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Abstract—We rigorously study a channel that maps binary
sequences to self-avoiding walks in the two-dimensional grid,
inspired by a model of protein folding from statistical physics
and studied empirically by biophysicists. This channel, which we
also call the Boltzmann sequence-structure channel, is charac-
terized by a Boltzmann/Gibbs distribution with a free parameter
corresponding to temperature. In our previous work, we verified
experimentally that the channel capacity appears to have a phase
transition for small temperature and decays to zero for high
temperature. In this paper, we make some progress towards
explaining these phenomena. We first estimate the conditional
entropy between the input sequence and the output fold, giving
an upper bound which exhibits a phase transition with respect
to temperature. Next, we formulate a class of parameter settings
under which the dependence between walk energies is governed
by their number of shared contacts. In this setting, we derive a
lower bound on the conditional entropy. This lower bound allows
us to conclude that the mutual information tends to zero for
high temperature, giving some support to the experimental fact
regarding capacity which tends to zero in this regime. Finally,
we construct an example setting of the parameters of the model
for which the free energy is exactly calculable.

I. INTRODUCTION

Information theory traditionally deals with the problem of
transmitting sequences over a communication channel and
finding the maximum number of messages that the receiver can
recover with arbitrarily small probability of error. However,
databases of various sorts have come into existence in recent
years that require to transmit structural data (e.g., graphs and
sets). Contemporaneously, there has been significant effort fo-
cused on understanding the equilibrated states and dynamics of
biomolecules [1], in particular, to determine folded states and
fold changes. We bridge these seemingly disparate ideas using
novel information theoretic modeling. In [2], we attempted
an information-theoretic explanation of a few observations
previously made by biophysicists: while the number of amino
acid sequences observed in nature is large, the corresponding
number of dissimilar tertiary structures to which the sequences
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have been observed to fold is relatively small. Additionally, the
frequency distribution of protein families observed in nature
exhibits power law characteristics. We provided experimental
evidence that explains these observations by modeling the
protein folding process as a channel. We gave evidence in
support of the hypothesis that these complex phenomena might
have interesting information theoretic underpinnings.

This channel maps binary (hydrophobic, denoted by H , and
polar, denoted by P ) sequences into two-dimensional self-
avoiding walks (also called folds) in a square lattice (see
Figure 1). ∗ A sequence of length N induces a labeling of
each fold of the same length, and counting the number of
different types of contacting nodes induces an energy function
on the set of folds. This energy function induces a conditional
probability distribution on the set of folds, where lower energy
folds receive higher probability.

In particular, the channel is defined by the Boltzmann/ Gibbs
distribution with a free parameter corresponding to inverse
temperature. We therefore call it the Boltzmann sequence-
structure channel. For such a channel, the key parameter
is the conditional entropy between the input sequence and
the output fold. In this paper, we provide a mathematically
rigorous foundation to estimate this entropy and show that it
may exhibit a range of interesting behaviors with respect to
temperature, depending on the settings of the parameters of
the model.

Fig. 1: A sequence passing through the channel and being
paired with a fold given by a self-avoiding walk.

We now describe in more detail the construction of the
channel. For each sequence s, the folds f are assigned
energies E(f, s) depending on the number of different types of
contacts between residues, that is, between neighboring, but
not sequence-adjacent, nodes of the self-avoiding walk. These

∗We discuss below and in the literature review the history/justification
(given by biophysicists) of the classification of amino acids into hydrophobic
and polar, as well as the modeling of protein structures and more general
polymers as self-avoiding walks in a lattice.
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contact energies are given by a scoring matrix Q whose rows
and columns are indexed by H and P . Since hydrophobic
interactions are a dominant force for protein folding, it is
reasonable to classify amino acids into hydrophobic (H) and
polar (P ). Thus, in a realistic lattice model, contacts between
H and H are more favored (lower energy) than H and P

interactions [3]. The channel is then defined by the Boltzmann
distribution induced by the energies.

More precisely, for each even (for technical reasons ex-
plained below) perfect square integer N , we have an input
set SN consisting of 2N sequences of length N over the
alphabet {H,P}. The output set FN consists of all directed
self-avoiding walks of length N on a

√
N×
√
N integer lattice

which start at (0, 0) and end at (
√
N − 1,

√
N − 1). Note

that all but O(
√
N) points in the lattice have four neighbors

(but only two contact points) since every walk fills the lattice
completely. We endow each sequence/fold pair with an energy
as follows: fix a symmetric 2× 2 matrix Q = {Qij}i,j∈{1,2}
over R (the scoring matrix). For f ∈ FN and s ∈ SN

E(f, s) = 2(Q11cHH +Q22cPP +Q12cHP ), (1)

where cxy denotes the number of contacts {a, b} such that
sa = x and sb = y or vice-versa (throughout, for any
sequence s and j ∈ [N ] = {1, . . . , N}, we denote by sj
the jth symbol of s). Here, the multiplication by 2 is for
mathematical convenience and is insignificant to the analysis.
Then we define the channel by the conditional probability
pN (f |s) that follows the Boltzmann distribution.

More formally, let β ≥ 0 be a real number (corresponding
to an inverse temperature). Then we define

pN (f |s) = p(f |s) =
e−βE(f,s)

Z(s, β)
, Z(s, β) =

∑
f∈FN

e−βE(f,s),

where the function Z is known as the partition function, which
plays a central role in statistical mechanics models as a kind of
generating function of configuration energies. Two quantities
will play an especially important part in our analysis and
results: the free energy γN (β) is given by

γN (β) =
E logZ(S, β)

log |FN |
γ(β) = lim sup

N→∞
γN (β).

We also denote by µ the exponential growth rate of the number
of self-avoiding walks:

µN =
log |FN |
N

, µ = lim
N→∞

log |FN |
N

.

Both are challenging to compute.
This channel is interesting from the information-theoretic

point of view, irrespective of applications, primarily because
it exhibits several unusual mathematical properties: first, it
maps sequences to structures (i..e, self-avoiding walks) in a
nontrivial way; second, it is a channel with full memory;
and, finally, several information theoretic quantities associated
with it (e.g., its capacity and conditional entropy for certain

natural input distributions) likely exhibit phase transitions
with respect to temperature for certain settings of the scoring
matrix. Probabilistically, its analysis presents an interesting
challenge because the nontrivial dependence structure between
fold energies makes bounding the variance of the number
of folds with a given maximum energy difficult. This in
turn, complicates the calculation of the free energy, which
plays a significant role in our calculations (and, for many
models, is notoriously difficult to compute [4]). Since the
exponential growth rate of the number of folds in the output
alphabet appears in several quantities of interest, we also
encounter combinatorial problems which are currently under
active investigation.

