

Xtk−1
< Xt ≤ Xtk and that

Xtk

Xtk−1

= 1 +
βk log tk
Xtk−1

≤ 1 +
α log tk−1(p+ ε)√

φtp−δk−1

∈ (1, 1 + ε)

which completes the proof.
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E Proof of Lemma 6

Let us denote d = 1−p
2 Xtl+1

− (1+p)r
2p . If s ∈ [tl+1 − d, tl+1], then the result is

directly implied by Lemma 5 with ε = 1−p
2p , as the degree of the vertex during

an interval of length d cannot grow more than d.
Otherwise s ∈ (tl, tl+1 − d). But if such an s exists, then it is the case that

d ≤ tl+1−tl = Ctl log tl log
2 t

Xtl
for some constant C > 0 so from Lemma 2 with δ = 0

and by the fact that Xti ≥ φ we get that asymptotically Xtl ≥ t
γp
l log4(1−γ) t for

any γ ∈ [0, 1] and therefore

Ctl log tl log
2 t ≥

(
1− p
2

Xtl+1
− (1 + p)r

2p

)
Xtl

≥ 1− p
4

X2
tl
≥ 1− p

4
t2γpl log8(1−γ) t.

However, if we set e.g. γ = 3
5 , then we can bound the right side from below by

1−p
4 t

6/5
l log16/5 t – and for sufficiently large t we obtain a contradiction, as each

term on the right side asymptotically dominates the respective one on the left
side.

F Proof of Lemma 7

Let l be the first value for which the theorem does not hold. Then, from Lemma 6
we get that for any constant A > 0 it holds that

Pr [¬Bl+1(tl+1)|Bl(tl) ∧ Bl+1(tl)] =

tl+1−1∑
s=tl

Pr [¬Bl+1(s+ 1)|Bl(tl) ∧ Bl+1(s)]

=

tl+1−1∑
s=tl

Pr [¬Al+1(s+ 1)|Bl(tl) ∧ Bl+1(s)] = O(t−A).

From Theorem 2 we know that Pr [B0(t0)] = 1−O(t−A). Recall that by our
assumption Pr [¬Bi+1(ti+1)|Bi(ti)] = 1 − O(t−A) for all i = 0, 1, . . . , l − 1, so it
follows that Pr [Bi(ti)] = 1− O(t−A) for all i = 0, 1, . . . , l. We use this fact, the
observation that Bl(tl) ⊆ Al(s) and Theorem 2 to get

Pr [¬Bl+1(tl)|Bl(tl)] ≤
tl∑
s=1

Pr [¬Al+1(s)|Bl(tl)] ≤
tl∑
s=1

Pr [¬Al+1(s) ∧ Bl(tl)]
Pr [Bl(tl)]

≤
tl∑
s=1

Pr [¬Al+1(s) ∧ Al(s)]
Pr [Bl(tl)]

≤
tl∑
s=1

Pr [¬Al+1(s)|Al(s)]
Pr [Bl(tl)]

= O(t−A).

Finally, for any events E1, E2, E3 we have Pr[¬E1|E2] ≤ Pr[¬E1|E3 ∧E2] +
Pr[¬E3|E2]. We substitute E1 = Bl+1(tl+1), E2 = Bl(tl) and E3 = Bl+1(tl) to
obtain the final result.
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G Proof of Lemma 8

Let us recall that for i = 0, 1, . . . , h− 1 we have degτ+i+1(s) = degτ+i(s) + Iτ+i

where Iτ+i ∼ Be
(
p degτ+i(s)+r

τ+i

)
. Also clearly degτ+i(s) ≥ degτ (s) for any i =

0, 1, . . . , h, so we have

degτ+i(s)

τ + i
≥ degτ (s)

τ + h
≥ Xτ

τ(1 + ε)
≥ (1− ε)Xτ

τ
.

Therefore for any i = 0, 1, . . . , h− 1 we know that Iτ+i stochastically dominates
I∗τ+i ∼ Be

(
(1− ε)pXττ

)
.

Now, from the Chernoff bounds we know that for any ε ∈ (0, 1)

Pr

[
degτ+h(s)− degτ (s) ≤ (1− ε)E

[
h−1∑
i=0

I∗τ+i

]]
≤ exp

(
−ε

2

2
E

[
h−1∑
i=0

I∗τ+i

])

and therefore

Pr

[
degτ+h(s) ≤ degτ (s) + (1− 2ε)

hpXτ

τ

]
≤ Pr

[
degτ+h(s) ≤ degτ (s) + (1− ε)2 hpXτ

τ

]
≤ exp

(
−hε

2(1− ε)pXτ

2τ

)
.

Finally, is is sufficient to see that if ε < 1
3 , then we can replace 1−ε

2 by 1
3 in

the last formula, which completes the proof.


