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Abstract— We study the classical problem of noisy constrained
capacity in the case of the binary symmetric channel (BSC),
namely, the capacity of a BSC whose input is a sequence from
a constrained set. As stated in [4] “. . . while calculation of the
noise-free capacity of constrained sequences is well known, the
computation of the capacity of a constraint in the presence of
noise . . . has been an unsolved problem in the half-century since
Shannon’s landmark paper . . ..” We first express the constrained
capacity of a binary symmetric channel with (d, k)-constrained
input as a limit of the top Lyapunov exponents of certain matrix
random processes. Then, we compute asymptotic approximations
of the noisy constrained capacity for cases where the noise
parameter ε is small. In particular, we show that when k≤2d,
the error term (excess of capacity beyond the noise-free capacity)
is O(ε), whereas it is O(ε log ε) when k > 2d. In both cases,
we compute the coefficient of the error term. In the course of
establishing these findings, we also extend our previous results
on the entropy of a hidden Markov process to higher-order
finite memory processes. These conclusions are proved by a
combination of analytic and combinatorial methods.

I. I NTRODUCTION

We consider a binary symmetric channel (BSC) with
crossover probabilityε, and a constrained set of inputs. More
precisely, letSn denote the set of binary sequences of lengthn
satisfying a given(d, k)-RLL constraint [18], i.e., no sequence
in Sn contains a run of zeros of length shorter thand or
longer thank (we assume that the valuesd and k, d ≤ k,
are understood from the context). We writeXn

1 ∈ Sn for
Xn

1 = X1 . . . Xn. Furthermore, we denoteS =
⋃

n>0 Sn.
We assume that the input to the channel is a stationary
processX = {Xk}k≥1 supported onS. We regard the BSC
channel as emitting a Bernoulli noise sequenceE = {Ek}k≥1,
independent ofX , with P (Ei = 1) = ε. The channel output
is

Zi = Xi ⊕ Ei.

where⊕ denotes addition modulo2 (exclusive-or).
For ease of notation, we identify the BSC channel with its

parameterε. Let C(ε) denote conventional BSC channel ca-
pacity (over unconstrained binary sequences), namely,C(ε) =
1−H(ε), whereH(ε) = −ε log ε−(1−ε) log(1−ε). We use
natural logarithms throughout. Entropies are correspondingly
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measured in nats. The entropy of a random variable or process
X will be denotedH(Xn

1 ), and the entropy rate byH(X).
The noisy constrained capacityC(S, ε) is defined [4] by

C(S, ε) = sup
X∈S

I(X ; Z) = lim
n→∞

1

n
sup

Xn
1 ∈Sn

I(Xn
1 , Zn

1 ) , (1)

whereI(X ; Z) is the mutual information and the supreme are
over all stationary processes supported onS andSn, respec-
tively. The noiseless capacityof the constraint isC(S) ∆=
C(S, 0). This quantity has been extensively studied, and
several interpretations and methods for its explicit derivation
are known (see, e.g., [18] and extensive bibliography therein).
As for C(S, ε), the best results in the literature have been
in the form of bounds and numerical simulations based on
producing random (and, hopefully, typical) channel outputse-
quences (see, e.g., [26], [23], [1] and references therein). These
methods allow for fairly precise numerical approximationsof
the capacity for given constraints and channel parameters.

Our approach to the noisy constrained capacityC(S, ε) is
different. We first consider the corresponding mutual informa-
tion,

I(X ; Z) = H(Z) − H(Z|X). (2)

SinceH(Z|X) = H(ε), the problem reduces to findingH(Z),
the entropy rate of the output process. If we restrict our
attention to constrained processesX that are generated by
Markov sources, the output processZ can be regarded as a
hidden Markov process(HMP), and the problem of computing
I(X ; Z) reduces to that of computing the entropy rate of this
HMP. The noisy constrained capacity follows provided we find
the maximizing distributionPmax of X .

It is well known (see, e.g., [18]) that we can regard the
(d, k) constraint as the output of akth-order finite memory
(Markov) stationary process, uniquely defined by conditional
probabilitiesP (xt|xt−1

t−k), where for any sequence{xi}i≥1,
we denote byxj

i , j≥i, the sub-sequencexi, xi+1, . . . , xj . For
nontrivial constraints, some of these conditional probabilities
must be set to zero in order to enforce the constraint (for
example, the probability of a zero after seeingk consecutive
zeros, or of a one after seeing less thand consecutive zeros).
When the remaining free probabilities are assigned so that the
entropy of the process is maximized, we say that the process
is maxentropic, and we denote the maximizing distribution by



Pmax. The noiseless capacityC(S) is equal to the entropy of
Pmax [18].

The Shannon entropy (or, simply,entropy) of a HMP was
studied as early as [2], where the analysis suggests the intrinsic
complexity of the HMP entropy as a function of the process
parameters. Blackwell [2] showed an expression of the entropy
in terms of a measureQ, obtained by solving an integral
equation dependent on the parameters of the process. The mea-
sure is hard to extract from the equation in any explicit way.
Recently, we have seen a resurgence of interest in estimating
HMP entropies [7], [8], [14], [19], [20], [27]. In particular, one
recent approach is based on computing the coefficients of an
asymptotic expansion of the entropy rate around certain values
of the Markov and channel parameters. The first result along
these lines was presented in [14], where the Taylor expansion
aroundε = 0 is studied for a binary HMP of order one. In
particular, the first derivative of the entropy rate atε = 0 is
expressed very compactly as a Kullback-Liebler divergence
between two distributions on binary triplets, derived fromthe
marginals of the input processX . It is also shown in [14],
[15] that the entropy rate of a HMP can be expressed in terms
of the top Lyapunov exponent of a random process of2×2
matrices (cf. also [11], where the capacity of certain channels
with memory is also shown to be related to top Lyapunov
exponents). Further improvements, and new methods for the
asymptotic expansion approach were obtained in [19], [27],
and [8]. In [20] the authors express the entropy rate for a binary
HMP where one of the transition probabilities is equal to zero
as an asymptotic expansion including aO(ε log ε) term. As
we shall see in the sequel, this case is related to the(1,∞)
(or the equivalent(0, 1)) RLL constraint. Analyticity of the
entropy as a function ofε was studied in [7].

In Section II of this paper we extend the results of [14],
[15] on HMP entropy to higher order Markov processes. We
show that the entropy of arth-order HMP can be expressed as
the top Lyapunov exponent of a random process of matrices
of dimensions2r × 2r (cf. Theorem 1). As an additional
result of this work, of interest on its own, we derive the
asymptotic expansion of the HMP entropy rate aroundε = 0
for the case where all transition probabilities are positive (cf.
Theorem 2). In particular, we derive an expression for the
first derivative of the entropy rate as the Kullback-Liebler
divergence between two distributions on2r+1-tuples, again
generalizing the formula forr=1 [14].The results of Section II
are applied, in Section III, to express the noisy constrained
capacity as a limit of top Lyapunov exponents of certain
matrix processes. These exponents, however, are notoriously
difficult to compute [25]. Hence, as in the case of the entropy
of HMPs, it is interesting to study asymptotic expansions of
the noisy constrained capacity. In Section III-B, we study
the asymptotics of the noisy constrained capacity, and we
show that for (d, k) constraints withk ≤ 2d, we have
C(S, ε) = C(S) + K ε + O(ε2 log ε), where K is a well
characterized constant. On the other hand, whenk > 2d, we
haveC(S, ε) = C(S)+L ε log ε+O(ε), where, again,L is an
explicit constant. The latter case covers the(0, 1) constraint

(and also the equivalent(1,∞) constraint). Our formula for
the constantL in this case is consistent with the one derived
from the results of [20]. Preliminary results of this paper were
presented in [16].

We also remark that recently Han and Marcus [9], [10]
reached similar conclusions and obtained some generalizations
using different methodology.

