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Abstract9

Lempel-Ziv’78 is one of the most popular data compression algorithms. Over the last few decades10

fascinating properties of LZ’78 were uncovered. Among others, in 1995 we settled the Ziv conjecture11

by proving that for a memoryless source the number of LZ’78 phrases satisfies the Central Limit12

Theorem (CLT). Since then the quest commenced to extend it to Markov sources. However, despite13

several attempts this problem is still open. The 1995 proof of the Ziv conjecture was based on two14

models: In the DST-model, the associated digital search tree (DST) is built over m independent15

strings. In the LZ-model a single string of length n is partitioned into variable length phrases such16

that the next phrase is not seen in the past as a phrase. The Ziv conjecture for memoryless source17

was settled by proving that both DST-model and the LZ-model are asymptotically equivalent. The18

main result of this paper shows that this is not the case for the LZ78 algorithm over Markov sources.19

In addition, we develop here a large deviation for the number of phrases in the LZ78 and give a20

precise asymptotic expression for the redundancy which is the excess of LZ78 code over the entropy21

of the source. We establish these findings using a combination of combinatorial and analytic tools.22

In particular, to handle the strong dependency between Markov phrases, we introduce and precisely23

analyze the so called tail symbol which is the first symbol of the next phrase in the LZ’78 parsing.24
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1 Introduction31

The Lempel-Ziv compression algorithm [17] is a universal compression scheme. It partitions32

the text to be compressed into consecutive phrases such that the next phrase is the unique33

shortest prefix (of the uncompressed text) not seen before as a phrase. For example,34

aababbababbb is parsed as ()(a)(ab)(abb)(aba)(b)(bb). The LZ’78 compression code consists of35

a pointer to the previous phrase and the last symbol of the current phrase. The distribution36

of the number of phrases and other related quantities (such as redundancy and code length)37

are known for memoryless sources [10; 15] but research over the past 40 years has failed to38

produce any significant progress for Markov sources. In this paper, we resolve the central39

question and present novel large deviations and precise redundancy results that had been40

wanting since the algorithm inception, as well as some surprising findings regarding the41

difference between the memoryless case and the Markov case.42

It is convenient to organize phrases (dictionary) of the Lempel-Ziv scheme in a digital43

search tree (DST) [7] which represents a parsing tree. We assume throughout that A = {a, b}.44

Then the root contains an empty phrase. The first phrase is the first symbol, say “a ∈ A”45

which is stored in a node appended to the root. The next phrase is either (aa) ∈ A2 stored46

in another node that branches out from the node containing the first phrase “a” or (ab) that47

is stored in a node attached to the root. This process repeats recursively until the text is48

parsed into full phrases (see Figure 1). A detailed description can be found in [3; 7; 8].

Figure 1 The DST-model vs LZ-model. In the DST-model we inserted eight (infinite) strings:
X1 = abb · · · , X2 = abb · · · , X3 = bbba · · · , X4 = abaaa · · · , X5 = bbaa · · · , X6 = baaa · · · ,
X7 = bbba · · · and X8 = abbbb · · · , where bold symbols denote DST tail symbols. In the LZ-model
we parsed one string X = ()(a)(ab)(b)(aaba)(bb)(bbb)(abb) with bold denoting LZ tail symbols.

49

We consider two models called the DST-model and the LZ-model. In the DST-model we50

insert independent strings although each string may be generated by a source with memory51

like a Markov source. In the LZ-model we parse a single string as shown in Figure 1. We52

distinguish two types of DST and LZ models. To define them we need to introduce the path53

length L as the sum of all depths in the digital search tree or the sum of all phrases in the54

LZ model. In the “m”-DST model we insert m independent strings into a digital search55

tree – leading to a variable path length denoted as Lm – while the “n”-DST model is built56

over a random number of independent strings such that the total path length is equal to n.57

Similarly, we have “m”-LZ and “n”-LZ models: In the former we construct m LZ phrases58

to form a string of (variable) length denoted as Lm while in the “n”-LZ model we parse a59

string of length n into a variable number of phrases that we denote as Mn. Throughout, m60

will denote number of strings or phrases while n will stand for the length of a string.61
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There is a simple relation between Mn and Lm called the renewal equation which asserts62

P (Mn > m) = P (Lm < n). (1)63

Finally, observe that the code length of the LZ78 algorithm is Cn =
∑Mn

k=1dlog2(k)e +64

dlog2(|A|)e since the pointer to the kth node requires at most dlog2 ke bits, while the next65

symbol costs dlog2 |A|e bits. For binary alphabet A = {a, b} we simplify the code length to66

Cn = Mn (log2Mn + 1).67

To understand LZ’78 behavior one must analyze the limiting distribution of Mn and/or68

Lm connected through the renewal equation (1). For memoryless sources we benefited from69

the fact the random variable Lm and Lm are probabilistically equivalent as shown in 199570

paper [3]. Unfortunately, this equivalence breaks for sources with memory such as Markov71

sources. To capture this dependency we introduce the notion of the tail symbol. In the72

DST-model the tail symbol of an inserted string is the first non-inserted symbol of that string,73

as shown in Figure 1. In the LZ-model the tail symbol of a phrase is the first symbol of the74

next phrase (see Figure 1). Furthermore, in the Markov case there is additional complication,75

even for the DST-model. In the DST-model we need to consider two digital search trees: one76

built over all (independent) strings starting with symbol a ∈ A, and the second one built77

over all strings that start with b ∈ A. At the end we construct a cumulative knowledge by78

weighting over the initial symbols (see [6]).79

In this conference paper, we present large deviation results for the number of phrases Mn80

in “n”-LZ model and the average length of a LZ (Markov) string built over m phrases in the81