We now review some of the relevant literature.
Regarding self-avoiding walks (SAWs), [5] is a good general

reference, including a discussion of the history of the use of
SAWs as models for polymers. SAWs continue to be used
as simple models for protein structures in molecular biology
(see, e.g., [6], [7]). One of the fundamental problems in the
theory of SAWs is the (asymptotic) enumeration of classes
FN of SAWs of length N → ∞ with various constraints. In
particular, the problem of proving the existence/determining
the value of the limit

lim
N→∞

|FN |1/N

(called the connective constant of FN ) is commonly studied
and is quite challenging. There are a few general techniques
for approaching such problems, sub/superadditivity arguments
being the main ones. For, say, subadditivity, the goal is to show
that, for all 1 ≤ m ≤ N − 1,

|FN | ≤ |Fm||FN−m|, (2)

which implies that the sequence (log |FN |)∞N=1 is subadditive.
By, e.g., Fekete’s lemma (or one of its generalizations) [8], this
is sufficient to conclude the existence of the limit

lim
N→∞

log |FN |
N

.

Usually, the condition (2) can be verified by some sort of
splitting (or concatenation, in the case of superadditivity) in
order to establish an injection from |FN | to Fm × FN−m.
For example, if we take FN to be the set of all SAWs, we
can split a walk w ∈ FN into a unique initial part of length
m and a final part of length N − m, which establishes (2).
In general, determining the value of the connective constant
requires significant ingenuity (see, e.g., [9], which establishes
the value for SAWs on the two-dimensional hexagonal lattice).

Even proving/disproving the existence of a connective con-
stant becomes significantly harder when we consider collec-
tions of SAWs satisfying some geometric constraints (unless
they are very carefully chosen). For instance, consider the set
of Hamiltonian SAWs filling a square of size N (with N

a perfect square). Neither splitting nor concatenation works
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here, since neither operation yields SAWs within the same
class in general. By adding the constraint that each SAW must
begin at a fixed corner of the square and end at the opposite
and restricting to an appropriate subsequence (i.e., even and
perfect square N ), [10] showed the existence of the connective
constant as a limit of that subsequence (though the result is
incorrectly stated; see [11] for a discussion and estimates of
the limit).

We now review what is known about some relevant models
from statistical physics. For general references, see [4], [12].
For a set ΓN of configurations, each configuration ξ ∈ ΓN is
endowed with its own (possibly random) energy E(ξ). The set
ΓN is then endowed with a probability distribution governed
by this energy (chosen so as to have maximum entropy under
the constraint that the system has a given energy density),
known as the Boltzmann/Gibbs measure:

p(ξ) =
e−βE(ξ)

Z(β)
,

where β ∈ [0,∞) is a free parameter which intuitively behaves
like an inverse temperature, and Z above is the partition
function, given by

Z(β) =
∑
ξ∈ΓN

e−βE(ξ).

The main problem is to establish the existence/estimate the
asymptotic value of the free energy:

lim
N→∞

E[logZ(β)]

log |ΓN |
. (3)

This quantity is studied because other important parameters,
such as the entropy density and energy density can be written in
terms of it (see [12] for details). One of the simplest interesting
models is the random energy model (REM), in which the
configuration space has size 2N , and the configurations are
i.i.d. (exactly) Gaussian random variables: E(ξ)∼N (0, N/2).
The free energy for this model is exactly solvable (which is
unusual for these sorts of models):

lim
N→∞

E[logZ(β)]

N
=

{
β2/4 + log 2 β ≤ 2

√
log 2

β
√

log 2 β ≥ 2
√

log 2.

Note that the free energy exhibits a phase transition with
respect to temperature, since, for small β, it grows quadrat-
ically, while it grows linearly when β ≥ 2

√
log 2. This sort

of phenomenon is quite common (though not universal) in
statistical physics, and we will encounter it in our analysis in
this paper.

The situation becomes significantly more complicated when
correlations between configurations are introduced. For in-
stance, in the Sherrington-Kirkpatrick (SK) model, configu-
rations are strings of length N from the alphabet {−1, 1},
and the energy of a configuration ξ is given by

E(ξ) = − β√
N

∑
i<j

gijξiξj ,

with i.i.d. random variables gij ∼N (0, 1). The correlation
between two configurations ξ(1) and ξ(2) then increases with
the number of indices i for which ξ(1)

i = ξ
(2)
i . This model was

introduced in [13], in which the authors also gave an incorrect
expression for the free energy. Parisi, in [14], conjectured the
correct formula (which now bears his name), but over 20 years
passed before it was rigorously verified by Talagrand in [15].

We now move on to discuss our contributions. First, though
the self-avoiding walk model and associated energy function
for proteins has been considered empirically before [6], [7],
we appear to be the first to define the channel that we
consider here and study its information theoretic quantities.
Of particular interest is the capacity of the channel:

C = max
p(S)

[H(F )−H(F |S)],

where the maximum is taken over all probability distributions
on the set of sequences; see [19]. In our previous work [2],
we studied this quantity numerically. Specifically, using a
specific scoring matrix taken from the biology literature, we
computed the conditional probabilities constituting the channel
for N = 36 (due to computational limitations, we could not
do the same for much larger N ). We then computed the
capacity for various temperatures using the Blahut-Arimoto
algorithm ([19]), resulting in Figure 2. We note two phe-
nomena illustrated by the plot: first, there appears to be a
phase transition with respect to temperature in the capacity.
Second, the capacity tends to 0 as temperature tends to infinity
(for fixed N , this is simple to prove, but significantly more
interesting when N →∞).

Fig. 2: Empirical evidence of a phase transition in channel
capacity. Here, the capacity at various temperatures for the
channel associated with 6× 6 lattices is depicted. See [2] for
the full figure.

As a long-term goal, we would like to rigorously establish
the asymptotic behavior of the capacity of this channel for all
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temperatures and suitable scoring matrices. Our focus in this
work is more modest: we mainly study here the behavior of
the conditional entropy for a memoryless source in the high-
temperature regime (i.e., β N→∞−−−−→ 0).