II. ENTROPY OFHIGHER ORDER HMPS

Let X = {Xi}i≥1 be anrth-order stationaryfinite memory
(Markov) processover a binary alphabetA={0, 1}. The
process is defined by the set of conditional probabilities
P (Xt = 1|Xt−1

t−r = ar
1), ar

1 ∈ Ar. The process is equivalently
interpreted as the Markov chain of itsstatesst = Xt−1

t−r ,
t > 0 (we assumeX0

−r+1 is defined and distributed according
to the stationary distribution of the process).1 Clearly, a
transition from a stateu∈Ar to a statev∈Ar can have positive
probability only if u and v satisfy ur

2=vr−1
1 , in which case

we say that(u, v) is an overlappingpair. Thenoise process
E = {Ei}i≥1 is Bernoulli (binary i.i.d.), independent ofX ,
with P (Ei=1) = ε. Finally, the HMP is

Z={Zi}i≥1, Zi = Xi⊕Ei, i ≥ 1 . (3)

Let Z̃i = (Zi, Zi+1, . . . , Zi+r−1) and Ẽi =
(Ei, . . . , Ei+r−1). Also, for e∈{0, 1}, let Ẽe

i =
(e, Ei, . . . , Ei+r−1). We next compute2 the probability
of Z̃n

1 := Zn+r−1
1 . From the definitions ofX andE, we have

P (Z̃n
1 , Ẽn) =

∑

e∈A

P (Z̃n
1 , Ẽn, En−1 = e) (4)

=
∑

e∈A

P (Z̃n−1
1 , Zn+r−1, En−1 = e, Ẽn)

=
∑

e∈A

P (Zn+r−1, En+r−1|Z̃n−1
1 , Ẽe

n−1)P (Z̃n−1
1 , Ẽe

n−1)

=
∑

e∈A

P (En+r−1)PX(Z̃n⊕Ẽn|Z̃n−1⊕Ẽe
n−1)P (Z̃n−1

1 , Ẽe
n−1).

Observe that in the last line the transition probabilitiesPX(·|·)
are with respect to the original Markov chain.

We next derive, from (4) , an expression forP (Z̃n
1 ) as a

product of matrices extending our earlier work [14], [15]. In
what follows, vectors are of dimension2r or r, and matrices
are of dimensions2r × 2r. We denoterow vectors by bold
lowercase letters, matrices by bold uppercase letters, andwe
let 1 = [1, . . . , 1]; superscriptt denotes transposition. Entries
in vectors and matrices are indexed by vectors inAr. Let for
ai ∈ Ar

pn = [P (Z̃n
1 , Ẽn=a1), P (Z̃n

1 , Ẽn=a2) . . . P (Z̃n
1 , Ẽn=a2r )]

be a vector of dimension2r, and letM(Z̃n|Z̃n−1) be a2r×2r

matrix defined as follows: if(en−1, en) ∈ Ar × Ar is an

1We generally use the term “finite memory process” for the firstinterpre-
tation, and “Markov chain” for the second.

2In general, the measures governing probability expressions will be clear
from the context. In cases when confusion is possible, we will explicitly
indicate the measure, e.g.,PX .



overlapping pair, then the entry(en−1, en) of M(Z̃n|Z̃n−1)
is

Men−1,en
(Z̃n|Z̃n−1) = PX(Z̃n⊕en|Z̃n−1⊕en−1)P (Ẽn=en).

(5)
All other entries are zero. Clearly,M(Z̃n|Z̃n−1) is a random
matrix, drawn from a set of2r+1 possible realizations.

With these definitions, it follows from (4) that

pn = pn−1M(Z̃n|Z̃n−1). (6)

Since P (Z̃n
1 ) = pn1t =

∑
e∈Ar P (Z̃n

1 , Ẽn = e), after
iterating (6), we obtain

P (Z̃n
1 ) = p1M(Z̃2|Z̃1) · · ·M(Z̃n|Z̃n−1)1

t. (7)

The joint distributionP (Zn
1 ) of the HMP, presented in (7),

has the formp1An1t, whereAn is the product of the first
n−1 random matrices of the process

M = M(Z̃2|Z̃1),M(Z̃3|Z̃2), . . . ,M(Z̃n|Z̃n−1), . . . (8)

Applying a subadditive ergodic theorem, and noting that
p1An1t is a matrix norm ofAn (indeed, bothp1 and 1t

are positive andA is nonnegative, hencep1An1t satisfies the
conditions for a matrix norm, as already observed in [11]) is
readily proved thatn−1E[− logPZ(Zn

1 )] must converge to a
constantξ known as thetop Lyapunov exponentof the random
processM (cf. [5], [21], [25]). This leads to the following
theorem.

Theorem 1:The entropy rate of the HMPZ of (3) satisfies

H(Z) = lim
n→∞

E

[
− 1

n
log PZ(Zn+r

1 )

]

= lim
n→∞

1

n
E
[
− log

(
p1M(Z̃2|Z̃1)· · ·M(Z̃n|Z̃n−1)1

t
)]

= ξ,

whereξ is the top Lyapunov exponent of the processM of (8).

Theorem 1 and its derivation generalize the results, forr = 1,
of [14], [15], [27], [28]. It is known that computing top
Lyapunov exponents is hard (maybe infeasible), as shown
in [25]. Therefore, we shift our attention to asymptotic ap-
proximations.

We consider the entropy rateH(Z) for the HMP Z as a
function of ε for small ε. In order to derive expressions for
the entropy rate, we resort to the following formal defini-
tion (which was also used in entropy computations in [13]
and [15]):

Rn(s, ε) =
∑

zn
1 ∈An

P s
Z(zn

1 ), (9)

wheres is a real (or complex) variable, and the summation is
over all binaryn-tuples. In the sequel, we writePZ(zn

1 ) for
P (zn

1 ) to distinguish it fromPX(zn
1 ). It is readily verified that

H(Zn
1 ) = E [− logPZ(Zn

1 )] = − ∂

∂s
Rn(s, ε)

∣∣∣∣
s=1

. (10)

The entropy of the underlying Markov sequence is

H(Xn
1 )= − ∂

∂s
Rn(s, 0)

∣∣∣∣
s=1

.

Furthermore, letP = [pei,ej
]ei,ej∈Ar be the transition matrix

of the underlyingrth order Markov chain, and letπ =
[πe]e∈Ar be the corresponding stationary distribution . Define
alsoP(s) = [ps

ei,ej
]ei,ej∈Ar andπ(s) = [πs

e
]e∈Ar . Then

Rn(s, 0) =
∑

zn

P s
X(zn

1 ) = π(s)P(s)n−11t (11)

which is entirely defined on the underlying Markov process
X .

Using a formal Taylor expansion nearε = 0, we write

Rn(s, ε) = Rn(s, 0) + ε
∂

∂ε
Rn(s, ε)

∣∣∣∣
ε=0

+ O(g(n)ε2), (12)

whereg(n) is the second derivative ofRn(s, ε) with respect
to ε, computed at someε′, provided these derivatives exist (the
dependence onn stems from (9)).

Using analyticity atε = 0 (cf. [7], [15]), we find

H(Zn
1 ) = H(Xn

1 ) − ε
∂2

∂s∂ε
Rn(s, ε)

∣∣∣∣
ε=0,
s=1

+ O(g(n)ε2)

= H(Xn
1 ) − ε

∂

∂s

∂

∂ε

∑

zn
1

P s
Z(zn

1 )

∣∣∣∣
ε=0,
s=1

+ O(g(n)ε2). (13)

To compute the linear term in the Taylor expansion (13),
we differentiate with respect tos, and evaluate ats = 1.
Proceeding in analogy to the derivation in [14], we obtain the
following result basically proved in [15], so we omit details
here.

