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Abstract— We study the classical problem of noisy constrained measured in nats. The entropy of a random variable or process
capacity in the case of the binary symmetric channel (BSC), X will be denotedH(X7), and the entropy rate byf (X).

namely, the capacity of a BSC whose input is a sequence from ; ; ; ; :
a constrained set. As stated in [4] V.. while calculation of the The noisy constrained capacity'(s, ) is defined [4] by

noise-free capacity of constrained sequences is well knowthe . 1

computation of the capacity of a constraint in the presence fo C(S,e) = sup I(X;Z) = nh_{{.lo n sup (X, zy), )
noise. .. has been an unsolved problem in the half-century since Xes X{'€5n

Shannon’s landmark paper. . ..” We first express the constrained wherel(X; Z) is the mutual information and the supreme are

capacity of a binary symmetric channel with (d, k)-constrained over all stationary processes supportedands. . respec-
input as a limit of the top Lyapunov exponents of certain matiix yp PP n P A

random processes. Then, we compute asymptotic approximatis tively. The noiseless capacitpf the constraint isC(S) =
of the noisy constrained capacity for cases where the noise C(S,0). This quantity has been extensively studied, and
parameter ¢ is small. In particular, we show that when k<2d, several interpretations and methods for its explicit dedn
itgeoe(rgr)m \t,%r;re(g’s‘cﬁsii ‘g (‘;aigagyvsggg”g Tezgo'fﬁ'ggacggggg are known (see, e.g., [18] and extensive bibliography thgre
we con%pute the coefficient gf the error term. In the course of AS for C(S, ), the best results |n_the I_|teratu_re have been
establishing these findings, we also extend our previous neiés in the form of bounds and numerical simulations based on
on the entropy of a hidden Markov process to higher-order producing random (and, hopefully, typical) channel outgesx
finite ‘memory processes. These' concllusions are proved by aguences (see, e.g., [26], [23], [1] and references therEhese
combination of analytic and combinatorial methods. methods allow for fairly precise numerical approximatiarfis
the capacity for given constraints and channel parameters.
Our approach to the noisy constrained capaciys, ¢) is

We consider a binary symmetric channel (BSC) witQifferent. We first consider the corresponding mutual infar
crossover probability, and a constrained set of inputs. Morg;q,

precisely, letS,, denote the set of binary sequences of length I(X;Z) = H(Z) — H(Z|X). )
satisfying a giver{d, k)-RLL constraint [18], i.e., no sequence ’

in S, contains a run of zeros of length shorter théror SinceH (Z|X) = H(e), the problem reduces to findirfg(Z),
longer thank (we assume that the valuesand k, d < k, the entropy rate of the output process. If we restrict our
are understood from the context). We wrifé! € S,, for attention to constrained process&s that are generated by
X" = Xi...X,. Furthermore, we denot§ = (J,.,S,. Markov sources, the output proce&scan be regarded as a
We assume that the input to the channel is a stationdrigden Markov procesgiMP), and the problem of computing
processX = {Xj}r>1 supported onS. We regard the BSC I(X; Z) reduces to that of computing the entropy rate of this
channel as emitting a Bernoulli noise sequeAce {E}r>1, HMP. The noisy constrained capacity follows provided we find
independent ofX, with P(E; = 1) = . The channel output the maximizing distributionP™** of X.

I. INTRODUCTION

is It is well known (see, e.g., [18]) that we can regard the
Zi = X; ® E;. (d, k) constraint as the output of &th-order finite memory
where® denotes addition modul® (exclusive-or). (Markov) stationary process, uniquely defined by condalon
For ease of notation, we identify the BSC channel with itgrobabilities P(z¢|z!"}), where for any sequencgr;};>1,
parametee. Let C'(¢) denote conventional BSC channel cawe denote byv{, j>i, the sub-sequence, z;41,...,x;. For
pacity (over unconstrained binary sequences), namiély) = nontrivial constraints, some of these conditional prolitids
1-H(e), whereH(e) = —cloge— (1 —¢)log(1—¢). We use must be set to zero in order to enforce the constraint (for

natural logarithms throughout. Entropies are correspayigdi  example, the probability of a zero after seeingonsecutive
zeros, or of a one after seeing less thaconsecutive zeros).

*Preliminary version of this paper was presented at ISITeN2OO7. Work  \\/hen the remaining free probabilities are assigned so ltteat t
of W. Szpankowski was supported in part by NSF STC Grant C233870,

NSF Grants DMS-0800568, and CCF-0830140, NSA Grant Hogso- ©Ntropy of the process is maximized, we say that the process
0092, the AFOSR Grant FA8655-08-1-3018, and Humboldt Fatiod. is maxentropicand we denote the maximizing distribution by



P™2*_ The noiseless capacity(S) is equal to the entropy of (and also the equivaler{fl, oo) constraint). Our formula for
pmax 118]. the constant. in this case is consistent with the one derived
The Shannon entropy (or, simplgntropy of a HMP was from the results of [20]. Preliminary results of this papares

studied as early as [2], where the analysis suggests tlisictr presented in [16].

complexity of the HMP entropy as a function of the process We also remark that recently Han and Marcus [9], [10]
parameters. Blackwell [2] showed an expression of the pgitroreached similar conclusions and obtained some geneiatizat
in terms of a measuré), obtained by solving an integralusing different methodology.

equation dependent on the parameters of the process. The mea
sure is hard to extract from the equation in any explicit way.
Recently, we have seen a resurgence of interest in estignatinLet X = {X;};>1 be anrth-order stationarfinite memory
HMP entropies [7], [8], [14], [19], [20], [27]. In particutaone (Markov) processover a binary alphabet4d={0,1}. The
recent approach is based on computing the coefficients of gnocess is defined by the set of conditional probabilities
asymptotic expansion of the entropy rate around certaimegal P(X; = 1|X}~} = a}), a} € A". The process is equivalently
of the Markov and channel parameters. The first result aloigerpreted as the Markov chain of istatess;, = X/},
these lines was presented in [14], where the Taylor expansio> 0 (we assumeX?,_ , is defined and distributed according
arounde = 0 is studied for a binary HMP of order one. Into the stationary distribution of the procedsClearly, a
particular, the first derivative of the entropy ratecat= 0 is transition from a statec A" to a stateve A" can have positive
expressed very compactly as a Kullback-Liebler divergenpeobability only if w and v satisfy uy=v] "', in which case
between two distributions on binary triplets, derived fréme we say that(u,v) is anoverlappingpair. Thenoise process
marginals of the input procesk. It is also shown in [14], E = {E;};>1 is Bernoulli (binary i.i.d.), independent oX,
[15] that the entropy rate of a HMP can be expressed in term&h P(FE;=1) = ¢. Finally, the HMP is

