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Abstract

In a recently proposed graphical compression algorithm [1], the following tree arose
in the course of the analysis. The root contains n balls that are consequently distributed
between two subtrees according to a simple rule: In each step, all balls independently move
down to the left subtree (say with probability p) or the right subtree (with probability
1−p). A new node is created as long as there is at least one ball in that node. Furthermore,
a nonnegative integer d is given, and at level d or greater one ball is removed from the
leftmost node before the balls move down to the next level. These steps are repeated
until all balls are removed (i.e., after n + d steps). Observe that when d = ∞ the
above tree can be modeled as a trie that stores n independent sequences generated by
a memoryless source with parameter p. Therefore, we coin the name (n, d)-tries for the
tree just described, and to which we often refer simply as d-tries. Parameters of such
a tree (e.g., path length, depth, size) are determined by an interesting two-dimensional
recurrence (in terms of n and d) that – to the best of our knowledge – was not analyzed
before. We study it, and show how much parameters of such a d-trie differ from the
corresponding parameters of regular tries. We use methods of analytic algorithmics, from
Mellin transforms to analytic poissonization.

1 Introduction

In [1] an algorithm was described to compress the structure of a graph. The main idea behind

the algorithm is quite simple: First, a vertex of a graph, say v1, is selected and the number of

neighbors of v1 is stored in a binary string. Then the remaining n−1 vertices are partitioned

into two sets: the neighbors of v1 and the non-neighbors of v1. This process continues by

selecting randomly a vertex, say v2, from the neighbors of v1 and storing two numbers: the

number of neighbors of v2 among each of the above two sets. Then the remaining n − 2

vertices are partitioned into four sets: the neighbors of both v1 and v2, the neighbors of

v1 that are non-neighbors of v2, the non-neighbors of v1 that are neighbors of v2, and the

non-neighbors of both v1 and v2. This procedure continues until all vertices are processed.

In the Erdős-Rényi model, a random graph has any pair of vertices connected by an edge

with probability p. It is proved in [1] that for large n our algorithm optimally compresses

any graph generated by the Erdős-Rényi model (and, in fact, it works well in practice even

for graphs not generated by the Erdős-Rényi model). To establish this asymptotic optimality

result, an interesting tree was used in the construction, that we describe next.
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†This work was supported in part by the NSF Science and Technology Center for Science of Information

Grant CCF-0939370, NSF Grant CCF-0830140, AFOSR Grant FA8655-11-1-3076, and NSA Grant H98230-

11-1-0141.
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Figure 1: A (6, 1)-trie with six balls and d = 1, in which the deleted ball is shown next to the node
where it was removed.

The root of such a tree contains n balls (vertices of the underlying graph) that are con-

sequently distributed between two subtrees according to a simple rule: In each step, all balls

independently move down to the left subtree (say with probability p) or the right subtree

(with probability 1 − p), and a new node is created as long as there is at least one ball in

that node. Finally, a non-negative integer d is given so that at level d or greater one ball is

removed from the leftmost node before the balls move down to the next level. These steps

are repeated until all balls are removed (i.e., after n+d steps). Of interest are such tree pa-

rameters as the depth, path length (sum of all depths), size, and so forth. This is illustrated

in Figure 1 in which the deleted ball is shown next to the node from where it was removed.

The tree just described falls between two digital trees, namely tries and digital search

trees. In fact, when d = ∞ the tree can be modeled as a trie that stores n independent

sequences generated by a memoryless source with parameter p. Hence, we coin the term

(n, d)-trie (or simply d-trie) for the tree just described. In [1] lower and upper bounds were

proved for parameters of interest, by using known results for tries and digital search trees

[3, 19]. In this paper, we establish precise asymptotic results. In particular, we show by how

much the path length of a d-trie differs from the path length of the corresponding regular

trie.

Many parameters of a d-trie can be described by the following two dimensional recurrence

a(n, d) = f(n) +
n
∑

k=0

(

n

k

)

pkqn−k[a(k, d − 1) + a(n− k, k + d− 1)], d ≥ 1, (1)

and the boundary equation

a(n+ 1, 0) = f(n) +
n
∑

k=0

(

n

k

)

pkqn−k[a(k, 0) + a(n− k, k)], (2)

for a known additive term f(n). For example, when f(n) = n, then a(n, d) represents the
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path length. Recurrence (2) is equivalent to the following boundary condition

a(n, 1) = a(n+ 1, 0).

For d = ∞ recurrence (1) becomes a traditional recurrence arising in the analysis of tries

[19] whose solutions (exact and asymptotic) are well known. Thus, it is natural to study

the difference ã(n, d) := a(n, d) − a(n,∞), and that is our objective. In passing, we should

point out that recurrence (2) resembles the one used to analyze another digital search tree,

known as a digital search tree. In this paper we prove, however, that a (n, d)-trie more closely

resembles a trie, rather than a digital search tree.

Our main interest lies in solving recurrence (1) for d = O(1). In fact, for graph compres-

sion we only need d = 0, and we focus on this case. We shall show that the second term

in (1) becomes exponentially small for n large and d fixed. Then we shall approximate the

recurrence for the excess quantity ã(n, d) by

ã(n, d) =
n
∑

k=0

(

n

k

)

pkqn−kã(k, d − 1)

with an appropriate initial condition. The above we can solve asymptotically using Mellin

transform technique and depoissonization. In particular, for f(n) = n (that is, for the path

length in a d-trie) we prove that the excess quantity ã(n, d) becomes asymptotically, as n→ ∞
and d = O(1),

1

2h log p
log2 n+

d

h
log n+

[

−
1

2h
+

1

h log p

(

γ + 1 +
h2
2h

+Ψ(logp n)

)]

log n

where Ψ(·) is the periodic function when log p/ log(1 − p) is rational, and h is the entropy

rate.