Theorem 2:If the conditional symbol probabilities in the
finite memory (Markov) processX satisfy

P (ar+1|ar
1) > 0

for all ar+1
1 ∈Ar+1, then the entropy rate ofZ for small ε is

H(Z) = lim
n→∞

1

n
Hn(Zn) = H(X)+f1(PX)ε+O(ε2), (14)

where, denoting bȳzi the Boolean complement ofzi, and
ž2r+1=z1 . . . zrz̄r+1zr+2 . . . z2r+1, we have

f1(PX) =
∑

z2r+1
1

PX(z2r+1
1 ) log

PX(z2r+1
1 )

PX(ž2r+1
1 )

= D
(
PX(z2r+1

1 )||PX(ž2r+1
1 )

)
. (15)

Here,D(·||·) is the Kullback-Liebler divergence, applied here
to distributions onA2r+1 derived from the marginals ofX .

A question arises about the asymptotic expansion of the
entropyH(Z) when some of the conditional probabilities are
zero. Clearly, when some transition probabilities are zero, then
certain sequencesxn

1 are not reachable by the Markov process,
which provides the link to constrained sequences.

Example 1. Consider a Markov chain with the following
transition probabilities

P =

[
1 − p p

1 0

]
(16)



where0 ≤ p ≤ 1. This process generates sequences satisfying
the (1,∞) constraint (or, under a different interpretation of
rows and columns, the equivalent(0, 1) constraint). The output
sequenceZ, however, will generally not satisfy the constraint.
The probability of the constraint-violating sequences at the
output of the channel is a polynomial inε, which will generally
contribute a termO(ε log ε) to the entropy rateH(Z) whenε
is small. This was already observed in [20] for the transition
matrix P as in (16), where it was shown that

H(Z) = H(X) − p(2 − p)

1 + p
ε log ε + O(ε) (17)

asε → 0.

In this paper, in Section IV and Appendix A we prove the
following generalization of Theorem 2 for(d, k) sequences.

Theorem 3:Let Z be a HMM. Then, in general

H(Z) = H(X) − f0(PX)ε log ε + f1(PX)ε + O(ε2 log ε)
(18)

for somef0(PX) andf1(PX).

Observe that if all transition probabilities ofX are positive,
thenf0(PX) = 0 and the coefficientf1(PX) at ε is presented
in Theorem 2. The coefficientf0(PX) is derived in Section IV
for HMM representing a(d, k) sequences, and for the maxi-
mizing distribution is presented in Theorems 5 and 6.

We should point out, that recently Han and Marcus [9]
showed that in general for any HMM

H(Z) = H(X) − f0(PX)ε log ε + O(ε)

which is further generalized in [10] to

H(Z) = H(X) − f0(PX)ε log ε + f1(P )ε + O(ε2 log ε)

when at least one of the transition probabilities in the Markov
chain is zero.

III. C APACITY OF THE NOISY CONSTRAINED SYSTEM

We now apply the results on HMPs to the problem of noisy
constrained capacity.

A. Capacity as a Lyapunov Exponent

Recall thatI(X ; Z) = H(Z) − H(ε) and, by Theorem 1,
when X is a Markov process, we haveH(Z) = ξ(PX)
where ξ(PX) is the top Lyapunov exponent of the process
{M(Z̃i|Z̃i−1)}i>0. In [3] it is proved that the process optimiz-
ing the mutual information can be approached by a sequence
of Markov representations of increasing order. Therefore,as
a direct consequence of this fact and Theorem 1 we conclude
the following.

Theorem 4:The noisy constrained capacityC(S, ε) for a
(d, k) constraint through a BSC channel of parameterε is
given by

C(S, ε) = lim
r→∞

sup
P

(r)
X

ξ(P
(r)
X ) − H(ε) (19)

whereP
(r)
X denotes the probability law of anrth-order Markov

process generating the(d, k) constraintS.

Clearly, estimating the top Lyapunov exponents in (19) is
computationally prohibitively expensive, if possible. There-
fore, we next turn our attention to asymptotic expansions of
C(S, ε) nearε = 0.

B. Asymptotic Behavior

A nontrivial constraint will necessarily have some zero-
valued conditional probabilities. Therefore, the associated
HMP will not be covered by Theorem 2, but rather by
Theorem 3. For(d, k) sequences we have

H(Z) = H(X) − f0(PX)ε log ε + f1(PX)ε + O(ε2 log ε)
(20)

for somef0(PX) and f1(PX) where PX is the underlying
Markov process. SinceH(ε) = −ε log ε+ε−O(ε2) for small
ε, we obtain

C(S, ε) = sup
X∈S

H(Z) − ε log ε + ε − O(ε2).

We need to find the maximizing distribution to estimate the
capacity. We shall prove in Section IV.D that this maximizing
distribution is actually the maxentropic distributionPmax

(maximizing the entropy of the underlying Markov process).
However, this introduces additional error termO(ε2 log2 ε)
which exceeds the error termO(ε2 log ε) of the entropy
estimation in Theorem 3 The same result was established by
Han and Marcus [9], [10] using different methodology. In
summary, we are led to

C(S, ε) = C(S)−(1 − f0(P
max
X ))ε log ε+(f1(P

max
X ) − 1)ε

+ O(ε2 log2 ε) (21)

whereC(S) is the capacity of noiseless RLL system. Various
methods exist to deriveC(S) [18]. In particular, one can
write [18], [24] C(S) = − log ρ0, whereρ0 is the smallest
real root of

k∑

ℓ=d

ρℓ+1
0 = 1. (22)

Our goal is to derive explicit expressions forf0(P
max
X ) and

f1(P
max
X ) for (d, k) sequences. For example, we will show

in Theorem 5 below that for some RLL constraints, we have
f0(P

max
X ) = 1 in (21), hence the noisy constrained capacity

is of the formC(S, ε) = C(S) + O(ε) . In Theorem 6 below
we derive alsof1(P

max
X ).

We apply the same approach as in previous section, that is,
we use the auxiliary functionRn(s, ε) defined in (9). To start,
we find a simpler expression forPZ(zn

1 ). Summing over the
number of errors introduced by the channel, we find

PZ(zn
1 ) = PX(xn

1 )(1 − ε)n + ε(1 − ε)n−1
n∑

i=1

PX(xn
1 ⊕ ei)

plus the error termO(ε2) (resulting from two or more errors),
whereej = (0, . . . , 0, 1, 0, . . . , 0) ∈ An with a 1 at position
j. Let Bn ⊆ An denote the set of sequencezn

1 at Hamming
distance one fromSn, andCn = An \ (Sn ∪Bn). Notice that



sequences inCn are at distance at least two fromSn, and
contribute theO(ε2) term. From the above, we conclude

Rn(s, ε) =
∑

zn
1 An

PZ(zn
1 )s (23)

=
∑

zn
1 ∈Sn

PZ(zn
1 )s +

∑

zn
1 ∈Bn

PZ(zn
1 )s +

∑

zn
1 ∈Cn

PZ(zn
1 )s.

We observe that
∑

zn
1 ∈Bn

PZ(zn
1 )s = O(εs),

∑

zn
1 ∈Cn

PZ(zn
1 )s = O(ε2s)

asε → 0. Defining

φn(s) =
∑

zn
1 ∈Sn

PX(zn
1 )s−1

n∑

i=1

PX(zn
1 )

Qn(s) =
∑

zn
1 ∈Bn

(
n∑

i=1

PX(zn
1 ⊕ ei)

)s

we arrive, after some algebra, at the following expression for
Rn(s, ε)

Rn(s, ε) = (1 − ε)nsRn(s, 0) + ε(1 − ε)ns−1φn(s) (24)

+ εs(1 − ε)(n−1)sQn(s) + O(ε2 + ε1+s + ε2s).