of the top Lyapunov exponent of a random proces2

Il. ENTROPY OFHIGHER ORDERHMPS

matrices (cf. also [11], where the capacity of certain cledgin Z={Zi}iz1, Zi=Xi®E;, i2>1. ®3)
with memory is also shown to be related to top Lyapunov | o 7 = (Zi,Zi, Zisr_1) and B, =
exponents). Further improvements, and new methods for e ivEiyr_1). Also, for ec{0,1}, let Fe _
asymptotic expansion approach were obtained in [19], [2 L E oo Bit,_1). We next compufe the pr(;bability

and [8]. In[20] the authors express the entropy rate for atyin

fZn. Z”*T !, From the definitions o and £, we have
HMP where one of the transition probabilities is equal t(I)zer

as an asymptotic expansion includinglde loge) term. As P(Zl, Z P(Z} JEn,En_1=c¢) (4)
we shall see in the sequel, this case is related to(theo) ec A
(or the equivalen{0, 1)) RLL constraint. Analyticity of the  _ Z P Zn— Znsrt, En_1 = ¢ E’n)
entropy as a function of was studied in [7]. = ’ ’

In Section Il of this paper we extend the results of [14], el e el e
[15] on HMP entropy to higher order Markov processes. We — Z P(Znr-1, Engr- 1|Z E" )P (Z E" 1)

show that the entropy of ath-order HMP can be expressed as ecA

the top Lyapunov exponent of a random process of matrices | P(Entr—1)Px (Zn@E,|Zn 1©E;_)P(Zy ™ E ).
of dimensions2” x 2" (cf. Theorem 1). As an additional ecA

result of this work, of interest on its own, we derive thébserve thatin the last line the transition probabilitfgs(-|-)
asymptotic expansion of the HMP entropy rate aroand 0  are with respect to the original Markov chain.

for the case where all transition probabilities are posifief. We next derive, from (4) , an expression fB(Z}) as a
Theorem 2). In particular, we derive an expression for thgroduct of matrices extending our earlier work [14], [15]}. |
first derivative of the entropy rate as the Kullback-Lieblewhat follows, vectors are of dimensi@i or r, and matrices
divergence between two distributions @n+1-tuples, again are of dimensiong” x 2". We denoterow vectors by bold
generalizing the formula far=1 [14].The results of Section 1l lowercase letters, matrices by bold uppercase letterswand
are applied, in Section I, to express the noisy constainéet 1 = [1,...,1]; superscript denotes transposition. Entries
capacity as a limit of top Lyapunov exponents of certaiit vectors and matrices are indexed by vectorsdin Let for
matrix processes. These exponents, however, are notlyrious € A"

difficult to compute [25]. Hence, as in the case of the entrop S S S

of HMPs, it is interesting to study asymptotic expansions of ™ — [P(Z1, Bn=a1), P(Z7, En=a2) ... P(Z], En=ay")]
the noisy constrained capacity. In Section IlI-B, we studye a vector of dimensio®’, and letM(Z,,| Z,,_1) be a2" x 2"

the asymptotics of the noisy constrained capacity, and \Weatrix defined as follows: ifle,_1,e,) € A" x A" is an

show that for (d,k) constraints withk < 2d, we have

C(S,e) = C(S)+ Ke + 0(52 loge), where K is a well _1We generally use the term “finite memory process” for the fingrpre-

characterized constant. On the other hand, when 24, we talion. and "Markov chain for the second. = .

h C(S,e) = C(S)+ Lel +0(e), where, againf. is an In general, the measures governing probability expressiuii be clear
ave ( €)= eloge €)s »ag AN from the context. In cases when confusion is possible, wé explicitly

explicit constant. The latter case covers tllel) constraint indicate the measure, e.gPx.



overlapping pair, then the entre,,_1,e,) of M(Zn|Zn,1) Furthermore, lelP = [pe, ¢,]e,,c,c.4» e the transition matrix

is of the underlyingrth order Markov chain, and lekr =
=5 - - ~ [Te]ec.ar be the corresponding stationary distribution . Define
Me e Zn an =P Zn n an n— P En: n)- s s
v (BnlZna) = P nGealZuaben- ) PECL: alsoP(s) = [, levecar an(s) = [rElecr. Then
All o_ther entries are zero. Cle?rIM(Z_n|Zn,1) is a random Rn(5,0) = Zp;f(z?) _ W(S)P(S)n—llt (11)
matrix, drawn from a set o2”"*! possible realizations. e
With these definitions, it follows from (4) that which is entirely defined on the underlying Markov process
Pn = pnflM(Zn|Zn71)- (6) X.
. - L~ Using a formal Taylor expansion neae= 0, we write
Since P(Z}") = pnl' = Y o4 P(Z],E, = e), after 5
fterating (6), we obtain Ru(5,€) = Ru(5.0) +€ 5-Ru(s,2)|  +0(g(n)e?), (12)
P(Z}) = piM(Zs|Z1) - - - M(Z| Z 1)1 ) e=0

whereg(n) is the second derivative aR,, (s, ) with respect

The joint distributionP(Z7') of the HMP, presented in (7)1 to e, computed at some, provided these derivatives exist (the
has the formp; A, 1%, where A,, is the product of the first dependence on stems from (9)).

n—1 random matrices of the process Using analyticity ate = 0 (cf. [7], [15]), we find
M = M(Zs|Z1),M(Z3|Z5), ..., M(Zp| Z—1),... (8) o2
| N | 7 H(Z)) = HXY) - e -Ra(s,2)| 4+ 0(g(n)?)
Applying a subadditive ergodic theorem, and noting that soe =9,
p1A, 1% is a matrix norm ofA,, (indeed, bothp; and 1° 5 9
are positive and\ is nonnegative, henge; A, 1! satisfies the =H(X7]) - €52 Be Z P3(2}) . +O(g(n)e?). (13)

conditions for a matrix norm, as already observed in [11]) is 2
readily proved that—'E[— log Pz (Z})] must converge to a ) ] ]
constant known as theop Lyapunov exponenf the random 10 compute the linear term in the Taylor expansion (13),
processM (cf. [5], [21], [25]). This leads to the following We differentiate with respect te, and evaluate at = 1.