Digital trees such as tries and digital search trees have been intensively studied for the last

thirty years [2, 3, 5, 7, 11, 12, 13, 16, 17, 18, 19]. However, our two-dimensional recurrence

seems to be new and harder to analyze. It somewhat resembles the profile recurrences for

digital trees, which were studied for tries in [15] and digital search trees in [4], and which are

known to also be challenging.

The paper is organized as follows. In the Section 2 we precisely formulate our problem

and analyze it for f(n) = n. Proofs are presented in Section 3, where we also discuss some

asymptotics for d→ ∞.

2 Problem Statement

In this section, we first formulate some recurrences describing (n, d)-tries, then summarize

our main results, discuss some extensions, and present numerical results.

2.1 Main Results

Let us consider a (n, d)-trie with n balls and parameter d ≥ 0. First, we analyze the average

path length b(n, d). It satisfies the following recurrence equations

b(n+ 1, 0) = n+
n
∑

k=0

(

n

k

)

pkqn−k [b(k, 0) + b(n − k, k)] , for n ≥ 2, (3)
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and

b(n, d) = n+
n
∑

k=0

(

n

k

)

pkqn−k [b(k, d− 1) + b(n− k, k + d− 1)] , for n ≥ 2, d ≥ 1. (4)

Recurrence (3) follows from the fact that starting with n + 1 balls in the root node, and

removing one ball, we are left with n balls passing through the root node. The root contributes

n since each time a ball moves down it adds 1 to the path length. Those n balls move down to

the left or the right subtrees. Let us assume k balls move down to the left subtree (the other

n − k balls must move down to the right subtree); this occurs with probability
(n
k

)

pkqn−k.

At level one, one ball is removed from those k balls in the root of the left subtree. This

contributes b(k, 0). There will be no removal from n − k balls in the right subtree until all

k balls in the left subtree are removed. This contributes b(n − k, k). Similarly, for d > 0 we

arrive at recurrence (4).

Here 0 < p < 1 and q = 1− p, and we also use the boundary conditions

b(0, d) = b(1, d) = 0, d ≥ 0; b(2, 0) = 0. (5)

By setting d = 1 in (4) and comparing the result to (3) we can replace (3) by the simpler

boundary condition

b(n, 1) = b(n+ 1, 0), for n ≥ 0. (6)

We are primarily interested in estimating b(n, 0) for large n.

If we let d→ ∞ in (4) and assume that b(n, d) tends to a limit b(n,∞), then (4) becomes

b(n,∞) = n+
n
∑

k=0

(

n

k

)

pkqn−k [b(k,∞) + b(n− k,∞)] , (7)

with b(0,∞) = b(1,∞) = 0. This is the same as the recurrence for the mean path length in

a trie, which was analyzed, for example, in [12, 19]. One form of the solution is given by the

alternating sum

b(n,∞) =
n
∑

ℓ=2

(−1)ℓ
(

n

ℓ

)

ℓ

1− pℓ − qℓ
, (8)

and an alternate form is given by the integral [19]

b(n,∞) =
n!

(2πi)2

∮
[
∫

Br
z−s Γ(s+ 1)

1− p−s − q−s
ds

]

ez

zn+1
dz, (9)

where Γ(·) is the Gamma function, Br is a vertical Bromwich contour on which −2 < ℜ(s) <
−1 and the z-integral is over a small loop about z = 0.

The asymptotic expansion of (9) as n→ ∞ may be obtained by a combination of singu-

larity analysis and depoissonization arguments (see [7, 8, 19]) and we obtain

b(n,∞) =
1

h
n log n+

1

h

[

γ +
h2
2h

+Φ(logp n)

]

n+ o(n), (10)

where h = −p log p− q log q, h2 = p log2 p+ q log2 q, γ is the Euler constant, and Φ(x) is the

periodic function

Φ(x) =
∞
∑

k=−∞,k 6=0

Γ

(

−
2kπir

log p

)

e2kπrix, (11)
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provided that log p/ log q = r/s is rational, with r and s being integers with gcd(r, s) = 1. If

log p/ log q is irrational, then the term with Φ is absent from the O(n) term of (10). We shall

later use (10) to analyze the behavior of b(n, d) for n→ ∞ and a fixed d.

Next we set

b(n, d) = b(n,∞) + b̃(n, d) (12)

so that b̃(n, d) = b(n, d) − b(n,∞) measures how the path lengths in the d-trie differs from

those in a trie. From (4) and (7), we then obtain

b̃(n, d) =
n
∑

k=0

(

n

k

)

pkqn−k
[

b̃(k, d − 1) + b̃(n− k, k + d− 1)
]

, for n ≥ 2, d ≥ 1, (13)

which unlike (4) is a homogeneous recurrence. Then from (6) and (12) we have the boundary

condition

b̃(n+ 1, 0) − b̃(n, 1) = b(n,∞)− b(n+ 1,∞). (14)

¿From (5) and (7) we also have b̃(0, d) = b̃(1, d) = 0 for d ≥ 0, and b̃(2, 0) = 0.