Notice that

φn(1) + Qn(1) =
∑

zn
1

n∑

i=1

PX(zn
1 ⊕ ei) = n.

We now derive

H(Zn
1 ) = − ∂

∂s
Rn(1, ε)

using the fact thatRn(1, ε) = 1. Since all the functions
involved are analytic, we obtain from (24)

H(Zn
1 ) = H(Xn

1 )(1 − nε) + nε − ε(φn(1) + φ′
n(1))

− ε log εQn(1) − εQ′
n(1) + O(nε2 log ε), (25)

where the error term is derived in Appendix A. In the above,
φ′

n(1) andQ′
n(1) are, respectively, the derivative ofφn(s) and

Qn(s) at s = 1. Notice also that the termnH(Xn
1 )ε of order

n2ε is cancelled by(φ′
n(1)+ Q′

n(1))ε = (H(Xn
1 )n + O(n))ε

and onlynε term remains (see the next section for details).
The casek ≤ 2d is interesting: one-bit flip in a(d, k)

sequence is guaranteed to violate the constraint, and conse-
quently ∀zn

1 ∈ Sn and ∀i: PX(zn
1 ⊕ ei) = 0. Therefore

φn(s) = 0 in this case, leavingQn(1) = n. Thus, in the
casek ≤ 2d, we havef0(P ) = 1, and the termO(ε log ε)
in (21) cancels out.

Further considerations are required to computeQ′
n(1) and

obtain the coefficient ofε in (25) . Here, we provide the
necessary definitions, and state our result that are proved
in Section IV. Ignoring border effects (which do not affect

asymptotics, as easy to see3), we restrict our analysis to(d, k)
sequences over theextendedalphabet (ofphrases) [18]

B = { 0d1, 0d+11, . . . , 0k1 }.
In other words, we consider only(d, k) sequences that end
with a ”1”. For such sequences, we assume that they are
generated by a memoryless process over the super-alphabet.
This is further discussed in Section IV.

Let pℓ denote the probability of the super-symbol0ℓ1.
We stress the fact thatpℓ differs from the probability that
ℓ + 1 consecutive symbols equals0ℓ1. In fact it is equal to
the probability that two consecutive returns to symbol1 are
separated by exactlyℓ zeros. Therefore

pℓ = PX(X i+ℓ+1
i+1 = 0ℓ1|Xi = 1), i > 1, d ≤ ℓ ≤ k .

(26)
In Appendix B we prove that the maxentropic distribution
Pmax corresponds to the case

pℓ = ρℓ+1
0 , (27)

with ρ0 as in (22).

Example 2. Consider again the Markov process discussed in
Example 1 with the transition matrix (16). This represents
(1,∞) constraint system. Observe that

pℓ = PX(0ℓ1|1) = P (0|1)P ℓ−1(0|0)P (1|0) = p(1 − p)ℓ−1.

The maximum entropy distribution is achieved forp = 1/ϕ2

whereϕ = (1 +
√

5)/2.; alsoρ0 = 1/ϕ. In this casep = ρ2
0

and1 − p = ρ0, thuspℓ = ρℓ+1
0 .

The expected length of a super-symbol inB is λ =∑k
ℓ=d(ℓ + 1)pℓ. We also introduce the generating function

r(s, z) =
∑

ℓ

ps
ℓz

ℓ+1.

By ρ(s) we denote the smallest root inz of r(s, z) = 1, that
is r(s, ρ(s)) = 1. Clearly,ρ(1) = 1 and

ρ′(1) = −
∑

ℓ pℓ log pℓ

λ

is the entropy rateper bit of the super-alphabet, andρ′(1) =
H(X). Furthermore, we define

λ(s) =
∂

∂z
r(s, z)

∣∣
z=ρ(s)

and notice thatλ(1) = λ.
Finally, to present succinctly our results, we introduce some

additional notation. Let

α(s, z) =
∑

ℓ

(2d − ℓ)ps
ℓz

ℓ+1.

For integersℓ1, ℓ2, d ≤ ℓ1, ℓ2 ≤ k, letIℓ1,ℓ2 denote the interval

Iℓ1,ℓ2 =

{ℓ:−min+{ℓ1−d, k − ℓ2−1} ≤ ℓ ≤ min+{ℓ2−d, k−ℓ1−1}} ,

3Indeed, in general a(d, k) sequence may have at mostk starting and
ending zeros of total lengthn + O(1) that cannot affect the entropy rate.



where min+{a, b} = max{min{a, b}, 0}. We shall write
I∗

ℓ1,ℓ2
= Iℓ1,ℓ2 \ {0}. At last, we defineτ(s, z) = τ1(s, z) +

τ2(s, z) + τ3(s, z) where

τ1(s, z) =
∑

d≤ℓ1,ℓ2≤k

2 max{0, ℓ1 + ℓ2 − k − d}ps
ℓ1p

s
ℓ2z

ℓ2+ℓ2+2

τ2(s, z) =

k∑

ℓ1=d

k∑

ℓ2=d

∑

θ∈I∗

ℓ1,ℓ2

1

2
(pℓ1pℓ2 + pℓ1+θpℓ2−θ)

szℓ2+ℓ2+2

τ3(s, z) =

k∑

ℓ1=d

k∑

ℓ2=d

1

2 min{k, ℓ1 + ℓ2 − d} − (ℓ1 + ℓ2) + 1

×




∑

θ∈Iℓ1,ℓ2

pℓ1+θpℓ2−θ




s

zℓ2+ℓ2+2

Now we are in a position to present our main results. The
proofs are delayed till the next section. The following theorem
summarizes our findings for the casek ≤ 2d.

Theorem 5:Consider a(d, k) constrained system withk ≤
2d. Then,

C(S, ε) = C(S) − (1 − f0(P
max
X ))ε + O(ε2 log2 ε),

where forpℓ = ρℓ+1
0

f0(P
max
X ) = log λ + 2

λ′(1)

λ
+

∂
∂sτ(1, 1) + ∂

∂sα(1, 1)

λ

+ ρ′(1)(
∂2

∂s∂z
α(1, 1) +

∂2

∂s∂z
τ(1, 1))

+
ρ′(1)

λ
(

∂

∂z
α(1, 1) +

∂

∂z
τ(1, 1)) − 1

for ε → 0 andλ(s), α(s, z) andτ(s, z) are defined above.

In the complementary casek > 2d, the termφn(s) in (23)
does not vanish, and thus theO(ε log ε) term in (21) is
generally nonzero. For this case, using techniques similarto
the ones leading to Theorem 5, we obtain the following result.

Theorem 6:Consider the constrained(d, k) system with
k ≥ 2d. Define

γ =
∑

ℓ>2d

(ℓ − 2d)pℓ , δ =
∑

d≤ℓ1+ℓ2+1≤k

pℓ1pℓ2 ,

andλ =
∑k

ℓ=d = (ℓ + 1)pℓ. Then forpℓ = ρℓ+1
0

C(S, ε) = C(S) − (1 − f0(P
max
X )) ε log ε−1 + O(ε) , (28)

where

f0(P
max
X ) = 1 − γ + δ

λ

for ε → 0.

Example 3.We consider the(1,∞) constraint with transition
matrix P as in (16) . Computing the quantities called for in
Theorem 6 ford = 1 andk = ∞, we obtainpℓ = (1−p)ℓ−1p
as in Example 2, and

λ =
1 + p

p
, γ =

(1 − p)2

p
,

andδ = 1. Thus,

f0(PX) = 1 − γ + δ

λ
=

p(p − 2)

p − 1
,

consistent with the calculation of the same quantity in [20].
The noisy constrained capacity is obtained whenP = Pmax,
i.e.,p = 1/ϕ2, whereϕ = (1+

√
5)/2, the golden ratio. Then,

f0(P
max) = 1/

√
5, and by Theorem 6

C(S, ε) = log ϕ − (1 − 1/
√

5)ε log(1/ε) + O(ε)

for ε → 0.