First, we give upper bounds on the free energy (hence the
conditional entropy) whose behavior depends on the difference
between the expected energies of a Boltzmann-distributed
fold and one chosen uniformly at random. We then show
how a series representation, involving the higher moments
of the partition function, may be derived for the free energy
via Taylor’s expansion. Next, we present a class of scoring
matrices for which the covariance between any two fold
energies depends on the number of shared contacts between
the two folds. For such matrices, we derive a formula for the
variance of the partition function in terms of the number of
contacts shared between two random folds, which implies a
lower bound on the free energy. As an application of the lower
bound, we give a sufficient condition on the temperature under
which the mutual information between the channel input and
output tends to 0. Finally, we point out that the model may
exhibit a diverse range of behaviors depending on parameter
settings by exhibiting a class of scoring matrices for which
the free energy is exactly analyzable and has capacity o(N)

for any β.
The model presents several mathematical challenges: due to

geometric constraints (e.g., Hamiltonicity), the configurations
(folds) cannot easily be decomposed into subconfigurations.
Thus, techniques which are useful for other models (e.g., [16])
do not appear to be easily adapted to our case. Probabilis-
tically, the correlation structure between fold energies does
not appear to be captured by other existing models (e.g., the
REM, the generalized REM (GREM) [17], or the SK model).
Moreover, while many models are defined so that configura-
tion energies are normally distributed, the fold energies are
only asymptotically normally distributed. Finally, our analy-
sis leads to some classic open questions about enumerating
self-avoiding walks, including proving the existence of the
connective constant for geometrically constrained walk sets
and determining distributional information about the number
of shared contacts between two randomly chosen folds.

II. MAIN RESULTS

We now fix some useful notation, precisely describe the
model, and state our main results.

A. Description of the model

Throughout, we use F to denote a random fold generated
by choosing a random sequence according to some distribution
and passing it through the channel. We generally use f to
denote an arbitrary fixed fold. For any fold f ∈ FN , we denote
the two-dimensional position of the jth node in f by πf (j).
For any j, k ∈ [N ], we say that j and k are sequence-adjacent

if |j − k| = 1 (here, [N ] = {1, 2, . . . , N}). We say that they
are lattice-adjacent and that they form a contact if they are
not sequence-adjacent and ‖πf (j)− πf (k)‖1 = 1 (here, ‖ · ‖1
denotes the `1 norm on Z2). This allows us to define the energy
E(f, s) as in (1). We also define Eβ,S(F ) to be the energy of
the fold generated by the channel at inverse temperature β

with the sequence S on its input.
We can also express the E(f, s) as a sum of local energies:

for each i ∈ [N ], define Xi = Xi(f, s) to be

Xi = Q11cHH(i) +Q22cPP (i) +Q12cHP (i),

where cxy(i), discussed above, denotes the number of contacts
{i, j} whose sequence elements are x and y or vice-versa (we
note that the multiplication by 2 in (1) is because, by summing
over all Xi, we count each contact twice). Then we have

E(f, s) =

N∑
i=1

Xi(f, s).

Clearly,

E[E(f, S)] =
∑
i

E[Xi(f, S)] = Nα+O(
√
N)

for some easily computable α depending on Q (with α 6= 0

under mild conditions on Q and the sequence distribution),
where boundary conditions contribute the O(

√
N). In fact,

we can give an explicit formula for α:

α/2 = p2QHH + 2pqQHP + q2QPP .

In contrast, E[Eβ,S(F )], the expected energy of a Boltzmann
fold, is more difficult to compute. We discuss some of its
properties below.

We restrict our attention to a particular class of distributions
on SN that is natural to consider: the symbols are i.i.d. random
variables, taking the value H with probability p ∈ (0, 1) and
P with probability q = 1 − p. That is, we take a binary
memoryless source with parameter p, which we denote by
BN (p). Many of our results can be extended to more general
mixing sources.

As mentioned earlier, we restrict our attention to the class
of Hamiltonian SAWs on a square, starting at the origin and
ending at the opposite corner, and we restrict to N for which
FN is nonzero.

B. Statement of main results

We start with an expression for the conditional entropy. We
have

H(F |S) = −
∑
s∈SN

p(s)
∑
f∈FN

p(f |s) log p(f |s)

= E[logZ(S, β)] + β
∑
s,f

p(f, s)E(f, s)

= E[logZ(S, β)] + βE[Eβ,S(F )] (4)
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where FN denotes a set of self-avoiding walks of length N

and we explicitly write

E[Eβ,S(F )] =
∑
s,f

p(f, s)E(f, s).

The first and third equalities are elementary, and the second is
by substitution of the definition of the channel into the right-
hand side. Dividing by N on both sides, we have

H(F |S)

N
=

log |FN |
N

· E[logZ(S, β)]

log |FN |
+ β

E[Eβ,S(F )]

N
.

It is easy to see that E[logZ(SN , β)] = O(N), so that the
free energy γ(β) <∞. Moreover, defining

α∗(β,N) = α∗(β) =
E[Eβ,S(F )]

N
,

it can be shown that α∗(β) <∞ for all β.
We note an important property of E[Eβ,S(F )]: for an

arbitrary fold f (equivalently, a uniformly distributed fold f ,
since both have the same expected energy when labeled by a
sequence from a memoryless source)

E[Eβ,S(F )] ≤ E[E(f, S)]. (5)

This follows from an easy inductive proof, using the fact
that the Boltzmann energy distribution is monotone decreasing
(i.e., the Boltzmann distribution gives higher probability to
lower energy folds).

We have the following upper bound on the free energy, and,
hence, the conditional entropy.

Theorem 1 (Upper bound on the conditional entropy for
memoryless sources). For any distribution over SN , β > 0,
and scoring matrix Q,

H(F |S)

N
= µ · γN (β) + βα∗(β) + o(1). (6)

Furthermore, when S∼BN (p), if the scoring matrix Q is such
that, uniformly over all f ∈ FN ,

Var [E(f, S)] ∼ Nσ2,

with σ > 0 constant with respect to N , then we have the
following upper bound: for all β > 0,

H(F |S)

N
≤ µN − β(α− α∗(β)) +

1

2
σ2β2 −O(βN−1/2),

(7)

with µ = limN→∞ µN , and for bounded β ≥ β∗ =
√

2µ
σ ,

H(F |S) ≤ βN(
√

2σ2µN − (α− α∗(β)) +O(N−1/2)),

(8)

with the threshold value β∗ =
√

2µ
σ .

The condition on the scoring matrix is quite general. It is
equivalent to requiring that QHH , QHP , and QPP are not
all equal (in this case, a typical contact energy has positive
variance).

Remark There is an information-theoretic upper bound on
H(F |S):

H(F |S) ≤ H(F ) ≤ log |FN | = NµN

Provided that β = o(1) and α−α∗(β) = Θ(1), the first upper
bound given above beats this one. Similarly, if α − α∗(β)

is sufficiently large for any fixed β, the second upper bound
is nontrivial. Moreover, the proof of the second upper bound
implies that a refinement of the first upper bound for all β
yields a corresponding refinement in the second.