We further define b∗(n, d) to be the solution of

b∗(n, d) =
n
∑

k=0

(

n

k

)

pkqn−kb∗(k, d − 1), for n ≥ 2, d ≥ 1, (15)

and

b∗(n+ 1, 0) − b∗(n, 1) = b(n,∞)− b(n+ 1,∞). (16)

Note that (15) differs from (13) in that the former neglects the term involving b̃(n−k, k+d−1).

We will show that this term in (13) is asymptotically negligible for n → ∞ with d = O(1),

so that b̃(n, d) ∼ b∗(n, d). The recurrence (15) is much easier to solve by transform methods

[7, 19] than is (13).

We summarize our main result below. In Section 3 we establish Theorem 1 along with

some other exact and asymptotic results for (3)-(6) and (13)-(16).

Theorem 1 For n→ ∞ and d = O(1) we have b̃(n, d) = O(log2 n). More precisely

b̃(n, d) =
1

2h log p
log2 n+

d

h
log n+

[

−
1

2h
+

1

h log p

(

γ + 1 +
h2
2h

+Ψ(logp n)

)]

log n+O(1),

(17)

where Ψ(·) is the periodic function

Ψ(x) =
∞
∑

k=−∞,k 6=0

[

1 +
2kπir

log p

]

Γ

(

−
2kπir

log p

)

e2kπirx (18)

and log p/ log q = r/t is rational, as in (11). If log p/ log q is irrational, the term involving Ψ

in (17) is absent.

We see that b(n, d) − b(n,∞) = O(log2 n), which shows that the (n, d)-tries studied in

[1] are in some sense more similar to tries than to digital search trees (DST). In [1], it was

shown that b(n, 0) was bounded above by average path lengths in tries and below by average

path lengths in DST’s. It was also conjectured that b(n, d)− b(n,∞) is O(n), but our result

shows that this difference is in fact much smaller.
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2.2 Related Recurrence Equations

The method presented in the next section, allow us to analyze a class of recurrences of the

type (3) with inhomogeneous terms other than n. For example, suppose we define a(n, d) by

a(n, d) = f(n) +
n
∑

k=0

(

n

k

)

pkqn−k[a(k, d − 1) + a(n− k, k + d− 1)] (19)

where f(n) is a given sequence that grows algebraically or logarithmically for n → ∞. The

boundary condition is again of the type (3), or equivalently,

a(n, 1) = a(n+ 1, 0), (20)

and we have a(0, d) = a(1, d) = 0. Also, let a(n,∞) satisfy (19) with the second argument of

a(·, ·) replaced by infinity. This recurrence can be solved by generating functions and Mellin

transforms, and we can then establish that a(n, d)− a(n,∞) ≡ ã(n, d), will satisfy

ã(n, d) =
n
∑

k=0

(

n

k

)

pkqn−k[ã(k, d − 1) + ã(n− k, k + d− 1)] (21)

and

ã(n+ 1, 0) − ã(n, 1) = a(n,∞)− a(n+ 1,∞). (22)

The asymptotic behavior of ã(n, d) for d = O(1) and n → ∞ can be obtained in a manner

completely analogous to the case f(n) = n, discussed in the next section.

For example, the case

f(n) = ⌈log(n+ 1)⌉

arose in analyzing the compression algorithm in [1]. In [1] it was shown that a(n,∞) has the

asymptotic form

a(n,∞) =
n

h
A∗(−1) + o(n), n→ ∞ (23)

where

A∗(−1) =
∞
∑

ℓ=2

⌈log(ℓ+ 1)⌉

ℓ(ℓ− 1)

if log p/ log q is irrational. If log p/ log q = r/s is rational, the constant A∗(−1) in (23) must

be replaced by the oscillatory function

A∗(−1) +
∞
∑

k=−∞,k 6=0

A∗

(

−1 +
2kπir

log p

)

e2kπir logp n (24)

where

A∗(s) =
∑

n≥2

⌈log (n+ 1)⌉

n!
Γ(n+ s).

By analyzing (21) and (22) for n → ∞ we can show that the difference a(n, d) − a(n,∞) is

O(log n), and more precisely

ã(n, 0) = a(n, 0) − a(n,∞) ∼
A∗(−1)

h log p
log n.

Again if log p/ log q is rational we must replace A∗(−1) by the Fourier series in (24).

6



0

2000

4000

6000

8000

10000

12000

0 200 400 600 800 1000

n

(a) b(n, 0) and b(n,∞)

b(n, 0)
b(n,∞)

-90
-80
-70
-60
-50
-40
-30
-20
-10
0

0 200 400 600 800 1000

n

(b) b̃(n, 0), b∗(n, 0), and asymptotic estimate of b̃(n, 0)

b̃(n, 0)
b∗(n, 0)

Asymptotic estimate of b̃(n, 0)

0

0.5

1

1.5

2

2.5

3

3.5

0 200 400 600 800 1000

n

(c) b∗(n, 0) − b̃(n, 0)

Figure 2: Numerical values with p = 0.5.

2.3 Numerical Data

To confirm our results, we numerically computed some of the quantities discussed above for

n up to 1000, with p = 0.5. In Figure 2(a), we plot the values of b(n, 0) and b(n,∞). In

Figure 2(b), we plot the values of b̃(n, 0) (defined in (12)), b∗(n, 0) (defined by (15) and (16)),

and our asymptotic estimate of b̃(n, 0) shown in Theorem 1. We computed this asymptotic

estimate up to the log n term without the periodic function Ψ(·), that is,

1

2h log p
log2 n+

d

h
log n+

[

−
1

2h
+

1

h log p

(

γ + 1 +
h2
2h

)]

log n.