IV. A NALYSIS

In this section, we derive explicit expression for the coeffi-
cientsf0(PX) andf1(PX) of Theorem 3, as well asf0(P

max)
andf1(P

max) of Theorems 5 and 6. We also establish the error
term in Theorem 5.

Throughout, we consider the super-alphabet approach. Re-
call that a super-symbol is a text0ℓ1 for d ≤ ℓ ≤ k which is
drawn from a memoryless source. This model is equivalent to
a Markov process with renewals at symbols ”1”. To simplify
the analysis, we first consider sequences of lengthn consisting
only of (full) super symbols. We call such sequence areduced
(d, k) sequence of lengthn.

Let xn
1 be a reduced(d, k)-sequence of lengthn made of

m super-symbols:xn
1 = 0ℓ110ℓ21 . . . 0ℓm1.

In the sequel, for reduced(d, k) sequences of lengthn, we
define

P̃ (xn
1 ) =

m∏

i=1

pℓi
.

Notice thatP̃ (xn
1 ) = 0 if xn

1 is not a reduced(d, k) sequence
(i.e., it doesn’t end on a1). We also notice that quantities
P̃ (xn

1 ) do not form a probability distribution over the reduced
(d, k)-sequence of lengthn because they don’t sum to 1. In
view of this we define

PX,n(xn
1 ) =

P̃ (xn
1 )

Pn

where
Pn =

∑

xn
1

P̃ (xn
1 ).

Note thatPn is the probability that then-th symbol is exactly
a “1” (in other words,xn

1 is built from a finite number of
super symbols). We observe thatPX,n(xn

1 ) is not the original
probability distributionPX(xn

1 ) generated by a memoryless
source of super-symbols. In fact, it is no longer memoryless,
but it converges to it in a way that allows us to cope with
truncation problems. The later does not effect the asymptotic
value of the entropy rate.

Recalling the definitionr(s, z) =
∑

ℓ ps
ℓz

ℓ+1, we find

∑

n

Pnzn =
1

1 − r(1, z)
.

Indeed, every reduced(d, k) sequence consists of an empty
string, one super symbol, two super symbols or more, thus



∑
n Pnzn =

∑
k rk(1, z) = 1/(1 − r(1, z)) (cf. [24]). By the

Cauchy formula [24] we obtain

Pn =
1

2πi

∮
1

1 − r(1, z)

dz

zn+1

=
1

∂
∂z r(1, 1)

+ O(µ−n) =
1

λ
+ O(µ−n)

for someµ > 1, since1 is the largest root of1 = r(1, z) and
∂
∂z r(1, 1) = λ =

∑k
ℓ=d(ℓ + 1)pℓ.

Let S̃m be the set of(d, k) reduced sequences made of
exactlym super-symbols with no restriction on its length. Let
S̃∗ =

⋃
m S̃m. Let B̃∗ be the set of sequences that are exactly

at Hamming distance1 from a sequence iñS∗.By our conven-
tion, if x ∈ S̃m for somem, (i.e. if x = 0ℓ110ℓ21 . . . 0ℓm1),
then P̃ (x) =

∏i=m
i=1 pℓ; otherwiseP̃ (x) = 0). We denote by

L(x) the length ofx. We call such a model the variable-length
model.

To derive H(Zn
1 ) presented in (25) we need to evaluate

φ′
n(1) andQ′

n(1). We estimate these quantities in the variable-
length model as described above and then re-interpret them in
the original model. Define

φ(s, z) =
∑

n

P s
nφn(s)zn, (29)

Q(s, z) =
∑

n

P s
nQn(s)zn (30)

which we re-write as

φ(s, z) =
∑

x∈S̃∗

P̃ s−1(x)

L(x)∑

i=1

P̃ (x ⊕ ei)z
L(x),

Q(s, z) =
∑

x∈B̃∗




L(x)∑

i=1

P̃ (x ⊕ ei)




s

zL(x).

We notice that

φ(1, z) + Q(1, z) =
∑

x∈S̃∗

L(x)zL(x) = z
∂

∂z

1

1 − r(1, z)
.

We can also write

φ(s, z) =
∑

m

φ̃m(s, z), (31)

Q(s, z) =
∑

m

Q̃m(s, z), (32)

where

φ̃m(s, z) =
∑

x∈S̃m

P̃ s−1(x)

L(x)∑

i=1

P̃ (x ⊕ ei)z
L(x),

Q̃m(s, z) =
∑

x∈S̃m

j=L(x)∑

j=1

1x⊕ej /∈S̃∗

|B(x ⊕ ej) ∩ S̃∗|
(33)

×




i=L(x)∑

i=1

P̃ (x ⊕ ej ⊕ ei)




s

zL(x)

where B(y) is the set of sequences that are at Hamming
distance 1 from sequencey. The factor 1y/∈S̃∗

is there to
enforce thaty should not be inS̃∗, and therefore is inB̃∗

(since it is at Hamming distance 1 from̃S∗). The division
by |B(y) ∩ S̃∗| is to ensure that we do not over-count: it
expresses the number of waysy can be reached from̃S∗. We
next evaluatẽφ(s, z) and Q̃(s, z).

A. Computation of̃φm(s, z)

The casek ≤ 2d is easy sincex⊕ ej /∈ S̃m whenx ∈ S̃m.
Thus φ̃m(s, z) = 0. In the sequel we concentrate onk > 2d.

Theorem 7:For reduced(d, k) sequences consisting ofm
super symbols, we have

φ̃m(s, z) = mb1(s, z)rm−1(s, z)+(m−1)b2(s, z)rm−2(s, z),

where

b1(s, z) =

k∑

ℓ=d

ps−1
ℓ

ℓ∑

j=1

pj−1pℓ−jz
ℓ+1,

b2(s, z) =
∑

d≤ℓ1+ℓ2≤k

ps−1
ℓ1

ps−1
ℓ2

pℓ1+ℓ2+1z
ℓ1+ℓ2+2.

In particular,

b1(1, 1) =
ℓ=k∑

ℓ=d

∑

j

pj−1pℓ−j ,

b2(1, 1) =
∑

ℓ

max{0, ℓ − 2d}pℓ.

Proof. We need to consider two cases: one in which the error
changes a0 to a1, and the other one when the error occurs on
a 1. In the first case,m−1 super symbols are not changed and
each contributesr(s, z). The corrupted super symbol is divided
into two and its contribution is summarized inb1(s, z).

In the second case, an ending1 is changed into a0 so two
super symbols (except the last one) collapsed into a one super
symbol. This contribution is summarized byb2(s, z) while
the otherm − 2 super symbols, represented byr(s, z) are
unchanged.

B. Computation ofQ̃m(s, z)

We recall the following definitions. For integersℓ1, ℓ2, d ≤
ℓ1, ℓ2 ≤ k, let Iℓ1,ℓ2 denote the interval

Iℓ1,ℓ2 =

{ℓ:−min+{ℓ1−d, k − ℓ2−1} ≤ ℓ ≤ min+{ℓ2−d, k−ℓ1−1}} ,

where min+{a, b} = max{min{a, b}, 0}. We shall write
I∗

ℓ1,ℓ2
= Iℓ1,ℓ2 \ {0}.