s=1

theorem. Proceeding in analogy to the derivation in [14], we obtaia th
Theorem 1:The entropy rate of the HME of (3) satisfies Lollowmg result basically proved in [15], so we omit detail
ere
H(Z) = lim E [_llong(Z?Jrr)] _ Theorem 2:If the conditional sympol probabilities in the
n—oo n finite memory (Markov) procesX satisfy
1 55 5 05
:nlinéoﬁE [— log (le(ZQ|Z1)' . 'M(anzn—l)lt)} =&, P(ayy41|al) >0

where¢ is the top Lyapunov exponent of the procglsisof (8).  for all a} '€ A"+!, then the entropy rate of for smalle is

Theorem 1 and its derivation generalize the resultsyfer1, o1 n 9
of [14], [15], [27], [28]. It is known that computing top H(Z) :77,11—{20 EH"(Z ) = HX)+ h(Px)e+0(7), (14)
Lyapunov exponents is hard (maybe infeasible), as shoyjmere, denoting bys; the Boolean complement of;, and
in [25]. Therefore, we shift our attention to asymptotic aps2r+1
proximations.

We consider the entropy ratd (Z) for the HMP Z as a £1(Px)

=21 ... ZpZr41%r42 ... Z2r+1, WE have

P ZQT‘Jrl
Z PX(Z%TJrl)lOg X( 1 )

function of ¢ for small . In order to derive expressions for Py Py (57

the entropy rate, we resort to the following formal defini- o P art1

tion (which was also used in entropy computations in [13] = D(PX(Z1 MPx (% )) : (15)

and [15]): . Here,D(-||-) is the Kullback-Liebler divergence, applied here
Ry(s,e) = Z Pz (1), (9)  to distributions on4?"+! derived from the marginals ok .

2 eAn
h . | | ' iabl dth tion | A question arises about the asymptotic expansion of the
WhEres 1S a rea (or complex) variable, an © summation I(§ntropyH(Z) when some of the conditional probabilities are
over all binaryn-tuples. In the sequel, we writ€z(z7) for

n AN o _ e zero. Clearly, when some transition probabilities are ztbren
P(z7) to distinguish it fromPx (z7). It is readily verified that certain sequences’ are not reachable by the Markov process,

9] which provides the link to constrained sequences.
H(Z}) = B[-log P2(Z])] = ~ 5 Ra(s,2)| . (10) P |
5 s=1 Example 1 Consider a Markov chain with the following
The entropy of the underlying Markov sequence is transition probabilities
O | 1-p p
H(X7)=— &Rn(s,o) . P= [ 1 0 (16)




where( < p < 1. This process generates sequences satisfyingClearly, estimating the top Lyapunov exponents in (19) is
the (1,00) constraint (or, under a different interpretation otomputationally prohibitively expensive, if possible. erb-
rows and columns, the equivalgt 1) constraint). The output fore, we next turn our attention to asymptotic expansions of
sequenceZ, however, will generally not satisfy the constraintC(S,e) neare = 0.

The probability of the constraint-violating sequences e t

output of the channel is a polynomialdnwhich will generally B Asymptotic Behavior

contribute a ternO(e log €) to the entropy raté?(Z) whene A nontrivial constraint will necessarily have some zero-
is small. This was already observed in [20] for the transitioyalued conditional probabilities. Therefore, the asseda
matrix P as in (16), where it was shown that HMP will not be covered by Theorem 2, but rather by
p(2—p) Theorem 3. FoKd, k) sequences we have

———~¢cloge 4+ O(e) a7)
I+p H(Z) = H(X) — fo(Px)eloge + f1(Px)e + O(* loge)
ase — 0. (20)

In this paper, in Section IV and Appendix A we prove thd0" Some fo(Px) and fi(Px) where Px is the2 underlying
following generalization of Theorem 2 fdt, k) sequences. Markov process. Sincél (¢) = —eloge+¢ —O(e?) for small

H(Z) = H(X) -

Theorem 3:Let Z be a HMM. Then, in general €, we obtain
H(Z) = H(X) — fo(Px)eloge + f1(Px)e + O(* loge) C(5.¢) = sup H(Z) —eloge +2 = O
(18) ©
for some fy(Px) and f1(Px). We need to find the maximizing distribution to estimate the

capacity. We shall prove in Section 1V.D that this maximgin
distribution is actually the maxentropic distributioR™?*

then fo(Px ) = 0 and the coefficienf; (Px) ate is presented o .
. - X . . . (maximizing the entropy of the underlying Markov process).
in Theorem 2. The coefficienfy(Px ) is derived in Section lV. However, this introduces additional error tenths? log2 €)

for HMM representing &d, k) sequences, and for the maxi- . 9
mizing distribution is presented in Theorems 5 and 6. which exceeds the error ter(e"loge) of the entropy

. stimation in Theorem 3 The same result was established by
We should point out, that recently Han and Marcus | an and Marcus [9], [10] using different methodology. In
showed that in general for any HMM ' g oy-

summary, we are led to
H(Z)=H(X)— fo(Px)eloge + O(e
( ) ( ) fO( X) g ( ) C(S,E) _ C(S)_(l_fO(P;(nax))Elog€+(fl(P;(nax)_1)6
which is further generalized in [10] to + O log? o) (1)

_ _ 2
H(Z) = H(X) = fo(Px)eloge + f1(P)e + O(c” loge) where(C(S) is the capacity of noiseless RLL system. Various
when at least one of the transition probabilities in the Mark methods exist to derive®(S) [18]. In particular, one can

Observe that if all transition probabilities &f are positive,

chain is zero. write [18], [24] C(S) = —log po, Wherep, is the smallest
real root of
1. CAPACITY OF THE NOISY CONSTRAINED SYSTEM k
We now apply the results on HMPs to the problem of noisy > ottt =1 (22)
constrained capacity. (=d
A. Capacity as a Lyapunov Exponent Our goal is to derive explicit expressions ffy(Py?*) and

fi(Py**) for (d, k) sequences. For example, we will show
in Theorem 5 below that for some RLL constraints, we have

. o(P¥®) =1 in (21), hence the noisy constrained capacity
where {(Px) is the top Lyapunov exponent of the procesé of the formC(S, &) = C(S) + O(e) . In Theorem 6 below