Finally, we plot b∗(n, 0) − b̃(n, 0) in Figure 2(c), which confirms that b̃(n, 0) ∼ b∗(n, 0), and

suggests that the difference is O(1) for n→ ∞.

3 Analysis

We first discuss some exact solutions of recurrence (4) for small values of n and arbitrary d,

the prove our Theorem 1, and finally provide solutions of (4) for other ranges of (n, d), where

d→ ∞.

3.1 Some Exact Solutions

We first consider (4) for small values of n and arbitrary d. Using (5) we rewrite (4) as

b(n, d) = n+
n
∑

k=2

(

n

k

)

pkqn−kb(k, d− 1) +
n−2
∑

k=0

(

n

k

)

pkqn−kb(n− k, k + d− 1). (25)
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When n = 2, (25) yields b(2, d) = 2 + (p2 + q2)b(2, d − 1) and since b(2, 0) = 0 we have

b(2, d) =
1

pq
+

(

2−
1

pq

)

(p2 + q2)d−1 for d ≥ 1. (26)

Note that b(2,∞) = (pq)−1 by (8). Setting n = 3 in (25) then yields

b(3, d) = 3 + (p3 + q3)b(3, d − 1) + 3p2qb(2, d− 1) + 3pq2b(2, d). (27)

Using (26) to evaluate the right side of (27) and noting that b(3, 0) = b(2, 1) = 2 by (6), we

solve the difference equation (27) with respect to d to ultimately obtain

b(3, d) =
2

pq
+

3

pq
(2pq2 − 1)(p2 + q2)d +

(

2 +
1

pq
− 6q

)

(p3 + q3)d for d ≥ 0. (28)

We can then continue solving b(n, d) for increasing n, and it is clear that b(n, d) will have

the form

b(n, d) = b(n,∞) +
n
∑

J=2

(pJ + qJ)dB(n, J), (29)

where b(n,∞) is the trie path length in (8) and (9). It follows that b(n, d) − b(n,∞) =

O
[

(p2 + q2)d
]

for n fixed and d → ∞. We can characterize the double sequence B(n, J) by

using (29) in (25) and equating coefficients of (pJ + qJ)d. For J ≥ 2 this leads to

B(n, J) =
1

pJ + qJ

n
∑

k=J

(

n

k

)

(

pkqn−k + qk[p(pJ + qJ)]n−k
)

B(k, J). (30)

¿From (26) we have

B(2, 2) =

(

2−
1

pq

)

1

p2 + q2
= −

1

pq

and from (28)

B(3, 2) =
3

pq
(2pq2 − 1), B(3, 3) =

1

pq
(2pq + 1− 6pq2).

¿From (6) and (29) we find that

b(n+ 1,∞) +
n+1
∑

J=2

B(n+ 1, J) = b(n,∞) +
n
∑

J=2

B(n, J)(pJ + qJ). (31)

For example, to compute B(4, J) we would first set n = 3 in (31) and since we already know

B(3, 3) and B(3, 2) we have an expression for the sum B(4, 2) + B(4, 3) + B(4, 4). Then

setting J = 4 and n = 4 in (30) leads simply to B(4, 4) = B(4, 4), which is automatically

satisfied. Setting J = 2 and n = 4 expresses B(4, 2) in terms of B(2, 2) and B(3, 2), which we

computed already, and setting J = 3 and n = 4 expresses B(4, 3) in terms of B(3, 3). Then

B(4, 4) follows from (31) with n = 3. We can thus get the B(n, J) recursively, but it does

not seem possible to obtain an explicit analytic expression for this double sequence.

We can transform (30) into another equation by introducing the generating function

FJ (z) =
∞
∑

n=0

B(n, J)
zn

n!
=

∞
∑

n=J

B(n, J)
zn

n!
. (32)
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Using (32) in (30) leads to the functional equation

FJ(z) =
1

pJ + qJ

(

FJ(pz)e
qz + FJ(qz)e

p(pJ+qJ )z
)

for J ≥ 2. (33)

Then if FJ(z) = ezGJ(z) we obtain

(pJ + qJ)GJ(z) = GJ(pz) + GJ(qz)e
p(pJ+qJ−1)z . (34)

Again this appears difficult to solve explicitly (however, see [10]).

We can take the analysis somewhat further in the symmetric case where p = q = 1/2, as

then (34) simplifies to

GJ(z)2
1−J = GJ

(

z

2

)(

1 + exp

[

(21−J − 1)
z

2

])

. (35)

Then setting GJ(z) = zJHJ(z) and noting that by (32) FJ (z) and GJ(z) are O(zJ) as z → 0,

we see that HJ(0) will be non-zero and finite. Thus (35) becomes

HJ(z) = HJ

(

z

2

)

1

2

(

1 + exp

[

(21−J − 1)
z

2

])

(36)

which can be solved by iteration to get the infinite product

HJ(z) = HJ(0)
∞
∏

L=0

(

1 + e(2
1−J−1)2−L−1z

2

)

. (37)

Then inverting (32) we obtain for B(n, J) the representation

B(n, J) = HJ(0)
n!

2πi

∮

ez

zn+1−J

∞
∏

L=0

(

1 + e(2
1−J−1)2−L−1z

2

)

dz. (38)

Thus the double sequence B(n, J) is known up to the single sequence HJ(0) = B(J, J)/J !.

To determine B(J, J) we must still use (31). Thus putting (37) in (31) will lead to a single

variable recurrence for B(J, J), and we note that in the symmetric case B(2, 2) = −4 and

B(3, 3) = 3.