Theorem 8:For reduced(d, k) sequences consisting ofm
super symbols, the following holds

Q̃m(s, z) = mα(s, z)rm−1(s, z) + (m − 1)τ(s, z)rm−2(s, z)

where
α(s, z) =

∑

ℓ

max{0, 2d− ℓ}ps
ℓz

ℓ+1



andτ(s, z) = τ1(s, z) + τ2(s, z) + τ3(s, z) where

τ1(s, z) =

k∑

ℓ1=d

k∑

ℓ2=d

(max{0, d(ℓ1) + ℓ2 − k}

+ max{0, d(ℓ2) + ℓ1 − k}) ps
ℓ1p

s
ℓ2z

ℓ1+ℓ2+2,

τ2(s, z) =

k∑

ℓ1=d

k∑

ℓ2=d

∑

θ∈I∗

ℓ1,ℓ2

1|θ|≤d

2
(pℓ1pℓ2pℓ1+θpℓ2−θ)

s
zℓ1+ℓ2+2

τ3(s, z) =

k∑

ℓ1=d

k∑

ℓ2=d

1ℓ1+ℓ2+1>k

2 min{k, ℓ1 + ℓ2 − d} − (ℓ1 + ℓ2) + 1



∑

θ∈Iℓ1,ℓ2

pℓ1+θpℓ2−θ




s

zℓ1+ℓ2+2,

with d(ℓ) = min{d, ℓ − d} .
In particular, fork ≤ 2d we have the following simplifica-

tions:
α(s, z) =

∑

ℓ

(2d − ℓ)ps
ℓz

ℓ+1,

and

τ1(s, z) =
∑

ℓ1,ℓ2

2 max{0, ℓ1 + ℓ2 − k − d}ps
ℓ1p

s
ℓ2z

ℓ2+ℓ2+2,

τ2(s, z) =

k∑

ℓ1=d

k∑

ℓ2=d

∑

θ∈I∗

ℓ1,ℓ2

1

2
(pℓ1pℓ2 + pℓ1+θpℓ2−θ)

szℓ2+ℓ2+2,

τ3(s, z) =

k∑

ℓ1=d

k∑

ℓ2=d

1

2 min{k, ℓ1 + ℓ2 − d} − (ℓ1 + ℓ2) + 1

×




∑

θ∈Iℓ1,ℓ2

pℓ1+θpℓ2−θ




s

zℓ2+ℓ2+2.

Proof. As in the previous proof, the main idea is to enumerate
all possible ways a sequencex leaves the status of(d, k) after
a bit corruption and returns to(d, k) status after a second
bit corruption. In other words,x ∈ S̃∗, x ⊕ ej /∈ S̃∗, and
x⊕ ej ⊕ ei ∈ S̃∗. We often refer to representation (33) in the
proof.

We consider several cases:
a) Property 1: Let x be a single super-symbol:x = 0ℓ1.

Consider nowx ⊕ ej. First, supposeℓ ≤ 2d and the errorej

falls on a zero ofx. If ej falls on a zero betweenℓ − d and
d, then

0ℓ1 ⊕ ej = 0ℓ110ℓ21,

and at least one ofℓ1, ℓ2 is smaller thand. Therefore,x ⊕ ej

is not a(d, k) sequence. The only wayei can produce a(d, k)
sequence is when it is equal toej : |B(x ⊕ ej) ∩ S̃∗| = 1 .
Assume nowℓ > 2d. If ej falls at distance greater thand from
both ends, thenx ⊕ ej ∈ S̃∗ and does not leavẽS∗.

b) Property 2: If the errorej falls on a symbol0ℓ11 in
x = 0ℓ110ℓ21, on the lastmin{d, ℓ1 − d} zeros, then with
θ ≤ min{d, ℓ2 − d}

0ℓ110ℓ21 ⊕ ej = 0ℓ1−θ10θ−110ℓ21,

andx /∈ S̃∗. We have:
• if it falls also on the lastmin{d, ℓ1−d, k− ℓ2} zeros,i.e

θ ≤ min{d, ℓ1 − d, k − ℓ2}, then the onlyei that moves
x⊕ ei ⊕ ej back a(d, k) sequence is eitherej = ei or ej

such that it falls on the1 of 0ℓ11, and|B(x⊕ej)∩S̃∗| = 2,
• otherwise, the only acceptablej is i, so that|B(x⊕ej)∩

S̃∗| = 1 andx ⊕ ej /∈ S̃∗.
c) Property 2bis: If the error ej in x = 0ℓ110ℓ21 falls

on the firstmin{d, ℓ2 − d} zeros of0ℓ21, then
• if it falls also on the firstmin{d, ℓ2 − d, k − ℓ1} zeros,

then the onlyej that movesx ⊕ ei ⊕ ej back a(d, k)
sequence is eitherej = ei or ej such that it falls on the
1 of 0ℓ11, and |B(x ⊕ ej) ∩ S̃∗| = 2,

• otherwise, the only acceptablej is i so that|B(x⊕ ej)∩
S̃∗| = 1 andx ⊕ ej /∈ S̃∗.
d) Property 3: We still considerx = 0ℓ110ℓ21. If the

error falls on the ”1” of0ℓ11, then the onlyej that moves
x ⊕ ej ⊕ ei back (d, k) sequences are those that either fall
back on the 1, or on themin{ℓ2 − d, k − ℓ1} first zeros of
0ℓ21, or on themin{ℓ1 − d, k − ℓ2} last zeros of)0ℓ11, and
then

|B(x ⊕ ej) ∩ S̃∗| = 1 + min{ℓ1 − d, k − ℓ2}
+ min{ℓ2 − d, k − ℓ1}

= 1 + 2 min{k, ℓ1 + ℓ2 − d} − ℓ1 − ℓ2.

Clearly, then we must haveℓ1 + ℓ2 + 1 > k in orderx⊕ ej /∈
S̃m.

Given these four properties we can define the following
quantities

α(s, z) =
∑

ℓ

max{0, 2d− ℓ}ps
ℓz

ℓ+1

andτ(s, z) = τ1(s, z)+τ2(s, z)+τ3(s, z) with the convention
that α(s, z) corresponds to Property 1,τ1(s, z) to Property 2
and 2bis (second bullet),τ2(s, z) to Property 2 and Property
2bis (first bullet), τ3(s, z) to Property 3. This completes the
proof.

C. Asymptotic analysis

Finally, we can re-interpret our results for reduced(d, k)
sequences of the variable-length model in terms of the original
(d, k) sequences of the fixed length. Our aim is to provide an
asymptotic evaluation ofφn(1), Qn(1), φ′

n(1) andQ′
n(1) as

n → ∞. To this end, we will present an asymptotic evaluation
of φn(s) andQn(s).

Using Theorems 7 and 8 we easily conclude

φ(s, z) =
∑

m

φ̃m(s, z) =
b1(s, z) + b2(s, z)

(1 − r(s, z))2
,

Q(s, z) =
∑

m

Q̃m(s, z) =
α(s, z) + τ(s, z)

(1 − r(s, z))2
.

Then by Cauchy formula applied to (29) and (30)

P s
nφn(s, z) =

1

2iπ

∮
φ(s, z)

dz

zn+1
,

P s
nQn(s, z) =

1

2iπ

∮
Q(s, z)

dz

zn+1
.



A simple application of the residue analysis leads to

P s
nφn(s) =

ρ−n−1(s)

λ(s)2
((n + 1)(b1(s, ρ(s)) + b2(s, ρ(s)))

− ∂

∂z
b1(s, ρ(s)) − ∂

∂z
b1(s, ρ(s))

)
+ O(µ−n),

P s
nQn(s) =

ρ−n−1(s)

λ(s)2
((n + 1)(α(s, ρ(s)) + τ(s, ρ(s)))

− ∂

∂z
α(s, ρ(s)) − ∂

∂z
τ(s, ρ(s))

)
+ O(µ−n).

Since functions involved are analytic and uniformly bounded
in s in a compact neighborhood, the asymptotic estimates of
φ′

n(1) andQ′
n(1) can be easily derived.