Our next theorem gives, for each p ∈ (0, 1), a natural
class of scoring matrices that endows the set of fold energies
with a correlation structure similar to that arising in several
models associated with combinatorial optimization problems
(see [18]). In particular, the covariance between the energies
of two folds f and g varies linearly with a measure of
overlap between them: namely, the number of shared contacts
between f and g (denoted by kf,g). For such matrices, we
establish a lower bound which holds for sufficiently small β,
depending on the behavior of the MGF of the random variable
K (the number of shared contacts between two folds chosen
uniformly at random with replacement).

Theorem 2 (Free energy lower bound for high temperature).
Let S∼BN (p) for fixed p ∈ (0, 1). Let K denote the number
of shared contacts between two folds f, g ∈ FN chosen
uniformly at random with replacement. There exists a scoring
matrix for which, provided that

EK [e3β2
Nσ

2K ] = 1 + o(1), (9)

and β = βN = o(1), we have

H(F |S)

N
≥ µN − β(α− α∗(β)) +

1

2
β2σ2 − o(1), (10)

where the o(1) is expressible in terms of EK [e3β2
Nσ

2K ].

We remark that while essentially nothing is known about K
in the condition (9), we do know that K ≤ N+O(

√
N), since

that is the total number of contacts in a fold. Thus, a sufficient
condition for (9) to hold is that β = o(N−1/2). However, since
we suspect that K = O(1) with high probability, it seems
likely that this can be relaxed. Note that the lower bound (10)
matches the upper bound (7) up to the β term if α−α∗(β) =

Θ(1) and the o(1) term is o(β).
Also, note that one cannot expect such a lower bound for

general scoring matrices. This is because, for “most” matrices,
the covariance of the energies of two contacts (i.e., unordered
pairs of distinct sequence indices) which share exactly one
node is positive, which implies that the covariance between
two node energies is positive. This, in turn, implies that the
covariance between any two fold energies is linear in N ; that
is, the dependence between fold energies is quite strong, in
contrast with the situation in the REM. The scoring matrices
considered in Theorem 2 are chosen so that the covariance
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between energies of nonidentical contacts is 0, so that the
covariance between folds is only linear in the number of shared
contacts.

Remark For β N→∞−−−−→ 0 and the class of scoring matrices
considered in Theorem 2, we may be able to refine our
estimate of the coefficient of β2 in the expansion of the
free energy by Taylor expanding the function logZ around
Z = E[Z] and then taking expectations [18]:

E[logZ] = logE[Z]− Var [Z]

2(E[Z])2
(11)

+

∞∑
m=3

(−1)m+1

m
· E[(Z − E[Z])m]

(E[Z])m
. (12)

This boils the problem down to the estimation of the centered
moments of the partition function. For example, according
to Lemma 4, used in the proof of Theorem 2 above, and
Lemma 3, the first two terms of the expansion (11) are

log |FN | − βαN +
1

2
β2σ2N

− (1 +O(N−1/2))(EK [e3β2σ2K ]− 1)/2 +O(N−1/2).

Provided that β = o(N−1/2), the contribution of the variance
term becomes asymptotically equivalent to

−3β2σ2E[K]/2.

In particular, note that both the expected value and variance
terms of (11) contribute to the coefficient of β2. More gener-
ally, the mth moment may be written in terms of the MGFs
of the random variables Km,j , for j = 1, . . . ,m, defined to be
the number of contacts shared among exactly j folds among
m folds chosen uniformly at random with replacement. The
random variable K is a special case: K = K2,2.

Provided that Km,j are sufficiently well-behaved, the series
(11) above converges, and this gives a series representation for
the coefficient of β2, which may be bounded.

Depending on the asymptotics of the difference α−α∗(β),
Theorem 2 yields an interesting result about the mutual
information I(F ;S) = H(F ) − H(F |S) as the temperature
tends to ∞. When α and α∗(β) are asymptotically equivalent
and β is sufficiently small, the lower bound of Theorem 2
implies that H(F |S) = log |FN |−o(1). Thus, I(F ;S) = o(1).

Corollary 1. With p and the scoring matrix Q as in The-
orem 2, if βN is such that α = α∗(βN ) + ψ(N), where
ψ(N) = o(1) and βNψ(N)N = o(1), and βN = o(N−2/3),
then

I(F ;S) = o(1). (13)

Note that one naturally expects that the mutual information
tends to 0 when the temperature tends to infinity quickly
enough (because then the Boltzmann distribution converges
to uniformity), but this only becomes trivial when βN =

O(1/N). The corollary, being a statement about the decay

of the mutual information, is a small step in the direction of
our stated goal of characterizing the capacity of the channel,
in particular determining when it tends to 0.

We next give an example scoring matrix which exhibits a
rather different behavior from the ones in Theorem 2.

Theorem 3 (An exactly analyzable scoring matrix with no
phase transition). Let Q be the scoring matrix which maps
HH 7→ −1/2, HP/PH 7→ −1/4, PP 7→ 0. Then, for
arbitrary sequence distributions, the free energy is given by

γ(β) = 1 + β lim sup
N→∞

E[DS(H)]

log |FN |
,

where DS(H) is the number of i for which Si = H . In the
case of S∼BN (p), this becomes

γ(β) = 1− βα/µ.

This theorem gives an example of a natural scoring matrix
for which there is no first-order phase transition in the free
energy. Moreover, it gives an upper bound on any lower bound
for all (or almost all) scoring matrices that we can hope to
prove.

III. PROOFS

A. Proof of Theorem 1

The general expression for the asymptotic conditional en-
tropy was already derived, so we give here the proof of the
upper bounds. To do this, we prove analogous bounds for the
free energy. In deriving the first bound, we will use Jensen’s
inequality to bring the expectation within the logarithm in the
definition of the free energy. This will result in an expression
involving the MGFs φN (·) of appropriately normalized fold
energies, which we will show to be asymptotically equivalent
to the MGFs φ(·) of Gaussian random variables with the same
mean and variance. This is nontrivial, since a central limit
theorem only a priori implies that φN (t)

N→∞−−−−→ φ(t) for fixed
t ∈ R, whereas we need asymptotics for φN (t

√
N).

We start by showing that fold energies are asymptotically
normally distributed.

Lemma 1 (Fold energy CLT). Let SN ∼BN (p) for fixed p ∈
(0, 1). Let, for any f ∈ FN ,

ÊN =
E(f, SN )− E[E(f, SN )]√

N
,

and denote by FN (·) the distribution function of ÊN . There
exists a polynomial V (p) whose coefficients are polynomials
in the entries of the scoring matrix Q, such that, provided V
is not identically zero, for all but finitely many choices of p,
σ2 > 0 as in Theorem 1, and

‖FN − Φ‖∞ = O(N−1/2),

where the O(·) is uniform over all folds. Here, Φ denotes the
distribution function of the normal distribution with mean 0

and variance σ2.
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Proof: The central limit theorem for fold energies follows
by applying a result on m-dependent random fields given in
[20]. Slightly specifying to our case and using our notation, it
can be stated as follows.