Next we return to general p, q and estimate B(n, 2) in (30) for n → ∞. Let us set

C(n) = B(n, 2) and we recall that, by (29),

b̃(n, d) ∼ C(n)(p2 + q2)d; d→ ∞, n = O(1). (39)

While we mainly want to estimate b̃(n, d) for n → ∞ and d = O(1), it is useful to try to

understand the full asymptotic structure of b̃(n, d), for n and/or d large.

We thus examine how (39) behaves when n also becomes large. Setting J = 2 in (30)

leads to

(p2 + q2)C(n) =
n
∑

k=2

(

n

k

)

pkqn−kC(k) +
n−2
∑

k=0

(

n

k

)

pkqn−k(p2 + q2)kC(n− k) (40)

for n ≥ 3 with C(2) = (2− p−1q−1)/(p2 + q2) = −p−1q−1.

9



We argue intuitively that C(n) will behave algebraically for n → ∞ (we shall prove this

fact shortly). Then we use the fact that the “kernel” in (40) behaves
(

n

k

)

pkqn−k → δ(k − np), n→ ∞

where δ(·) is the delta function. Then for algebraically or logarithmically varying smooth

f(k) (for k → ∞) we have (see [6, 9] for rigorous proofs)

n
∑

k=0

(

n

k

)

pkqn−kf(k) = f(np) +O(nf ′′(np)), n→ ∞. (41)

Then the term involving (p2 + q2)kC(n− k) will lead to terms that are exponentially smaller

than those arising from C(k), and (40) may be replaced by the asymptotic relation

C(n)(p2 + q2) ∼ C(np), n→ ∞. (42)

A general solution to (42) has the form

C(n) = nνC̄(n) (43)

where C̄(np) = C̄(n) and pν = p2 + q2 so that

ν =
log(p2 + q2)

log p
> 0. (44)

Thus C̄(·) is a periodic function of logp n of period 1, which we can write as the Fourier series

C̄(n) = c(0)(p) +
∞
∑

ℓ=−∞,ℓ 6=0

c(ℓ)(p)e2πiℓ logp n. (45)

It again appears difficult to identify explicitly the Fourier coefficients c(ℓ)(p), but we can do

this in the symmetric case p = q = 1/2. Then we set
∑∞

n=0C(n)zn/n! = F2(z) as in (32) and

from (38) obtain

C(n) =
−2n!

2πi

∮

ez

zn−1

∞
∏

ℓ=1

(

1 + e−z2−ℓ−1

2

)

dz. (46)

To obtain the large n behavior of the integral in (46) we first expand the integral for z → ∞
and apply a depoissonization argument. Setting ℓ = log2 z + J we have 2ℓ = 2Jz and

∞
∏

ℓ=1

(

1 + e−z2−ℓ−1

2

)

= exp

[

∞
∑

ℓ=1

log

(

1 + e−z2−ℓ−1

2

)]

= exp





∞
∑

J=1−log
2
z

log

(

1 + e−2−J−1

2

)





= exp





∞
∑

J=0

log

(

1 + e−2−J−1

2

)

+

log
2
z−1

∑

J=1

log

(

1 + e−2J−1

2

)





∼ exp

[

log(
1

2
)(log2 z − 1) +

∞
∑

J=0

log

(

1 + e−2−J−1

2

)

+
∞
∑

J=1

(

1 + e−2J−1
)

]

=
2

z
K∗

10



where

K∗ =
∞
∏

J=0

(

1 + e−2−J−1

2

)

∞
∏

J=1

exp
(

1 + e−2J−1
)

= 1.

Thus C(n) ∼ −4n!/(n − 1)! = −4n as n → ∞. This shows that c(0)(1/2) = −4 and a more

careful calculation can be used to identify the other Fourier coefficients c(ℓ)(1/2) in (45) (then

we would set ℓ = ⌊log2 z⌋+ J = log2 z + J −{log2 z} so that 2ℓ = 2Jz2−{log
2
z}. We omit the

details.

In Table 1 we consider various values of p and estimate C̄(n) ≈ c(0)(p) numerically, by

computing C(n)n−ν from (40), for large n. This shows that as a function of p, |c(0)(p)| is
minimal when p is between 0.6 and 0.7, and becomes large as either p → 0 or p → 1. For

p → 0 the oscillatory terms in (45) become more numerically significant. Table 1 indicates

this when p = 0.1, by giving a range of values of C(n)n−ν .

Table 1: Values of the zeroth Fourier coefficient.

p C(n)n−ν|n→∞ ≈ c(0)(p)

0.5 -4

0.4 -5.664

0.3 -9.728

0.25 -14.03

0.2 -22.5

0.1 -98 to -105

0.6 -3.331

0.7 -3.276

0.75 -3.479

0.8 -3.903

0.9 -6.423

To justify the approximation in (42) we first inductively show that for all n

C(n) ≤ Anν+ǫ (47)

for all ǫ > 0 and A > 0. By isolating the terms in the sums in (40) with k = n and k = 0 we

obtain, for n > 2,

C(n) =
1

p2 + q2 − pn − qn

[

n−1
∑

k=2

(

n

k

)

pkqn−kC(k) +
n−2
∑

k=1

(

n

k

)

pkqn−k(p2 + q2)kC(n− k)

]

.

(48)

Assuming inductively that (47) holds for C(k) for k = 1, 2, · · · , n− 1 we then have

n−1
∑

k=2

(

n

k

)

pkqn−kC(k) ≤
n−1
∑

k=2

(

n

k

)

pkqn−kAkν+ǫ

≤ A(np)ν+ǫ.