In summary, we find

φ′
n(1) + Q′

n(1) = −(n + 1)ρ′(1)(φn(1) + Qn(1)) + O(n)

= −nH(Xn
1 ) + O(n),

which cancels the coefficientnεH(Xn
1 ) in the expansion of

H(Zn
1 ) in (25). More precisely,

φ′
n(1) + Q′

n(1) = −nH(Xn
1 ) + n log λ − 2

λ′(1)

λ

+
n

λ

(
∂

∂s
b1(1, 1) +

∂

∂s
b2(1, 1)

+
∂

∂s
α(1, 1) +

∂

∂s
τ(1, 1)

ρ′(1)

(
∂2

∂s∂z
b1(1, 1) +

∂2

∂s∂z
b2(1, 1)

+
∂2

∂s∂z
α(1, 1) +

∂2

∂s∂z
τ(1, 1)

))

+ n
ρ′(1)

λ

(
∂

∂z
b1(1, 1) +

∂

∂z
b2(1, 1)

+
∂

∂z
α(1, 1) +

∂

∂z
τ(1, 1)

)
+ O(1). (34)

The expression forf0(P
max) in Theorem 5 follows directly

from the expression (34) since the coefficient atε is exactly
nH(Xn

1 ) + φ′
n(1) + Q′

n(1) + φn(1) and φn(1) = 0 when
k ≤ 2d. The proof of Theorem 6 is even easier since

f0(P
max) =

Qn(1)

n
= 1 − φn(1)

n
.

We have from (34):

φn(1) = n

(
b1(1, 1) + b2(1, 1)

λ

)
.

Observe thatb1(1, 1) exactly matchesγ andb2(1, 1) matches
δ in Theorem 6.

D. Error Term in Theorem 5

To complete the proof of Theorem 5, we establish here that
the dominating error term of the capacityC(S, ε) estimation
is O(ε2 log2 ε). For this we need to show that the maximiz-
ing distributionPmax

X (ε) of H(Z) introduces error of order
O(ε2 log2 ε). Recall thatPmax maximizesH(X).

In Appendix A we show that

∂

∂ǫ
H(Z) = O(log ε)

uniformly in PX . As a consequenceH(Z) converges toH(X)
uniformly in PX as ε → 0. We also prove in the Appendix
that

H(Z) = H(X)+f0(PX)ε log ε+f1(PX)ε+g(PX)O(ε2 log ε),

where the functionsf0, f1 and g of PX are in C∞ (all
continuous and infinitely many differentiable functions).

Let Pmax
X (ε) be the distribution that maximizesH(Z),

hence the capacityC(S, ε). For α > 0 let Kα be a compact
set of distributions that are at topological distance smaller than
or equal toα from Pmax

X . SinceH(Z) converges toH(X)
uniformly, there existsε′ > 0 such that∀ε < ε′, ε > 0 we
havePmax

X ∈ Kα.
Let now β = maxPX∈Kα

{g(PX)}. Clearly,β → g(Pmax)
asα → 0. Let also

F (PX , ε) = H(X) + f0(PX)ε log ε + f1(PX)ε,

and
Fα(ε) = max

PX∈Kα

{F (PX , ε)}.

The following inequality forε < 1 follows from our analysis
in Appendix A

Fα(ε) + βε2 log ε ≤ H(Pmax
X (ε)) ≤ Fα(ε) − βε2 log ε.

We will prove here that

Fα(ε) = F (Pmax
X , ε) + O(ε2 log2 ε).

Let
P̃max

X = argmax{F (PX , ε)}.

We have∇F (P̃max
X , ε) = 0, where∇F denotes the gradient

of F with respect toPX . DefiningdPX = P̃max
X − Pmax

X we
find

∇F (P̃max
X , ε) = ∇F (Pmax

X , ε)

+∇2F (Pmax
X , ε)dPX + O(‖dPX‖2)

where∇2F is the second derivative matrix (i.e., Hessian) of
F and‖v‖ is the norm of vectorv. Since∇F (P̃max

X , ε) = 0
and∇H(Pmax

X ) = 0, thus

∇F (Pmax
X , ε) = ∇f0(P

max
X )ε log ε + ∇f1(P

max
X )ε.

DenotingF2 = ∇2F (Pmax
X ) and its inverse matrix asF−1

2 ,
we arrive at

−F2dPX = ∇f0(P
max
X )ε log ε + ∇f1(P

max
X )ε (35)

+O(‖dPX‖2) ,

and

dPX = −F−1
2 · (∇f0(P

max
X )ε log ε +∇f1(P

max
X )ε)

+O(‖dPX‖2). (36)



This lead to‖dPX‖ = O(ε log ε) for sufficiently smallε such
that ‖dPX‖ ≤ α. Thus

F (P̃max
X , ε) = F (Pmax

X , ε) +
1

2
dPX · F2 · dPX

+ ∇f0(P
max
X )dPXε log ε

+ ∇f1(P
max
X )dPXε + O(‖dPX‖3),

plugging the expression ofdPX from (36) yields:

Fα(ε) = F (P̃max
X , ε) = F (Pmax

X , ε)

− 1

2
∇f0(P

max
X ) · F−1

2 · ∇f0(P
max
X )ε2 log2 ε

− ∇f0(P
max
X ) · F−1

2 · ∇f1(P
max
X )ε2 log ε

− 1

2
∇f1(P

max
X ) · F−1

2 · ∇f1(P
max
X )ε2

+ O(ε3 log3 ε).

This completes the proof.

V. CONCLUSION

We study the capacity of the constrained BSC channel in
which the input is a(d, k) sequence. After observing that a
(d, k) sequence can be generated by ak-order Markov chain,
we reduce the problem to estimating the entropy rate of the
underlying hidden Markov process (HMM). In our previous
paper [14], [15], we established that the entropy rate for a
HMM process is equal to a Lyapunov exponent. After realizing
that such an exponent is hard to compute, theoretically and
numerically, we obtained an asymptotic expansion of the
entropy rate when the error rateε is small (cf. also [27]).

In this paper, we extend previous results in several direc-
tions. First, we present asymptotic expansion of the HMM
when some of the transition probabilities of the underlying
Markov are zero. This adds additional term of orderε log ε to
the asymptotic expansion. Then, we return to the noisy con-
strained capacity and prove that the exact capacity is related
to supremum of Lyapunov exponents over increasing order
Markov processes. Finally, for(d, k) sequences we obtain an
asymptotic expansion for the noisy capacity when the noise
ε → 0. In particular, we prove that fork ≤ 2d the noisy
capacity is equal to the noiseless capacity plus a termO(ε). In
the casek > 2d, the correction term isO(ε log ε). We should
point out that recently Han and Marcus [9], [10] reached
similar conclusions (and obtained some generalizations) using
quite different methodology.

APPENDIX A: PROOF OFTHEOREM 3

In this Appendix we prove the error term in (18) in
Theorem 3 using the methodology developed by us in [15].
We need to prove that forε < 1/2

H(Zn
1 ) = H(Xn

1 )+nf1(PX)ε+nf0(PX)ε log ε+O(nε2 log ε)
(37)

for somef1(PX) andf0(PX). We start with

H(Zn
1 ) = H(Xn

1 ) − ε
∂

∂ǫ
H(Zn

1 ) + Gn (38)

and show at the end of this section thatGn = O(nε2 log ε).

We first concentrate on proving that

∂

∂ǫ
H(Zn

1 ) = nf1(PX) + nf0(PX) log ε (39)

for somef0(PX) andf1(PX). We use equation (48) from [15]
which we reproduce below

∂

∂ǫ
PZ(z) =

1

1 − 2ε

∑

i

(PZ(z ⊕ ei) − PZ(z))

for any sequencez of lengthn (hereafter, we simply writex
for xn

1 andz for zn
1 ). Consequently,

∂

∂ǫ
H(Zn

1 ) = − 1

1 − 2ε

∑

z

∑

i

(PZ(z⊕ei)−PZ(z)) log PZ(z)

that can be rewritten as

∂

∂ǫ
H(Zn

1 ) = − 1

1 − 2ε

∑

x

∑

i

PZ(z) log
PZ(z ⊕ ei)

PZ(z)
.