Theorem 4. Suppose that for some M > 0, E[X8
i ] ≤M <∞

for all i and that {Xi(f |S)}i∈[N ] is m-dependent, for some
m > 0. Provided lim infN→∞

Var [E(f,S)]
N > 0, we have

‖FN − Φ‖∞ = O(N−1/2).

We first establish m-dependence. This follows easily from
the fact that the local energy of a node i in a given fold can
only be dependent on the local energies of those nodes j that
are within a lattice-adjacency neighborhood of i of some fixed,
finite radius. This, in turn, follows from the independent choice
of the sequence elements. Thus, we have m-dependence with
m = 2.

It is further required that the variance of E(f, S) grows at
least linearly with N . We shall establish that Var [E(f, S)] =

Θ(N) (for a large class of Q), and, along the way, derive the
polynomial V (p) whose existence is claimed in the lemma
statement. We have

Var [E(f, S)] =

N∑
i=1

Var [Xi] + 2
∑

1≤i<j≤N

Cov[Xi, Xj ].

Since N−o(N) nodes have exactly two contacts, the dominant
contribution to the first sum comes from those nodes, all of
which have the same variance v(p), a polynomial in p with
coefficients that are polynomials in the entries of Q.

Note, then, that if nodes i and j are not lattice-adjacent,
then Cov[Xi, Xj ] = 0. Thus, any node i is involved in at
most 3 nonzero covariance terms. In fact, N − o(N) nodes
are involved in exactly 2 such terms. All such nodes i and
j have covariance equal to some fixed r(p), a polynomial
in p with coefficients that are polynomials in the variables
QHH , QHP , QPP .

By conditioning on the symbols assigned to nodes i and
j and their other two lattice neighbors, both v(p) and r(p)

can be computed exactly. Thus, we have Var [E(f, S)] =

N · (v(p) + 2r(p)) + o(N). We call V (p) = v(p) + 2r(p)

the variance polynomial of Q. Provided it is not identically 0,
it has finitely many roots, at which the variance of each fold
energy is o(N). Excluding these roots, the variance is Θ(N),
as claimed, and we set σ2 = V (p).

Finally, it is required that, for all i, E[X8
i ] < ∞. Since

Xi is bounded between two constants with probability 1, all
moments exist, and the proof is complete.

Next, we need a lemma bounding the probability of large
deviations for E(f, S).

Lemma 2 (Large deviations of E(f, S)). There exists a
constant C > 0 such that, for any t > 0 and f ∈ FN ,

Pr[|E(f, S)− E[E(f, S)]| ≥ tN ] ≤ 2 exp

(
− t

2N

C

)
.

Proof: The proof uses the fact that each node energy is
dependent on at most a constant number of others to bound
the martingale differences.

To be precise, we define the filtration (Fi)Ni=0 by

Fi = σ(X1(f |S), . . . , Xi(f |S)),

and then we define (Yi)
N
i=0 to be the Doob martingale of

E(f, S) with respect to (Fi), that is, Yi = E[E(f, S)|Fi].
To apply Hoeffding’s inequality, we need to show that the
martingale differences are bounded:

|Yi − Yi−1| = |E[X1(f |S) + · · ·+XN (f |S)|Fi]
− E[X1(f |S) + · · ·+XN (f |S)|Fi−1]|.

Now, we partition the terms comprising the expectation defin-
ing Yi into those which are dependent on Xi(f |S) and those
which are not: we define A = {j|Xj(f |S)⊥Xi(f |S)}, and
then we note that, for any j ∈ A,

E[Xj(f |S)|Fi] = E[Xj(f |S)|Fi−1].

Thus, those terms whose indices are in A cancel in the
expression for |Yi − Yi−1|, leaving

|Yi − Yi−1| = |
∑
j /∈A

(E[Xj(f |S)|Fi]− E[Xj(f |S)|Fi−1])|.

All local energies are bounded above by some fixed constant,
and, by the m-dependence property of the local energies, |A|
is also bounded above by a fixed constant. Thus, there is some
fixed L such that, for all f ∈ FN and i ∈ [N ], |Yi−Yi−1| ≤ L.
Applying Hoeffding’s inequality with this bound then yields
the claimed result.

Lemmas 1 and 2 are then sufficient to derive an estimate of
the MGF of a normalized fold energy.

Lemma 3 (Asymptotics of the MGF of ÊN ). Let φN : R→ R
denote the MGF of a generic normalized fold energy:

φN (t) = E[e
t
E(f,S)−E[E(f,S)]√

N ].

We have, for arbitrary fixed t ∈ R,

φN (t
√
N) = eN log φ(t)(1 +O(N−1/2))

= e
1
2σ

2t2N (1 +O(N−1/2)).

Here, φ(t) denotes the MGF of the normal distribution with
mean 0 and variance σ2.

Proof: The strategy is to show that the tails of the integral
defining φN (t

√
N) are negligible, leaving a central region that

can be handled via Lemma 1.
We first handle the degenerate case of t = 0. In this case,

φN (t
√
N) = φN (0) = E[e0] = 1 and the claim holds.

We now move on to the case where t > 0. Let FN (x) be
the distribution function of ÊN (recall that this is the centered
and normalized energy). Then φN (t

√
N) is given by

φN (t
√
N) =

∫ ∞
−∞

et
√
Nx dFN (x).
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Taking the tail at θ
√
N of this integral, for some θ which

we will choose later, yields
∫∞
θ
√
N
et
√
Nx dFN (x). Defining

g(x) = et
√
Nx for brevity, we evaluate the above integral by

parts:

et
√
NbFN (b)− etθNFN (θ

√
N)−

∫ b

θ
√
N

FN (x) dg(x)

= et
√
Nb(1− FN (b)) + etθN (1− FN (θ

√
N))

+

∫ b

θ
√
N

(1− FN (x))t
√
Net

√
Nx dx,

where the equality is by adding and subtracting 1 inside the
integral. Upper bounding using Lemma 2 gives

2et
√
Nb− b2C +2etθN−

θ2N
C +

∫ b

θ
√
N

(1−FN (x))t
√
Net

√
Nx dx.

Taking b→∞, the first term tends to 0, and the upper limit on
the integral becomes ∞. As for the second term, we observe
that

etθN−θ
2N/Ce−N(θ2/C−tθ).