11



Using a similar estimate for the second sum in (48) we are led to

C(n) ≤
A

p2 + q2 − pn − qn

[

(np)ν+ǫ + nν+ǫ(p(p2 + q2) + q)n
]

= Anν+ǫ

[

p2 + q2

p2 + q2 − pn − qn
pǫ +

(p(p2 + q2) + q)n

p2 + q2 − pn − qn

]

, (49)

as C(n− k) ≤ A(n− k)ν+ǫ ≤ Anν+ǫ and pν = p2 + q2. Since p(p2 + q2) + q < p+ q = 1, the

second term in (49) is asymptotically negligible for n large and (47) follows by induction.

We have thus obtained some exact expressions for b(n, d) for small values of n, a general

asymptotic result for d → ∞ with n = O(1), and then examined how this result behaves

when n also becomes large. However, this cannot be used to infer the behavior of b(n, d) for

n→ ∞ with d = O(1), which we examine next.

3.2 Main Asymptotic Result for b(n, d)

We first give an intuitive derivation of the asymptotics of b(n, d) for fixed d ≥ 0 and n→ ∞,

and in particular of b(n, 0). Starting from (13) we again argue that the second sum is negligible

for n→ ∞ and that the first is asymptotic to b̃(np, d− 1) so that (13) becomes

b̃(n, d) ∼ b̃(np, d− 1), n→ ∞ (50)

and, in particular,

b̃(n, 1) ∼ b̃(np, 0), n→ ∞ (51)

which when added to (14) leads to

b̃(n+ 1, 0) − b̃(np, 0) ∼ b(n,∞)− b(n + 1,∞). (52)

The right side of (52) may be estimated from (10) or by (9). Using (9) we can show that term

by term differentiating of the asymptotic series in (10) is permissible, and thus (52) becomes,

for n→ ∞,

b̃(n+ 1, 0) − b̃(np, 0) = −
1

h
log n−

1

h

(

γ + 1 +
h2
2h

)

−
1

h
ψ(logp n) + o(1), (53)

where ψ(·) is the periodic function

ψ(x) =
∞
∑

k=−∞,k 6=0

[

1 +
2kπir

log p

]

Γ

(

−
2kπir

log p

)

e2kπirx, (54)

where we note that, in view of (11), ψ(x) = Φ(x) + (log p)−1Φ′(x).

Now (53) suggests that b̃(n, 0) admits an asymptotic expansion of the form

b̃(n, 0) = A log2 n+B log n+O(1), n→ ∞ (55)

and then

b̃(n+ 1, 0) − b̃(np, 0) = −2A(log p) log n−A log2 p−B log p+ o(1). (56)

12



Comparing (53) to (56) we conclude that A = (2h log p)−1 and then

B = −
1

2h
+

1

h log p

[

γ + 1 +
h2
2h

+ ψ(logp n)

]

. (57)

We have thus formally derived the result in Theorem 1 for b̃(n, 0). For any fixed d > 0 we

can extend this argument by asymptotically solving (50) by an expansion of the form

b̃(n, d) = A(d) log2 n+B(d) log n+O(1) (58)

to find from (50) that A(d) = A(d − 1) and B(d) = B(d − 1) + 2 log pA(d − 1). Then

using (58) in (52) or (53) we find that A(d) = A(0) = (2h log p)−1 and B(d) − B(d − 1) =

2 log pA(d− 1) = h−1 so that B(d) = B(0) + h−1d, where B(0) = B is as in (57).

We proceed to provide a rigorous derivation of the theorem. Using arguments completely

analogous to (47)–(49), we can inductively establish the bound

b̃(n, d) ≤ A0n
ν+ǫ(p2 + q2)d; n ≥ 2, d ≥ 0 (59)

where again ν is given by (44). Using the bound in (59) we thus estimate the second sum

(13) by

n−2
∑

k=0

(

n

k

)

pkqn−k b̃(n− k, k + d− 1) ≤ A0

n
∑

k=0

(n− k)ν+ǫ(p2 + q2)k+d−1pkqn−k

(

n

k

)

≤ A0n
ν+ǫ(p2 + q2)d−1

n
∑

k=0

(

n

k

)

[

p(p2 + q2)
]k
qn−k

= A0n
ν+ǫ(p2 + q2)d−1

[

q + p(p2 + q2)
]n

which is o(b̃(n, d)) (by an exponentially small factor). It follows from comparing (13) and

(15) that b̃(n, d) ∼ b∗(n, d) for n → ∞. We proceed to analyze (15), with (16), and thus

re-establish Theorem 1.

Introducing the exponential generating function

B∗
d(z) =

∞
∑

n=2

b∗(n, d)
zn

n!
= ezAd(z), (60)

where b∗(n, d) is defined from (15), we find that

B∗
d(z) = B∗

d−1(pz)e
qz (61)

or, since Ad(z) = B∗
d(z)e

−z ,

Ad(z) = Ad−1(pz). (62)

This can be solved by iteration to yield

Ad(z) = A0(p
dz). (63)

Then setting

G∗(z) =
∞
∑

n=2

b(n,∞)
zn

n!
(64)
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and noting that
∞
∑

n=1

b∗(n+ 1, 0)
zn

n!
=

d

dz
B∗

0(z), (65)

(16) leads to
d

dz
B∗

0(z)−B∗
1(z) = G∗(z)− G′

∗(z). (66)