.{M(Zi|Zi71)}i>_0. In [3] itis proved that the process 0pt|m|z-We derive alsof, (P,
ing the mutual information can be approached by a sequenc . . . .
e apply the same approach as in previous section, that is,

of Markov representations of increasing order. Therefagee, e use the auxiliary functio,, (s, ¢) defined in (3). To start,

a direct consequence of this fact and Theorem 1 we concludé \ . ; " ;
the following. we find a simpler expression fdPz(z}'). Summing over the

Theorem 4:The noisy constrained capacity(s, <) for a number of errors introduced by the channel, we find

Recall that/(X;Z) = H(Z) — H(e) and, by Theorem 1,
when X is a Markov process, we havB (Z) = &(Px)

(d, k) constraint through a BSC channel of parameteis e
given by Py(z}) = Px(@!)(1—e)" +e(1—e)" ' Y Px(af @ e;)
i=1
C(S,e) = li rPUY—H 19
(S:€) o fjﬁ}?g( x) (&) (19) plus the error tern®(s?) (resulting from two or more errors),

wheree; = (0,...,0,1,0,...,0) € A" with a1 at position
WhereP)({) denotes the probability law of arth-order Markov j. Let B,, C A™ denote the set of sequengg at Hamming
process generating thé, k) constraintS. distance one frons,,, andC,, = A™\ (S, U B,,). Notice that



sequences irC,, are at distance at least two fro8},, and asymptotics, as easy to Sgewe restrict our analysis tai, k)
contribute theO(s?) term. From the above, we conclude  sequences over thextendedalphabet (ofphrase} [18]

_ f0d1 od+! k
E): ZPZ(ZIL)S (23) B—{O 1,0 1,...,0 1}
2P A” In other words, we consider onlf, k) sequences that end
= Z Py (20)% + Z Pz(2})® + Z Pz(z1)*. with a "1". For such sequences, we assume that they are
s 2By 2 eCh generated by a memoryless process over the super-alphabet.
This is further discussed in Section IV.
We observe that Let p, denote the probability of the super-symb@i1.
We stress the fact that, differs from the probability that
n\s __ s n\s o 2s
Z Pz(21)" = 0(%), Z Pz(21)* = O(E™) ;411 consecutive symbols equalél. In fact it is equal to
#€Bn #E0n the probability that two consecutive returns to symbadre
ase — 0. Defining separated by exactl§ zeros. Therefore
pe=Px(X I =01X;=1), i>1, d<(<k.
Pn(s) = Z Px(21)"" 1ZPX (21) (26)
2PES, In Appendix B we prove that the maxentropic distribution
pmax corresponds to the case
Q= 2 <Z e )> pe = ot @)
z'€Bn =1
_ . . with py as in (22).
we arrive, after some algebra, at the following expressan f
Rn(s,¢) Example 2 Consider again the Markov process discussed in
Example 1 with the transition matrix (16). This represents
Ru(s,e) = (1—e)™R,(s,0)+e(1—¢e)"'¢,(s) (24) (1,00) constraint system. Observe that
s(1 _ ~\(n—1)s 2 1+s 2s -~ -~
TSI TQu(s) FOE TSR, — Py(01]1) = PO[)PH0]0)P(L[0) = p(1 — p)
Notice that The maximum entropy distribution is achieved o= l/tp
wherep = (1 +/5)/2.; a|SOp0 = 1/¢. In this casep = p2
$n(1) + Qu(1 ZZPX @ e;) =n. and1 - p = po, thusp, = "
S The expected length of a super-symbol Fis A\ =
We now derive Zf:d(ﬁ + 1)p,. We also introduce the generating function
9 s é-l—l
H(Z}) = — 5 Ru(l,¢) Zp
S

By p(s) we denote the smallest root inof r(s, z) = 1, that
is (s, p(s)) = 1. Clearly, p(1) = 1 and
>¢pelogpe
H(Z) = H(X])(1-ne)+ne—e(da(1) + 6, (1)) 1) =— ==
elogeQn(1) — €@, (1) + O(neloge), (25) s the entropy ratger bit of the super-alphabet, and(1) =

where the error term is derived in Appendix A. In the aboveg(X)' Furthermore, we define

¢ (1) and@’, (1) are, respectively, the derivative ¢f,(s) and As) =

Qn(s) ats = 1. Notice also that the termH(X7")e of order

n’e is cancelled by(¢/, (1) + Q,,(1))e = (H(X{")n+O(n))e  and notice thai\(1) = A.

and onlyne term remains (see the next section for details). Finally, to present succinctly our results, we introduceeo
The casek < 2d is interesting: one-bit flip in &d, k) additional notation. Let

sequence is guaranteed to violate the constraint, and conse sy

quently V27 € S, and Vi: Px(z} @ e;) = 0. Therefore als,z) =) _(2d = O)p;

én(s) = 0 in this case, leaving,,(1) = n. Thus, in the ¢

casek < 2d, we havefy(P) = 1, and the termO(cloge) Forintegerdy, (s, d < {1, (; < k, letZy, 4, denote the interval

in (21) cancels out. Tove, =
Further considerations are required to compfg1) and o )

obtain the coefficient of in (25) . Here, we prgci){vi)de the 16 —miny{li—d, k — £r—1} < £ < miny {fp—d, k—{1-1}},

necessary definitions, and state our result that are proveqndeed in general 4d, k) sequence may have at mdststarting and

in Section V. Ignoring border effects (which do not affectnding zeros of total length + O(1) that cannot affect the entropy rate.

using the fact thatR,(1,¢) = 1. Since all the functions
involved are analytic, we obtain from (24)

0
5)2 (S Z) ’z:p(s)



where min, {a,b} = max{min{a,b},0}. We shall write and¢é = 1. Thus,

Z} 0, = Loy 0, \ {0}. At last, we definer(s, z) = 71(s,2) + ) _ p(p—2)

T2(s, 2) + 73(s, z) where JolPx) =1~ A p—1"
B L s s ta+es480NSistent with the calculation of the same quantity in [20]
Ti(s,2) = <Z< 2max{0, &1 + £ — k — d}pp, i, 277 g noisy constrained capacity is obtained wiies= P™x,
d—lfl’gzk—k i.e.,p=1/p?, wherep = (14++/5)/2, the golden ratio. Then,
1 max —
7-2(57 Z) = Z Z Z E(pflpb +p51+9pl2*9)szl2+£2+f0(P ) 1/\/5’ and by Theorem 6
G=d l=d €T}, C(S,e) =logyp — (1 — 1/V5)elog(1/e) + O(e)
L 1 for 0
g — U
7-3(57 Z) = Z Z :
2 koly+ 0y —d} — (01 + ) + 1
P e i A G IV. ANALYSIS