Thus, if we choose θ to satisfy

θ2/C − tθ > 0 ⇐⇒ θ > Ct,

the second term is o(1) as N →∞.
It remains to bound the contribution of the integral. We

again apply Lemma 2, which gives∫ ∞
θ
√
N

(1−FN (x))t
√
Net

√
Nx dx ≤ 2t

√
N

∫ ∞
θ
√
N

e−x
2/C+t

√
Nx dx.

Now, we write the exponent inside the integral as

−x2/C + t
√
Nx = −x2(1/C − t

√
N/x).

Since x ≥ θ
√
N , the expression inside the parentheses is at

least some positive constant L, since θ > Ct. It is not hard
to see that the integral is then Θ(e−θ

2N ), so that the entire
expression is o(1) as N →∞.

The other tail of the MGF integral is easily handled:

E[et
√
N Ê(f,S)I[Ê(f, S) ≤ −θ

√
N ]]

≤ e−tθN Pr[Ê(f, S) ≤ −θ
√
N ]

≤ e−tθN = o(1).

In the case where t < 0, we switch the tails in the above
bounds.

This leaves the central region (for any t):∫ θ
√
N

−θ
√
N

et
√
Nx dFN (x) = (1 +O(N−1/2))

∫ θ
√
N

−θ
√
N

et
√
Nx dΦ(x)

= (1 +O(N−1/2))

∫ ∞
−∞

et
√
Nx dΦ(x)

= (1 +O(N−1/2))e
1
2 t

2σ2N .

Here, the first equality is by Lemma 1 (a more detailed expla-
nation will follow), and the asymptotic equivalence follows
from the fact that the tails of the Gaussian distribution are

negligible. To be more precise, we first observe that we can
ignore the lower half of the integral. In the case where t > 0,
we have∫ 0

−θ
√
N

et
√
Nx dF (x) ≤

∫ 0

−∞
et
√
Nx dF (x)

≤ et
√
N0

∫ 0

−∞
dF (x) ≤ 1 = Θ(1),

which is negligible. Now, applying integration by parts to the
remaining integral, we have∫ θ

√
N

0

et
√
Nx dFN (x)

= etNθFN (θ
√
N)− e0FN (0)−

∫ θ
√
N

0

FN (x) det
√
Nx.

According to Lemma 1,

FN (x) = Φ(x) +O(N−1/2),

where Φ(x) is the cumulative distribution function of the
normal distribution with mean 0 and variance σ2, and the
O(·) is uniform with respect to x. Since, in the range under
consideration, x ≥ 0, Φ(x) ∈ [1/2, 1), so that this implies
FN (x) = Φ(x)(1 + O(N−1/2)). Substituting this into the
expression for the integral, we get

(1+O(N−1/2))[etNθΦ(θ
√
N)−e0Φ(0)−

∫ θ
√
N

0

Φ(x) det
√
Nx],

and applying the integration by parts formula again yields

(1 +O(N−1/2))

∫ θ
√
N

0

et
√
Nx dΦ(x)

= (1 +O(N−1/2))

∫ ∞
−∞

et
√
Nx dΦ(x) +O(1)

= (1 +O(N−1/2))

∫ ∞
−∞

et
√
Nx dΦ(x).

where the integral is precisely the moment generating function
of N (0, σ2), evaluated at t

√
N . The added term O(1) comes

from completing the lower tail. The case where t ≤ 0 is
handled similarly. Finally, taking a logarithm, dividing by N ,
and taking N →∞ gives the desired expression.

Using the expression developed in Lemma 3, we can finally
begin the derivation of the claimed free energy bounds. For
the first upper bound,

E[logZ(S, β)] ≤ logE[Z(S, β)]

= log
∑
f∈FN

e−βE[E(f,S)]E
[
e
−β
√
N
E(f,S)−E[E(f,S)]√

N

]
= log

∑
f∈FN

e−βE[E(f,S)]E
[
e−β
√
N ÊN

]
= log

∑
f∈FN

e−βαN(1+O(N−1/2)) · e 1
2σ

2β2N (1 +O(N−1/2))

= log |FN | − βαN(1 +O(N−1/2)) +
1

2
σ2β2N +O(N−1/2),
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where we used Jensen’s inequality to bring the expectation
into the logarithm, and we used the fact that all of the relative
errors are uniform over the set of folds. We thus have

γ(β) ≤ 1− βα/µ+
1

2
σ2β2/µ,

and the claimed inequality (7) follows.
For the second upper bound, the strategy is to find an upper

bound on the derivative with respect to β of the function
φ(β) = E[logZ(S, β)].

We have

− β min
f∈FN

E(f, S) ≤ log

 ∑
f∈FN

e−βE(f,S)


=⇒ E[− min

f∈FN
E(f, S)]

≤ β−1 log |FN | − αN(1 +O(N−1/2))

+
1

2
σ2βN +O(β−1N−1/2),

where the first inequality is elementary, and the second is due
to the first upper bound. We find that setting β = β∗ =

√
2µN
σ

minimizes the upper bound, yielding

E[− min
f∈FN

E(f, S)] ≤
√

2σ2µNN − αN +O(
√
N).

Furthermore, for arbitrary β,

φ′(β) = E

[
−
∑
f∈FN E(f, S)e−βE(f,S)∑

f∈FN e
−βE(f,S)

]

≤ E
[(
− min
f∈FN

E(f, S)

)
Z(S, β)

Z(S, β)

]
= E[− min

f∈FN
E(f, S)].

Now, for β > β∗, φ(β) ≤ φ(β∗) + φ′(β∗)(β − β∗), since
φ(β) is known to be convex (a consequence of Hölder’s
inequality). Applying the upper bounds for φ′(β∗) and for
φ(β∗) yields the second upper bound in the theorem:

φ(β) = E[logZ(S, β)] ≤ βN(
√

2σ2µN − α+O(N−1/2)).

B. Proof of Theorem 2

The key idea here is to choose the scoring matrix Q so as
to minimize the covariance between the energies of any two
contacts that share only one node. For such a matrix, we then
derive an explicit asymptotic formula for the variance of the
partition function in terms of the square of its expected value
and the MGF of the number of shared contacts between two
randomly chosen folds. This MGF arises from the fact that the
covariance between the energies of two folds varies linearly
with the number of shared contacts.

The formula for the variance then implies, by Chebyshev’s
inequality, an upper bound on the probability that the partition
function is much smaller than its expected value. Computing
E[logZ] by conditioning on this event then yields the desired
result.