In order to estimate the ratio ofPZ(z ⊕ ei) and PZ(z), we
observe that

PZ(z) = (1 − ε)n
∑

x

PX(x)

(
ε

1 − ε

)dH(x,z)

,

wheredH(, x, z) is the Hamming distance betweenx and z.
Similarly,

PZ(z ⊕ ei) = (1 − ε)n
∑

x

PX(x)

(
ε

1 − ε

)dH(x,z⊕ei)

.

The following inequality is easy to prove

min
i

(
ε

1 − ε

)dH(x,z⊕ei)−dH(x,z)

≤ PZ(z ⊕ ei)

PZ(z)

≤ max
i

(
ε

1 − ε

)dH(x,z⊕ei)−dH(x,z)

.

SincedH(x, z ⊕ ei) = dH(x, z) ± 1 we conclude that

ε

1 − ε
≤ PZ(z ⊕ ei)

PZ(z)
≤ 1 − ε

ε
.

Thus
∣∣∣∣∣
∑

z

∑

i

PZ(z) log
PZ(z ⊕ ei)

PZ(z)

∣∣∣∣∣ ≤ −n log(1 − ε) − n log ε

and this completes the proof of (37).
To finish the proof of Theorem 3, it remains to show that

that Gn = O(nε2 log ε), that is, uniformly inn andε > 0

H(Zn
1 ) = H(Xn

1 ) − ε
∂

∂ǫ
H(Zn

1 ) + O(nε2 log ε). (40)

To this end, we make use of the Taylor expansion:

H(Zn
1 ) = H(Xn

1 ) − ε
∂

∂ǫ
H(Zn

1 )

−
∫ ε

0

θ
∂2

∂ǫ2
H(Zn

1 )|ε=θdθ,



and prove that forε small enough we have uniformly inn and
ε > 0

∂2

∂ǫ2
H(Zn

1 ) = O(n log ε), (41)

from which the error termO(nε2 log ε) follows immediately.
In [15] we proved that for all sequencesz

∂2

∂ǫ2
PZ(z) = − 2

1 − 2ε

∂

∂ǫ
PZ(z) − 1

(1 − 2ε)2

∑

i,j

× (PZ(z ⊕ ei ⊕ ej) − PZ(z ⊕ ei) −PZ(z ⊕ ej) + PZ(z)) ,

which led to equation (49) of [15] repeated below

∂2

∂ǫ2
H(Zn

1 ) = − 2

1 − 2ε

∂

∂ǫ
H(Zn

1 ) − 1

(1 − 2ε)2
(D1 + D2),

where

D1 =
∑

z

∑

i,j

PZ(z ⊕ ei ⊕ ej) − PZ(z ⊕ ei)

−PZ(z ⊕ ej) + PZ(z) log PZ(z),

and

D2 =
∑

z

∑

ij

(PZ(z ⊕ ei)) − PZ(z))

×(PZ(z ⊕ ej)) − PZ(z))
1

PZ(z)
.

We will prove thatD1 = O(n log ε) andD2 = O(n).
Let first deal withD1. We can write it as

D1 =
∑

z

∑

i,j

PZ(z) log
PZ(z ⊕ ei ⊕ ej)PZ(z)

PZ(z ⊕ ei)P (z ⊕ ej)
.

We now split D1 = D′
1 + D′′

1 whereD′
1 involves the pairs

(i, j) such that|i − j| ≤ k + 1 andD′′
1 deals with such pairs

that |j − i| > k + 1. For all z and all i and j such that
|i − j| ≤ k + 1, we have

ε2

(1 − ε)2
<

PZ(z ⊕ ei ⊕ ej)PZ(z)

PZ(z ⊕ ei)PZ(z ⊕ ej)
<

(1 − ε)2

ε2
. (42)

Therefore,

|D′
1| ≤

∑

z

∑

|j−i|≤k+1

PZ(z)(−2 log(1 − ε) − 2 log ε)

≤ (k + 1)n(−2 log(1 − ε) − log ε).

For |j − i| > k +1, we observe, as in [15], that there exists
µ < 1 such that for allz

PZ(z ⊕ ei ⊕ ej)PZ(z)

PZ(z ⊕ ei)PZ(z ⊕ ej)
= 1 + O(µi) + O(µj) + O(µ|j−i|)

+O(µn−i) + O(µn−i).

Thus we find

D′′
1 =

∑

z

∑

|j−i|>k+1

PZ(z) log
(
1 + O(ρi) + O(µj)

+O(µ|j−i|) + O(µn−i) + O(µn−i)
)

=
∑

z

PZ(z)O(n/(1 − µ)) = O(n).

Now we turn our attention toD2, and similarly we split
D2 = D′

2 +D′′
2 with D′

2 involving only i, j such that|i−j| ≤
k + 1 and D′′

2 involving i, j such that|i − j| > k + 1. We
easily see that|D′

2| ≤ n(k + 1), and then

D′′
2 =

∑

z

∑

|i−j|>k

PZ(z) − PZ(z ⊕ ei)

− PZ(z ⊕ ej) + PZ(z ⊕ ei ⊕ ej)

+

(
PZ(z ⊕ ei)PZ(z ⊕ ej)

PZ(z ⊕ ei ⊕ ej)PZ(z)
− 1

)
PZ(z ⊕ ei ⊕ ej , ε).

We now notice that
∑

z

∑

i,j

PZ(z)−PZ(z⊕ei)−PZ(z⊕ej)+PZ(z⊕ei⊕ej) = 0.

Restricting this sum to|i− j| > k+1 we observe that it gives
the opposite of the sum for|i − j| ≤ k + 1. Therefore, the
total contribution isO((k + 1)n. Furthermore,

∑

z

∑

|i−j|>k+1

(
PZ(z ⊕ ei)PZ(z ⊕ ej)

PZ(z ⊕ ei ⊕ ej)PZ(z)
− 1

)

×PZ(z ⊕ ei ⊕ ej) =
∑

z

PZ(z)O(n/(1 − µ)) = O(n),

and this completes the proof of Theorem 3.

APPENDIX B: PROOF OF(27)

Our aim is to show thatpℓ that maximize the sequence
entropy rate is given by (27).

Recall that the entropy rate is equal toρ′(1) with

ρ′(1) = −
∑k

ℓ=d pℓ log pℓ∑k
ℓ=d(ℓ + 1)pℓ

.

If we extend abovepℓ such that
∑ℓ=k

ℓ=d pℓ 6= 1, then we need
to modify it to

ρ′(1) =

(∑k
ℓ=d pℓ

)
log
(∑k

ℓ=d pℓ

)
−∑k

ℓ=d pℓ log pℓ

∑k
ℓ=d(ℓ + 1)pℓ

.

The optimal distribution(pd, . . . , pk) is the one maximizing
the gradient ofρ′(1) which implies that the gradient of the
denominator is collinear with the gradient of the numerator.
Thus there existsν such that:

∇
(

k∑

ℓ=d

pℓ

)
log

(
k∑

ℓ=d

pℓ

)
−∇

k∑

ℓ=d

pℓ log pℓ = ν∇
k∑

ℓ=d

(ℓ+1)pℓ .

All computations done, this implies that for allℓ betweend
andk

log

(
k∑

i=d

pi

)
− log pℓ = (ℓ + 1)ν.

For pl such that
∑k

ℓ=d pℓ = 1, the above identity becomes for
all d ≤ ℓ ≤ k

log pℓ = −(ℓ + 1)ν,

hencepℓ = (e−ν)
ℓ+1. Settingρ0 = e−ν with ρ0 being the

unique root of
∑k

ℓ=d ρℓ+1 = 1, we establish (27).
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