In this section, we derive explicit expression for the ceeffi
cientsfo(Px) and f1(Px) of Theorem 3, as well af (P™)
andf; (P™>) of Theorems 5 and 6. We also establish the error

Now we are in a position to present our main results. THerm in Theorem 5.
proofs are delayed till the next section. The following tteen ~ Throughout, we consider the super-alphabet approach. Re-

Lotlot2
X E Doy +opes—p | 22T

96][1 2

summarizes our findings for the cake< 2d. call that a super-symbol is a tegt1 for d < ¢ < k which is
Theorem 5:Consider ad, k) constrained system with < drawn from a memoryless source. This model is equivalent to
2d. Then, a Markov process with renewals at symbols "1”. To simplify
ot o the analysis, we first consider sequences of lengtbnsisting
C(S,e) = C(S) = (1 = fo(PX™))e + O(e” log™¢), only of (full) super symbols. We call such sequenaeduced
where forp, = piH! (d, k) sequence of length.
Let 27 be a reducedd, k)-sequence of length made of
o N(1) 211+ Za(l,1)  m super-symbolsz} = 0110%1...00"1.
fo(PX™) = logA+2 A + A In the sequel, for reduced, k) sequences of length, we
2 2 i
oW e+ L) define ) m
050z 050z P(fo) _ pr"
P, 0 0 L15%
+ b\ (&O&(l,l)‘f’ &T(l,l)) -1 =1

Notice thatP(z}) = 0 if 7 is not a reducedd, k) sequence
(i.e., it doesn’t end on d). We also notice that quantities

In the complementary case> 2d, the terme¢,(s) in (23) P(z7) do not form a probability distribution over the reduced
does not vanish, and thus th@(cloge) term in (21) is (d,k)-sequence of length because they don’t sum to 1. In
generally nonzero. For this case, using techniques sirtolarview of this we define

for e — 0 and A(s), a(s, z) and (s, z) are defined above.

the ones leading to Theorem 5, we obtain the following result p(xn)
Theorem 6:Consider the constraineft, k) system with Px n(z7) = P -
k > 2d. Define "
where .
vy = Z(f—?d)p[, 0= Z Dei1Des s P, = ZP(‘T?)
£>2d d<ti+La+1<k e
and\ = Z’;:d = (£ + 1)p. Then forp, = pi+* Note thatP, is the probability that the:-th symbol is exactly

a “1” (in other words,z} is built from a finite number of

C(8,e) = C(8) = (1= fo(PR™))eloge™ + O(e) . (28) super symbols). We observe that ,,(z7}) is not the original

where probability distribution Px (z7) ger!erated by a memoryless
Fo(PRw) =1 — v+0 source of super-symbols. In fact, it is no longer memoryless
0x /= A but it converges to it in a way that allows us to cope with

for e — 0. truncation problems. The later does not effect the asyritptot

value of the entropy rate.
Example 3.We consider the1, oo) constraint with transition  Recalling the definition(s, z) = >, piz*!, we find

matrix P as in (16) . Computing the quantities called for in

Theorem 6 ford = 1 andk = oo, we obtainp, = (1—p)*~!p anzn = ;
as in Example 2, and ~ 1—-r(1,2)
_14p (1-p)? Indeed, every reducefil, k) sequence consists of an empty

A p = p string, one super symbol, two super symbols or more, thus




>, Puz =30, r%(1,2) = 1/(1 — r(1,2)) (cf. [24]). By the where B(y) is the set of sequences that are at Hamming

Cauchy formula [24] we obtain distance 1 from sequencge The factor1 S, is there to
1 1 dz enforce thaty should not be inS,, and therefore is inB,
P, = %%mm (since it is at Hamming distance 1 froM.). The division
1 ’ 1 by |B(y) N S«| is to ensure that we do not over-count: it
= 5———=+0p ") =<-+0@") expresses the number of waysan be reached froii.. We
a:7(11) A next evaluatep(s, z) and Q(s, z).

for somey > 1, sincel is the largest root of = (1, 2) and
a r(1, ) A= Zz a(t+1)pe.

“Let &, be the set of(d, k) reduced sequences made of The case: < 2d is easy since: @ e; ¢ S, whenz € S,,
exactlym super-symbols with no restriction on its length. LeThus ém(s,z) = 0. In the sequel we concentrate > 2d.
S. = U,, Sm- Let B, be the set of sequences that are exactly Theorem 7:For reducedd, k) sequences consisting of
at Hamming distancé from a sequence iS,.By our conven- Super symbols, we have
tion, if z € S, for somem, (i.e.if z = 0110%1...0%=1), - B 1 N
then P(z) = [['=" p; otherwiseP(x) = 0). We denote by Gm(s,2) = mbi(s, 2)r"™ (s, 2) +(m—1)ba(s, 2)r™>(s, 2),
L(x) the length ofx. We call such a model the variable-lengthyhere
model.

To derive H(Z7') presented in (25) we need to evaluate _ s—1 , A
#' (1) and@’, (1). We estimate these quantities in the variable- 1(s,2) 27 sz7 1Pe-5%
length model as described above and then re-interpret them i

A. Computation ofb,, (s, z)

the original model. Define ba(s,z) = Z N i TRVNEE A
d<l1+05<k
¢(57 Z) = Z Pﬁ¢n(s)zn7 (29) In particular,
Q(s,2) = P2Qn(s)z" (30) Sl
Zn: bi(1,1) = Y piape
t=d j
which we re-write as bo(1.1) Z ! (0.0 2a}
s = ma. y — .
) L@) 2 a X Pe
o(s,2) = Z P (x) Z Pz @ e;)z" ), Proof. We need to consider two cases: one in which the error
€8, i=1 changes @ to a1, and the other one when the error occurs on
L(z) s al. In the first casem — 1 super symbols are not changed and
Q(s,2) = Z Z p(x @ ;) SL(@) each contributes(s, z). The corrupted super symbol is divided
v, izt into two and its contribution is summarized #n(s, z).
_ i In the second case, an endihgs changed into & so two
We notice that super symbols (except the last one) collapsed into a one supe
0 1 symbol. This contribution is summarized Iy (s, z) while
— L) _ , Y ’
¢(L,2) +Q(L,2) = Z L(z)z"* = 01— r(L,z2) the otherm — 2 super symbols, represented bys,z) are
TES. unchanged. [ |
We can also write ] -
3 B. Computation of),,, (s, z)
Hs,2) = Om (s, 2), (31) We recall the following definitions. For integefs, (2, d <
mo 01,05 < k, letZy, 4, denote the interval
Qs.2) = D Quls,2), (32)
m Ifl Lo =
where {f —min+{£1—d, k— 62—1} </ < min+{£2—d, k—él—l}} s
L(z) where min, {a,b} = max{min{a,b},0}. We shall write
7 _ ps—1 » L(z ’ P
¢m(872) - Z P (x) ZP(I‘EBQ)Z ( )a Il*l.,b :Ill-,b \{O}
2E€S8m =1 Theorem 8:For reducedd, k) sequences consisting of
} j=L(z) 1oo ug super symbols, the following holds
Quls.z) = Y _ o®eES. (33) o o
= o Bawe)ns] Qu(5.2) = ma(s, 2)r™ (s, 2) + (m — D)r(s, 2)r™ (s, 2)
i=L(z) ° where
X Plasejoe)| M0 Zmax{() 2d — O}p2t!