For the lower bound, it turns out to be beneficial to express
fold energies in terms of the local energies of its contacts,
instead of its nodes as we did in the upper bound. For a
contact c (i.e., an unordered pair of distinct sequence elements)
labeled by a sequence s, denote its energy by Yc(s). To aid
intuition, we remark that a typical node energy (say, of node
i) is expressible in terms of two contact energies: if node i
makes contact with nodes j and j′, then

Xi = Y{i,j} + Y{i,j′}.

Then the energy of a fold f is given by

E(f, S) = 2
∑

contacts c in f

Yc(S),

where the 2 is again from the fact that local energies are
counted twice, as in (1).

For two contacts c1, c2 with |c1 ∩ c2| = 1, we compute the
covariance of the energies with respect to S∼BN (p), with p
as in the theorem:

Cov[Yc1(S), Yc2(S)]

= p(Q2
HHp

2 + 2QHHQHP p(1− p) +Q2
HP (1− p)2)

+ (1− p)(Q2
PP (1− p)2 + 2QHPQPP p(1− p) +Q2

HP p
2)

− (p2QHH + 2p(1− p)QHP + (1− p)2QPP )2,

Defining x = QHH , y = QHP , and z = QPP , this polynomial
becomes

Cov[Yc1(S), Yc2(S)] = f(x, y, z)

= p(x2p2 + 2xyp(1− p) + y2(1− p)2)

+ (1− p)(z2(1− p)2 + 2yzp(1− p) + y2p2)

− (p2x+ 2p(1− p)y + (1− p)2z)2.

and we seek a nontrivial zero. We set y = 0 and z = 1, which
reduces it to

f(x, 0, 1) = (p3−p4)x2−2p2(1−p)2x+((1−p)3−(1−p)4) = 0.

It is then easily checked that whenever p 6= 0, 1, there exists
x ∈ R for which f(x, 0, 1) = 0. Moreover, to check that this
x is such that α and σ (as in Theorem 1) are both nonzero,
we note that the former is 0 only when x = −1. We view
f(−1, 0, 1) as a polynomial in p, and it is easy to see that this
is only 0 when p = 0 or 1. Moreover, σ cannot be 0, since
a node energy may take on two different values with positive
probability.

In what follows, we assume that p and Q have been chosen
so that

Cov[Yc1(S), Yc2(S)] = 0

and α, σ 6= 0. For any two folds f, g ∈ FN , we define kf,g
to be the number of contacts which are in both f and g. We
now relate Var [Z(S, β)] to E[Z(S, β)]2 with the following
lemma.
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Lemma 4. We have

Var [Z(S, β)] = ES [Z(S, β)]2(EK [e3β2σ2K ]−1)(1+O(N−1/2)).

Proof: We calculate the second moment of Z(S, β).
Define Ẽ(f, S) = E(f, S)− E[E(f, S)]. Then

E[Z(S, β)2]

=
∑

f,g∈FN

ES [exp(−β(Ẽ(f, S) + Ẽ(g, S)))] · e2βE[E(f,S)]

=

N∑
k=0

∑
f,g: kf,g=k

ES [exp(−β(Ẽ(f, S) + Ẽ(g, S)))]e2βE[E(f,S)],

(14)

simply by partitioning the set of pairs of folds into those with
exactly k shared contacts, for k = 0, . . . , N . Next, we show
that the MGFs in the expression above can be approximated
by MGFs of analogous normal random variables. We claim
that, for each f, g above,

ES [exp(−β(Ẽ(f, S) + Ẽ(g, S)))]

= (1 +O(N−1/2))E[exp(−β(ẼN (f) + ẼN (g)))], (15)

where ẼN (f) and ẼN (g) are jointly normally distributed
random variables with mean 0, variance σ2N , and covariance
σ2kf,g . To do this, we first calculate the covariance of Ẽ(f, S)

and Ẽ(g, S) (equivalently, E(f, S) and E(g, S)). Let C(f)

denote the set of contacts in the fold f . Then

Cov[E(f, S), E(g, S)]

= 4
∑

c∈C(f)∩C(g)

Var [Yc(S)]

+ 4
∑

c∈C(f)6=c′∈C(g)

Cov[Yc(S), Yc′(S)]

The second sum is 0, by our choice of scoring matrix, and
each term of the first sum is σ2/4, by direct calculation. Thus,
we have shown that Cov[E(f, S), E(g, S)] = kf,gσ

2. Now,
we follow the steps of the proof of Lemma 3. In particular,
it is enough to establish a central limit theorem and a large
deviations bound for the sum of the two fold energies. Both are
immediate, as the two fold energies may be written as sums
of node energies, and these node energies are m-dependent
for some large enough constant m. Moreover, the variance of
the sum is easily seen to be positive, since the covariance of
the two energies is non-negative. Thus, we may conclude (15)
from the proof of Lemma 3.

Continuing the derivation of E[Z(S, β)2], we note that

ẼN (f) + ẼN (g)
D
= (U(k) +W1(k)) + (U(k) +W2(k))

= 2U(k) +W1(k) +W2(k),

where U(k),W1(k), and W2(k) are all independent, with
U(k)∼N (0, σ2k) and W1(k),W2(k)∼N (0, σ2(N−k)). By

this representation and the independence of U(k), W1(k), and
W2(k), we then have that (14) is equal to

(1 +O(N−1/2))e2βE[E(f,S)]

N∑
k=0

∑
f,g: kf,g=k

E[e−2βU(k)]E[e−βW1(k)]2.

To bring ẼN (f) back into the formula, we add and subtract an
independent copy Ũ(k)

D
= U(k) in the exponent of the second

factor of the sum:

E[e−βW1(k)] = E[e−β(W1(k)+Ũ(k))]E[eβU(k)] (16)

= E[e−βẼN (f)]E[eβU(k)], (17)

where the first equality is by independence and equality of
distribution between U(k) and Ũ(k), and the second is by the
fact that W1(k)+ Ũ(k)

D
= ẼN (f). We then pull the first factor

of (17) out of the sums (since it is the same for all f ), and
this leaves

(1 +O(N−1/2))E[e−β(ẼN (f)+E[E(f,S)])]2

·
∑
k

∑
f,g: kf,g=k

E[e−2βU(k)]E[eβU(k)]2.

Now, the terms of the inner sum are independent of f and g,
so that the outer sum becomes

|FN |2
∑
k

#{f, g ∈ FN : kf,g = k}
|FN |2

E[e−2βU(k)]E[eβU(k)]2

= |FN |2EK [E[e−2βU(K)]E[eβU(K)]2].

Since U(k) is normally distributed, we can compute its MGF,
and this reduces the formula above to

|FN |2EK [e3β2σ2K ].