If G∗(z) = ezG̃(z), from the integral representation in (9) we conclude that the Mellin trans-

form of G̃(z) is
∫ ∞

0
G̃(z)zs−1dz =

Γ(s+ 1)

1− p−s − q−s
, (67)

Using (61), (63), and the definitions of Ad(·) and G̃(·), (66) becomes

A′
0(z) +A0(z)−A0(pz) = −G̃′(z). (68)

We introduce the Mellin transform of A0(z)

M(s) =

∫ ∞

0
A0(z)z

s−1dz (69)

and use (69) to obtain the functional equation

−(s− 1)M(s − 1) + (1− p−s)M(s) =
(s− 1)Γ(s)

1− p1−s − q1−s
. (70)

Next we set

M(s) = Γ(s)N (s) (71)

with which (70) becomes

−N (s− 1) + (1− p−s)N (s) =
s− 1

1− p1−s − q1−s
. (72)

To solve (72) we let

N (s) =
∞
∏

k=0

[

1− pk+2

1− pk−s

]

N1(s) (73)

and then (72) becomes

N1(s)−N1(s − 1) =
∞
∏

k=1

[

1− pk−s

1− pk+1

]

s− 1

1− p1−s − q1−s
. (74)

Now, for s → −∞ the right side of (74) behaves as (s − 1)
∏∞

k=1(1 − pk+1)−1, with an

exponentially small error. Letting

N1(s) =
s(s− 1)

2

∞
∏

k=1

(

1

1− pk+1

)

+N2(s) (75)

the equation for N2(·) becomes

N2(s)−N2(s− 1) =
s− 1

∏∞
k=1 (1− pk+1)

[

1

1− p1−s − q1−s

∞
∏

k=1

(1− pk−s)− 1

]

(76)
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whose right hand side is, unlike that of (74), exponentially small for s→ −∞. The solution

to (76) is

N2(s) = N2(−∞) +
∞
∑

i=0

[

∏∞
k=1(1− pk−s+i)

1− p1+i−s − q1+i−s
− 1

]

s− 1− i
∏∞

k=1(1− pk+1)
. (77)

¿From (60) we see that Ad(z) = O(z2) as z → 0 so that M(s) in (69) must be analytic

at s = −1. From (71) we then conclude that N (−1) = 0. From (73) we have N1(−1) = 0

and from (75) and (77) we thus obtain an expression for N2(−∞):

N2(−∞)
∞
∏

k=1

(1− pk+1) + 1−
∞
∑

i=0

(i+ 2)

[

∏∞
k=1(1− pk+i+1)

1− p2+i − q2+i
− 1

]

= 0. (78)

We have thus obtained the final expression for M(s) in (71) as

M(s) =
Γ(s)

∏∞
L=0(1− pL−s)

(

s(s− 1)

2
+ β +

∞
∑

i=0

(s− i− 1)

[

∏∞
k=1(1− pk−s+i)

1− p1+i−s − q1+i−s
− 1

])

, (79)

where

β = N2(−∞)
∞
∏

k=1

(1− pk+1)

can be computed from (78). Inverting the transforms in (60) and (69) we obtain

b∗(n, d) =
n!

2πi

∮

ez

zn+1

[

1

2πi

∫

Br
(pdz)−sM(s)ds

]

dz. (80)

The final step is to expand b∗(n, d) (∼ b̃(n, d)) for n→ ∞ with d fixed. The integral over z

can be asymptotically evaluated by a standard depoissonization argument, which corresponds

to replacing z by n in the inner s-integral. The function M(s) in (79) has a triple pole at

s = 0, and there are other double poles on the imaginary s-axis if 1 − p1−s − q1−s has zeros

there, which occurs only if log p/ log q is rational, say r/t where r and t are integers. First

we compute the contribution from s = 0. Using the expansion Γ(s) = [1 − γs+ O(s2)]/s as

s→ 0, with γ being the Euler constant, (79) becomes

M(s) =
1

s
[1− γs+O(s2)](1 − p−s)−1

∞
∏

L=1

(1− pL−s)−1

×

(

s− 1

1− p1−s − q1−s

∞
∏

k=1

(1− pk−s)− (s − 1) +
s(s− 1)

2
+ β

+
∞
∑

i=1

(s − i− 1)

[

∏∞
k=1(1− pk−s+i)

1− p1+i−s − q1+i−s
− 1

])

. (81)

Now

1− p−s = s log p−
1

2
s2(log p)2 +O(s3)

and

1− p1−s − q1−s = −hs−
h2
2
s2 +O(s3).
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Also, using the expression in (78) to compute β +1 the expansion of (81) for s→ 0 becomes

M(s) =
1

s3
1− γs

log p

[

1 +
s

2
log p+O(s2)

]{

1− s

h

[

1−
h2
2h
s+O(s2)

]

+O(s2)

}

=
1

s3
1

h log p
+

1

s2

[

−
γ

h log p
−

1

h log p

(

1 +
h2
2h

)

+
1

2h

]

+O

(

1

s

)

. (82)

It follows that the integrand p−dsz−sM(s) in (80) has the residue

Ress=0

{

p−dsz−sM(s)
}

=
1

2

log2 z

h log p
+
d

h
log z+log z

[

1

log p

(

γ + 1

h
+

h2
2h2

)

−
1

2h

]

+O(1) (83)

where the O(1) refers to terms that are O(1) for z → ∞, and these can be evaluated by

explicitly computing the O(s−1) term(s) in (82). Then the expansion of b̃(n, d) ∼ b∗(n, d)

follows by setting z = n in (83), and we have thus regained the formula in (17). If log p/ log q

is rational we must also compute the contribution from the double poles along the imaginary

axis at such points p−s = q−s = 1 and p1−s + q1−s = 1. These poles lead to the oscillatory

terms in (17), as can be seen by computing their residues from (79).