andr(s,z) = 7i(s, z) + 712(s, z) + 73(s, z) where andz ¢ S.. We have:
o if it falls also on the lasinin{d, ¢, — d, k — {2} zeros,i.e

(s, 2) = max{0,d(¢y) + bz — k 0 < min{d, ¢; — d, k — >}, then the onlye; that moves
15:%) le::“;d( 0, d(br) + 6>~ k} rDe; De; back a(d, k) sequence is either; = e; or ¢;
+max{0, d(fa) + &1 — k}) pi pi. 20+ +2, such that it falls on the of 0“1, and| B(z&e; )NS,| = 2,

« otherwise, the only acceptabjés i, so that| B(z®e;)N

k k
_ Lio<d s tiity2 Si|=1landzde; ¢ S..
m2(s:2) = ZZMZMG; (PesPezpes+oPta—0)” 2 c) Property 2bis: If the errore; in x = 01101 falls
1=d A on the firstmin{d, ¢> — d} zeros of0’21, then
ro(s,z) = Z Z 1o reot1>k « if it falls also on the firstmin{d, ¢ — d,k — ¢1} zeros,
B - Pt 2min{k,£1 +l—d}— (1 +42)+1 then the onlye; that moves: @ e; @ e; back a(d, k)
v s sequence is either; = ¢; or e; such that it falls on the
P 1 of 0“1, and|B(z @ e;) N S,| = 2,
Z Ptr+oPt—0 | = ’ « otherwise, the only acceptabjeis i so that|B(z @ e;) N
0oy, ey S |—1and$@63¢8
with d(¢) = min{d, ¢ — d} . d) Property 3: We still considerz = 0°110%1. If the
In particular, fork < 2d we have the following simplifica- error falls on the "1” of0*1, then the onlye; that moves
tions: x ® e; @ e; back (d, k) sequences are those that either fall
afs, z) = Z(Qd OpsztT, back on the 1, or on thenin{¢s — d, k — ¢,} first zeros of
7 01, or on themin{¢; — d,k — (5} last zeros of)0“*1, and
and then
Bz ®e;)NS.| = 1+min{l; —d,k—lo}
Ti(s,2) = Y 2max{0,6 +lo — k — d}pj,pj, 22, S min{ls —d,k— 6}
Zlaf? = 1+2min{k,f1 +f2—d}—f1—€2.
To(s,7) = Z Z Z pelpb ¥ Do, vope, 9)52z2+e2+€:learly, then we must havg + {2 +1 > k in orderz @ e; ¢
G=dla=d0CTi v Given these four properties we can define the following
quantities
7-3(57 Z) =
zlzdez 2m1n{/€ b+ bs — d} (614 £2) + Zmax{o 2d — f}ps £+1
s ¢
X Z Do, yope,—g | 22T, andr(s, z) = 11(s, 2)+72(s, z) +73(s, z) with the convention
0€lL, 1, that «(s, z) corresponds to Property (s, z) to Property 2

Proof. As in the previous proof, the main idea is to enumeratnd Dis (second bullet)7 (s, z) to Property 2 and Property
all possible ways a sequengdeaves the status @f, k) after 2bis (first bullet), 73(s, z) to Property 3. This completes the
a bit corruption and returns t@d, k) status after a secondproof. |
bit corruption. In other wordsy € S., z @ ¢; ¢ S., and
rDejde; € S.. We often refer to representation (33) in the
proof.

Asymptotic analysis
Finally, we can re-interpret our results for reducgtk)
We consider several cases: sequences of the variable-length model in terms of therwalgi
a) Property 1: Let = be a single super-symbat: = 0°1. (d, k) sequences of the fixed length. Our aim is to provide an
Consider nows & ;. First, supposé < 2d and the errog; asymptotic evaluation of, (1), @ (1), ¢, (1) and@;,(1) as
falls on a zero ofe. If e. falls on a zero betweefi— d and " — °°- To this end, we will present an asymptotic evaluation
. J

d, then of ¢, (s) and Q. (s).
01 @ e; = 00110%1 Using Theorems 7 and 8 we easily conclude
J ’

b1(s,z) + ba(s, 2)

and at least one ofy, ¢, is smaller thani. Therefore;x @ e, $(s,2) = D bmls,2) = A—r2)
is not a(d, k) sequence. The only way can produce &d, k) m ’
sequence is when it is equal t9: |B(z @ e;) N S.| = 1. Qs,2) = 3 Quls,2) = afs,z) +7(s,2)

(1 —r(s,2))?
Then by Cauchy formula applied to (29) and (30)

Assume now > 2d. If ¢; falls at distance greater thalfrom
both ends, then & e; € S, and does not leavé..

b) Property 2: If the errore; falls on a symbob*'1 in
r = 0%10%1, on the lastmin{d, ¢, — d} zeros, then with Pin(s,z) = ]{qs
0 < min{d, {5 — d} 2”

04101 @ ¢; = 070107~ 110%1, PrQn(s, 2)

n+1’

2 ?{Q L



A simple application of the residue analysis leads to In Appendix A we show that

—n—1 s a
Ppon(s) = pTS)Q() ((n+ 1) (b1(s, p(s)) + ba2(s, p(s))) 7 (Z) = O(loge)
0 0 n niformly in Pyx. As a consequendé (Z) converges tad (X)
— (5 0(s)) = @bl(s’p(S)O +0W™), Bn:formlz Iin 15; ase — 0. V\ye also( pZove \i/n the App(endix
—n—1 (g that
Piue) = (et et o)) £l
(s) H(Z) = H(X)+fo(Px e log e+ f1 (Px )e+g(Px)O(e2 log €),