Now, looking at the factors of the entire expression outside of
the expectation with respect to K,

|FN |2E[e−β(ẼN (f)+E[E(f,S)])]2

= (1 +O(N−1/2))|FN |2E[e−β(Ẽ(f,S)+E[E(f,S)])]2

= (1 +O(N−1/2))|FN |2E[e−βE(f,S)]2

= (1 +O(N−1/2))E[Z(S, β)]2.

Here, the first equality is by the proof of Lemma 3, the second
is by definition of Ẽ(f, S), and the third is by linearity of
expectation and the definition of the partition function. This
completes the proof.

Given Lemma 4, we now prove the claimed lower bound
of Theorem 2. We define the event

A = Aε = [Z ≥ εE[Z]]

for arbitrary ε > 0. Then Chebyshev’s inequality gives

1−Pr[A] ≤ Pr[|Z −E[Z]| ≥ (1− ε)E[Z]] ≤ Var [Z]

(1− ε)2E[Z]2
.
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By Lemma 4, this becomes

1− Pr[A] ≤ EK [e3β2σ2K ]− 1

(1− ε)2
.

In other words,

Pr[A] ≥ 1− EK [e3β2σ2K ]− 1]

(1− ε)2
,

and we denote this lower bound by pA. We can choose
ε
N→∞−−−−→ 1− sufficiently slowly so that pA = 1 − o(1) (e.g.,

ε = 1−(EK [e3β2σ2K ]−1)(1−δ)/2, for a small positive constant
δ). Then

E[logZ] = E[logZ|A] Pr[A] + E[logZI[¬A]] (18)

≥ (logE[Z] + log ε) Pr[A] + E[logZI[¬A]]. (19)

First term: We can explicitly compute logE[Z] as

log(|FN |E[e−βE(f,S)])

= log |FN |+ log e−βαN+ 1
2β

2σ2N +O(N−1/2)

= log |FN | − βαN +
1

2
β2σ2N +O(N−1/2),

where we applied Lemma 3 to estimate the MGF. Thus, the
first term is lower bounded by

(log |FN | − βαN +
1

2
β2σ2N + o(1))pA.

Here, the o(1) comes from log ε, recalling that we chose ε so
that ε = 1− o(1).

Second term: Since I[¬A] ≥ 0, we choose an arbitrary
f ∈ FN (we may be able to refine this to produce a better
bound), and then

logZ ≥ log e−βE(f,S) = −βE(f, S).

Then

E[logZI[¬A]]

≥ E[−βE(f, S)I[¬A]]

= −βE[Ẽ(f, S)I[¬A]]− βE[E(f, S)] Pr[¬A]

≥ −βE[|Ẽ(f, S)|I[¬A]]− βE[E(f, S)] Pr[¬A]

≥ −βE[|Ẽ(f, S)|]− βE[E(f, S)] Pr[¬A]. (20)

Because Ẽ(f, S)∼N (0,Θ(N)), the first term of (20) is
Θ(
√
N). The second term of (20) is Θ(N) Pr[¬A], which

is upper bounded by

Θ(N)(1− pA),

which, by the hypothesis (9) on the MGF of K, is o(N).

Putting everything together: We thus have a lower bound
on the free energy given by

E[logZ]

N
≥ pA(µN − βα+

1

2
β2σ2 + o(N−1)) + o(1).

C. Proof of Corollary 1

The claim follows from the representation (4) and the lower
bound on E[logZ] given in Theorem 2. This gives a lower
bound of

H(F |S)

≥ (1− o(1))(log |FN | − βN(α− α∗(β)) +
1

2
β2σ2N + o(1))

− βΘ(N)(1− pA).

Since βN(α − α∗(β)) = βNψ(N) = o(1) and β2N =

o(N−4/3+1) = o(N−1/3), the first term of the lower bound is

log |FN | − o(1).

Meanwhile, to estimate the second term, since β = o(N−2/3)

and K ≤ N +O(
√
N),

EK [ecβ
2K ] = EK [1 + cβ2K +O(β4N2)] ≤ 1 + β2Θ(N).

Then
1− pA ≤ β2Θ(N),

so that the second term is upper bounded in absolute value by

β3Θ(N2).

Since β = o(N−2/3), this is o(1), and (13) is verified.

D. Proof of Theorem 3

First, we show that for any sequence s and fold f of length
N ,

E(f, s) = −Ds(H) +O(
√
N), (21)

where Ds(H) denotes the number of Hs in the string s. To do
this, we consider the contact graph of an arbitrary fold f (we
denote it by G(f)), which we define as follows: the vertices
are all of the nodes of the walk, except for the endpoints (this
is for simplicity). There is an edge between two vertices if
and only if they form a contact. We observe a few structural
characteristics of this graph: it has N − O(

√
N) nodes with

degree exactly 2, since, for any node x in f which is neither
an endpoint nor on the boundary (which has size O(

√
N)),

x has exactly two sequence neighbors, leaving exactly two
contact neighbors. Moreover, G(f) contains no cycles, since a
cycle would imply that f is not connected. Thus, the connected
components of G(f) are string graphs, and s induces a labeling
on them. Because at most O(

√
N) nodes have degree 1, there

are at most O(
√
N) components.

We consider the contribution to E(f, s) of the labeling X

of an arbitrary component of f . We claim that

E(X, s) = −DX(H) +O(1),

after which summing over all components will give (21). To
compute the energy of X , we divide it into chunks of Hs:
a boundary chunk is of the form Hk (if X = Hk), HkP ,
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or PHk, and there are only at most two of them. In all
such cases, the sum of contributions of contacts between Hs
(recall that all contacts are counted twice) is −(k − 1), and
the contact between H and P contributes O(1), so that the
total contribution of a boundary chunk is −k +O(1).

For a non-boundary chunk, which is of the form PHkP , the
contribution of contacts between Hs is again −k + 1, while
the PH/HP contacts contribute a total of −1, resulting in
a score of −k. Summing over all chunks gives the claimed
energy, and this establishes (21).

Now, with (21) in hand, we can compute E[logZ(S, β)] for
a random S:

E[logZ(S, β)] = E

log

 ∑
f∈FN

exp(−βE(f, S))


= E[log

(
|FN | exp(βDS(H) +O(

√
N))

)
]

= E[log |FN |+ βDS(H) +O(
√
N)]

= log |FN |+ βE[DS(H)] +O(
√
N).

Dividing by log |FN | and taking N → ∞ gives the claimed
free energy. Note that, in the special case where S∼BN (p),
this becomes

γ(β) = 1− βα/µ,

which completes the proof.
We remark that a similar calculation can be done for any

scalar multiple of the chosen scoring matrix or for the matrix
with the roles of P and H swapped.
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