We have thus established (17) rigorously, though the intuitive derivation in (50)–(58) is

much simpler, and more revealing of the basic asymptotic structure of the equations (13) and

(14).

3.3 Other Asymptotic Ranges

Here we briefly discuss b̃(n, d) when n and d are simultaneously large, and try to identify

what ranges of n and d lead to different asymptotic expansions. We recall that (39) applies

for n fixed and d→ ∞, while (17) applies for d fixed and n→ ∞. We confine ourselves here

to an intuitive discussion.

The form of the expansion in (39) (with C(n) given by (43) and (45)) suggests that an

important scale is n, d→ ∞ with d− log1/p(n) = O(1). Note that then the algebraic growth

of nν as n → ∞ is balanced by the geometric decay of (p2 + q2)d in (39). We introduce the

new variable ξ with

d =
log n

log(1/p)
+ ξ, ξ = O(1) (84)

with

b̃(n, d) = B(n, ξ) = B(n, d− log1/p(n)), (85)

and we note that

b̃(np, d− 1) = B(np, ξ). (86)

We again argue that for n → ∞ the second sum in (13) is negligible and approximate (13)

by

b̃(n, d) = b̃(np, d− 1) +O[nb̃′′(np, d− 1)], (87)

as in (41). In view of (85) and (86) a general asymptotic solution of (87) is any function that

satisfies B(n, ξ) = B(np, ξ) which we can write as a Fourier series, with

B(n, ξ) = B0(ξ) +
∞
∑

ℓ=−∞,ℓ 6=0

e2πiℓ logp(n)Bℓ(ξ). (88)
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Thus (88) gives an approximation to b̃(n, d) for n, d → ∞ with ξ = O(1), but we cannot

explicitly determine the Fourier coefficients Bℓ(ξ), which are now functions of ξ. If we require

B(n, ξ) to asymptotically match to (39), we would equate the large n behavior (39) to the

expansion of B(n, ξ) for ξ → +∞, and this yields

B0(ξ) ∼ c(0)eξ log(p
2+q2), ξ → +∞, (89)

and a similar matching condition can be obtained for Bℓ(ξ) for ℓ 6= 0, by comparing (88) and

(43) with (45). Thus (89) shows that B0(ξ) will decay exponentially for ξ → +∞.

Next we examine b̃(n, d) for d = O(log n) by defining ω from

d = ω log n, 0 < ω <
1

log(1/p)
(90)

and then set

b̃(n, d) = log2(n)F(ω). (91)

Then we approximate (13) again by b̃(n, d) ∼ b̃(np, d− 1) which in view of (91) becomes

log2(n)F(ω) ∼ log2(np)F

(

d− 1

log(np)

)

∼ (log n+log p)2F

(

ω −
1

log n
−
ω log p

log n
+O(log−2 n)

)

.

(92)

¿From (92) we obtain the following limiting ODE:

0 = −F ′(ω)(1 + ω log p) + 2 log pF(ω). (93)

The solution to (93) is

F(ω) = (1 + ω log p)2F∗ (94)

where F∗ is a constant. For ω → 0, the expansion in (91) behaves as F∗ log
2(n) and if we

match the ω-scale result to the d = O(1) result in Theorem 1, we conclude that

F∗ =
1

2h
.

Finally, by asymptotically matching (91) as ω → [log(1/p)]−1 to the approximation in (85)

and (88), for ξ → −∞, we conclude that

B0(ξ) ∼
1

2h
log2(p)ξ2, ξ → −∞. (95)

Note that ξ and ω are related by

1 + ω log p =
log p

log n
ξ (96)

so that when 0 < ω < [log(1/p)]−1 we have ξ < 0.

To summarize the formal results in this subsection, our analysis suggests that the asymp-

totics of b̃(n, d) are different for the three cases:

(i) n = O(1), d → ∞ (where (39) holds),
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(ii) ξ = d− log1/p(n) = O(1) where (88) holds, and

(iii) d = O(log n) where b̃(n, d) ∼ (2h)−1(1 + ω log p)2 log2 n with d = ω log n and 0 < ω <

[log(1/p)]−1.

The result in Theorem 1 appears to be a limiting case of the d = O(log n) expansion,

when it is expanded for ω → 0. However, Theorem 1 also gives the second term (O(log n))

in the asymptotic series for d = O(1).

We have only given the asymptotic behaviors of B0(ξ) as ξ → ±∞ (cf. (89) and (95)).

To get a more explicit expression for b̃(n, d) ∼ B(n, ξ) in (88) we again argue that b̃(n, d) ∼
b∗(n, d) holds for ξ = O(1) (in fact this relation fails only for n = O(1) and d → ∞). If

instead of defining ξ from (84) we let

d = ⌊log1/p(n)⌋+ ξ′ = log1/p(n) + ξ′ − {log1/p(n)}, (97)

where {·} denotes the fractional part, then

pdn = pξ
′

exp[−d log(1/p){log1/p(n)}]

and for n→ ∞ with ξ, ξ′ = O(1) the limiting form of (80) is

1

2πi

∫

Br
p−sξ′M(s)psd{log1/p(n)}ds (98)

with M(·) as in (79). We therefore conjecture that the right side of (88) is given explicitly

by (98), with ξ in (88) replaced by ξ′ in (97).
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