0 0 n
—ga(sap(s)) - &T(Sap(s)o +0(W™")- where the functionsfy, f1 and g of Px are in Cy (all

) ) ) ) ) continuous and infinitely many differentiable functions).
Since functions involved are analytic and uniformly bowhde | Puax(c) be the distribution that maximizesl (Z),

in s in a compact neighborhood, the asymptotic estimates |of - the capacitg'(S, ). Fora > 0 let K, be a compact
’ ’ . . 9 . «
¢, (1) andQ;,(1) can be easily derived. set of distributions that are at topological distance sanahan
In summary, we find or equal toa from Pax, Since H(Z) converges toH (X)
H H ! !
P ) +Q.(1) = —(n+1)p 1) (bn(1)+Qu(l)) + O(n) uniformly, there exists’ > 0 such thatve < &', > 0 we

_ n have PY** € K,.
= —nH(XT) +O0(n), Let now 8 = maxpy cx, {g(Px)}. Clearly, 3 — g(P™)

which cancels the coefficientsH(X7) in the expansion of asa — 0. Let also

H(Z}) in (25). More precisely, F(Px,e) = H(X) + fo(Px)eloge + f1(Px)e,
N(1)

Gn(1)+ Q1) = —nH(X])+nlogh—2°= and
F,(e) = max {F(Px,e)}.
+ (D) + L S
A\ 0s 0s L . .
The following inequality fore < 1 follows from our analysis
0 0 : .
+ &a(l, 1)+ %7(1, 1) in Appendix A
J(1) 0? bi(1,1) + 0? ba(1,1) Fo(e) + petloge < H(P¥*(¢)) < Fo(e) — pe’loge.
0s0z 050z )
9 9 We will prove here that
+ 358za(1’ D+ 858ZT(1’ 1))) Fo(e) = F(PY™ ¢) + O(%log?¢).
/
+ nf’il) (821,1(1,1) + gbz(l,l) Let i
9 “ 9 “ ¥e* = argmax{F(Px,e)}.
+ &O‘(l’ D+ &7(1’ 1)> +O(1)- B4 e haveV F(P2* ¢) = 0, where VF denotes the gradient

. . _ of F with respect toPy. Defining dPx = P2ax — pmax ye
The expression fofy (P™2*) in Theorem 5 follows directly find P X 9adlx X X

from the expression (34) since the coefficientds exactly

nH(X]) + ¢,(1) + Q4 (1) + ¢n(1) and ¢, (1) = 0 when  VF(PP™ ¢) = VF(PP™ ¢)
k < 2d. The proof of Theorem 6 is even easier since FV2R(PR 2)dPy + O(||dPx ||?)
fo(P™*) = @n(1) =1- ¢”(1). where V2F is the second derivative matrix (i.e., Hessian) of
n n F and||v| is the norm of vectow. SinceVF (PP ¢) =0
We have from (34): and VH (Py®) = 0, thus
¢n(1) —n (bl(l, 1) ‘/'\' b2(17 1)) ) VF(P)I(naX,E) — Vf()(P)I?aX)EIOgE 4 Vfl(P)r(naX)E.

Denoting F, = V2F(P¥*) and its inverse matrix agy, ',

Observe thab, (1, 1) exactly matches andb,(1,1) matches we arrive at

¢ in Theorem 6.
~FydPy = Vfo(PE™)eloge + Vfi(PE>)e (35)
+O(||ldPx|?) ,

D. Error Term in Theorem 5

To complete the proof of Theorem 5, we establish here that
the dominating error term of the capacify(.5, <) estimation and
is O(2log?¢). For this we need to show that the maximiz- . ( ,
ing distribution P2*x(c) of H(Z) introduces error of order ~ 4Px —Fy - (Vfo(Px*)eloge +V f1(PX™)e)
O(e?log? ¢). Recall thatP™* maximizesH (X). +O(||dPx|?). (36)



This lead to||dPx|| = O(eloge) for sufficiently smalle such We first concentrate on proving that
that||dPx| < a. Thus P
. ‘ 1 B—H(Z{l) =nf1(Px) +nfo(Px)loge (39)
F(Py™.e) = F(P?dxa5)+§dPX'F2'dPX €
4 V/o(PR)dPyeloge for somefy(Px) and f1(Px ). We use equation (48) from [15]

5 which we reproduce below
+ Vfl(P;(naX)dPX{:‘-FO(Hdpr ), P

1
plugging the expression afPx from (36) yields: &PZ(Z) T 1-2¢ Z (Pz(z@ei) = Pz(2))

Fale) = 1;( X" e) = F(PX™,e) for any sequence of lengthn (hereafter, we simply write:
- 5VfO(P;}W) CEy 1V fo(PRaX)e?log? e for 27 andz for z7'). Consequently,

— Vo(PR™)- Byt VA(PR™)e loge e Py(2@¢i)— Py (2))log P
1 max ’ —1 max\ .2 e ( 1) 1_2&-;2( Z<Z@ez> Z(Z)) o Z(Z)
- Evfl(PX ) By -V i(PY™)e ’
+ O(log’e).
0 n 1 Pz(z @ e;)
This completes the proof. EH(Zl )= T1-2 YD Pz(2)log Pr(z)

that can be rewritten as

V. _CONCLUSION ) In order to estimate the ratio dPz(z @ e;) and Pz(z), we
We study the _capacny of the constrained BSC_ channel §hserve that
which the input is a(d, k) sequence. After observing that a drt (%)
ol 1 E 9
(d, k) sequence can be genera}ted _b}y arder Markov chain, Py(z) = (1—&)" ZPX () ( ) ’
we reduce the problem to estimating the entropy rate of the " 1—e¢
underlying hidden Markov process (HMM). In our previous . . )
paper [14], [15], we established that the entropy rate for'§'€réds (;z,z) is the Hamming distance betweenand ».
HMM process is equal to a Lyapunov exponent. After realizing'™ilary.
that such an exponent is hard to compute, theoretically and c
numerically, we obtained an asymptotic expansion of the Pz(z ®e;) = (1 — 6)"ZPX () (
. 1—¢

entropy rate when the error rateis small (cf. also [27]). z

In this paper, we extend previous results in several direthe following inequality is easy to prove
tions. First, we present asymptotic expansion of the HMM drr (2, 2®es) —dns (.2)
( 3 ) HAEERE) AR < Pz(z®e;)

)dy(m,zeaei)

when some of the transition probabilities of the underlying

Markov are zero. This adds additional term of ordésg e to R - Py (2)
the asymptotic expansion. Then, we return to the noisy con- dit (2ro®es)—di (2,7)
strained capacity and prove that the exact capacity iselat < max ( € ) .

to supremum of Lyapunov exponents over increasing order T 1-¢

Markov processes. Finally, fdi, k) sequences we obtain anSincedH(:v 2@ e;) = d(z, 2) £ 1 we conclude that
asymptotic expansion for the noisy capacity when the noise ’ ‘ ’

e — 0. In particular, we prove that fok < 2d the noisy € < Pz(2 @ ei) < l—¢

capacity is equal to the noiseless capacity plus a te(n). In 1l—e~ Pzz) — e °

the casek > 2d, the correction term i© (e log ). We should
point out that recently Han and Marcus [9], [10] reached
similar conclusions (and obtained some generalizatiosisigu
quite different methodology.

< —nlog(l —e) —nloge

Pz(z®e;)
XZ: zl: Pz(z)log 20N

APPENDIXA: PROOF OFTHEOREM 3 and this completes the proof of (37).
In this Appendix we prove the error term in (18) in To finish the proof of Theorem 3, it remains to show that
Theorem 3 using the methodology developed by us in [18hatG,, = O(ne?loge), that is, uniformly inn ande > 0

We need to prove that for < 1/2 9

—H(Z}) + O(ne*loge). (40

H(Z}) = H(X])+nf1(Px)e+nfo(Px)eloge+0(ne? loge) Oe (Z1) + O(ne”loge) (40)
(37)  To this end, we make use of the Taylor expansion:

H(Z{') = H(XT) —¢

for somef;(Px) and fo(Px). We start with

n . ny _ 2 n
%H(Z?)#—Gn (38) H(Z) = H(XY) 58€H(Z1)

H(Z) = H(XY) - - g
and show at the end of this section tifat = O(ne? loge). _/0 H@H(ZILHEZOCM’



and prove that for small enough we have uniformly im and
e>0
32

Oe2
from which the error ternO(ne?loge) follows immediately.
In [15] we proved that for all sequences

0? 2 90 1
52 = T TR

X (Pz(z®e; ®ej) — Pz(2®e;)) —Pz(2®ej) + Pz(2)),
which led to equation (49) of [15] repeated below

—H(Z) = O(nloge), (42)

8—ZH(Z") = —LQH(Z") — ————(Dy + D5)
92 Y T T e ge VY T (T —2e)2 TR
where
D, ZZPZ(ZGBQ@&J—)—PZ(Z@Q)
z  1,]
—Pz(z® e;) + Pz(2)log Pz(2),
and

> Z(PZ(Z @ €i)) — Pz(2))

1
X(Pz(z®ej)) — PZ(Z))Pz(Z) .
We will prove thatD; = O(nloge) and Dy = O(n).

Let first deal withD;. We can write it as

ZZPZ PZ (z®@e; Dej)Pz(z)

PZ (z®e;)P(zDey)
We now split D; = Dj + DY where D] involves the pairs
(i,7) such thatji — j| < k+ 1 and D deals with such pairs
that j —i| > k + 1. For all z and all7 and j such that
li —j] < k+1, we have
g2 Pz(z®e;®ej)Pz(2)  (1—¢)?
(1—¢)2  Pz(z®e)Pz(zd¢j) ez
Therefore,
AESDEDY
z |j—il<k+1
< (k+1)n(—2log(1l —¢€)

(42)

Pz(2)(—2log(1 —e) — 2loge)

—loge).

For|j —i| > k+ 1, we observe, as in [15], that there eX|st%

1 < 1 such that for allz
Pz(z @ e; @ e;)Pz(2) _

= 140 [0) O(uli—i
Pz(z®e;)Pz(2 ®ej) +O0(u") + O(?) + Ol

+O(u" ") + O(u"™).

Thus we find

DY = > 2

z o |j—il>k+1
+O(uT=) + O(u" ) + O(u" ™))

ZPZ O(n/(1 = p)) = O(n).

Pz(2)log (1+0(p") + O(1)

Now we turn our attention tdD,, and similarly we split
Dy = D)+ DY with DY, involving only 7, j such thati — j| <
k + 1 and Dy involving i,j such thatli — j| > k + 1. We
easily see thatD5| < n(k + 1), and then

2. > Pald)

z li—j|>k
Pz(z®ej) + Pz(z @ e ®ej)

Pz(z® e;)Pz(z @ €j)
(PZ(Z @ e ®ej)Pz(2) P Pele@e®ee)

We now notice that
> Z Py(z

Restrlctlng this sum t¢ — j| > k+ 1 we observe that it gives
the opposite of the sum faé — j| < & + 1. Therefore, the
total contribution isO((k + 1)n. Furthermore,

_ 1>

Pz(z®e;)Pz(z @ ej)
zz: li— jz>k+1 <PZ(2 Dei®e;)Pz(z)

SDIARE

and this completes the proof of Theorem 3.

Dy — Pz(z®e;)

—Pz(z®e;)—Pz(2®ej)+ Pz (2Pe;dej) = 0.

XPz(z @ e; @ ej)

APPENDIX B: PROOF OF(27)

Our aim is to show thap, that maximize the sequence
entropy rate is given by (27).
Recall that the entropy rate is equalq1) with

Sk pelog pe
Sia(l+ 1pe

If we extend abovey, such thath,zfl pe # 1, then we need
to modify it to

(Z’Z:dm) log (Zf dm) Pyl apelospe

Si—a(f + D)pe

The optimal distribution(pg, ..., px) is the one maximizing
the gradient ofp’(1) which implies that the gradient of the
denominator is collinear with the gradient of the numerator
Thus there existg such that:

k k k k
(Z pe) log (Z pe) ~VY pelogpe =vV Y (+1)ps
{=d {=d

l=d l=d

P =-

P =

All computations done, this implies that for albetweend

andk i
log (Zpi> —logpe = (L+ 1)v.
i=d

For p; such thatZ’;:d pe = 1, the above identity becomes for
ald<(<k
logpe = —(£ + 1)v,

hencep, = (e‘”l)fJrl

unique root ofy >,

. Settingpg = e~ ¥ with py being the
p'T1 =1, we establish (27).
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