“m”-LZ model.1 In the memoryless case we could read the number of phrases Mn directly82

from the path length Lm of the m-DST model. It is not the case in the Markov model but83

through the tail symbol distribution we will connect both quantities. Recall that Lm is the84

length of a string generated by a Markov source which is parsed by the LZ78 scheme until85

we see m phrases (our m-LZ model). This should be compared to the total path length Lm86

(notice roman font for L) in the the m-DST model. In the memoryless case, we proved in87

[3; 5] that the expected value of Lm and the expected value of the length of a string built88

from m phrases, Lm, are the same. Somewhat surprisingly it is not the case for the Markov89

case. We will prove in Theorem 5 that E[Lm]−E[Lm] = Θ(m).90

Let us now briefly review literature on LZ’78 and DST analysis. The goal is to prove91

the Central Limit Theorem (CLT) for the number of phrases and establish precise rate of92

decay of the LZ’78 code redundancy for Markov sources. For memoryless sources, CLT was93

already proved in [3] while the average redundancy was presented in [10; 15]. It should94

be pointed out that since 1995 [3] no simpler, in fact, no new proof of CLT was presented95

except the one by Neininger and Rüschendorf [14] but only for unbiased memoryless sources96

(as in [1]). The only known to us analysis of LZ’78 for Markov sources is presented in [6],97

but the authors restricted their attention to a single phrase. We should point out that for98

another Lempel-Ziv scheme known as LZ’77 algorithm, Fayolle and Ward [2] analyzed an99

associated suffix tree built over a Markov string and obtained the distribution of the depth,100

which allows us to conclude the limiting distribution of a phrase in the LZ’77 scheme (see101

also [11; 12]). Regarding analysis of digital search trees, and in general digital trees, more102

is known [8; 7; 16]. Digital trees for memoryless sources were analyzed in [1; 10; 7] while103

digital trees under Markovian models were studied in [6; 9; 2]. This information is surveyed104

in detail in [7].105

1 From now on we drop the quotes around m and n to simplify the presentation.
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The paper is organized as follows. In the next section we present our main results106

regarding the LZ and DST models including the mean, variance and distribution of the107

number of tail symbols in the DST model (see Theorem 2–4), and large deviations as well108

as precise redundancy for the LZ model (see Theorems 5–6). We prove these findings in109

Section 3 (DST model) and in Section 4 (LZ model), with most details delayed till the110

appendix. Throughout we use combinatorics on words and analytic tools such as generating111

functions, Poisson transform, analytic depoissonization, and Mellin transform.112

2 Main Results113

We consider a stationary ergodic Markov source generating a sequence of symbols drawn114

from a finite alphabet A. In this conference paper we study only a Markovian process of115

order 1 with the transition matrix P = [P (c|d)]c,d∈A where A = {a, b}. In this section we116

present our main results with proof delayed till Sections 3–4 and appendix. However, first117

we present a road map of our methodology and findings.118

Our main goal is to analyze the Lempel-Ziv’78 scheme for Markovian input. However,119

as discussed before, we first consider an auxiliary model named DST-model built over m120

independent Markov strings, also called the m-DST model. However, for Markov sources121

we need to construct two conditional digital search trees: one built over m Markov strings122

all starting with symbol a ∈ A and the other DST built over m strings starting with b ∈ A.123

We write c ∈ A for a generic symbol from A, that is, either c = a or c = b. For a given124

c ∈ A, we consider m independent Markov strings all starting with c and build an m-DST125

tree. For such a tree we analyze two quantities, namely the total path length denoted as126

Lcm, and the number T cm(a) of inserted strings (all starting with c) with the tail symbol a,127

that is, among m Markov strings there are T cm(a) strings with the tail symbol a. Clearly,128

T cm(a) + T cm(b) = m. Throughout, we also assume that the tail symbol is always a so we just129

write T cm := T cm(a). In Theorems 2-3 we summarize our new results regarding T cm, while in130

Theorem 4 we present large deviation results for both T cm and Lcm.131

Second, we consider the m-LZ model (in which we run LZ78 algorithm on a single132

string until we see m phrases) and tie it up to the m-DST model just discussed. Here we133

use combinatorial approach. For a given sequence s over A of length m we compare in134

Lemmas 10-11 two probabilities: (i) the probability that in the m-LZ model (constructed135

from m LZ phrases) we end up with a LZ sequence of length n having all tail symbols equal136

to s; and (ii) the probability that in the m-DST model (built over m independent Markov137

strings) the resulting digital search tree has path length equal to n and all tail symbols are138

equal to s. Using this, we present in Theorem 5 our large deviations for the m-LZ model139

and using the renewal equation (1) in Theorem 6 we establish large deviations for the n-LZ140

model. In Corollary 7 we find a precise expression for the redundancy of LZ78 for Markov141

sources.142

Finally, when comparing the average path length Lcm in the m-DST model with the143

length Lcm in the m-LZ model we shall use the following simple fact.144

I Proposition 1. For δ < 1 let there exist B,C > 0 such that for a discrete random variable145

Xm the following holds uniformly146

P (Xm = k) ≤ B exp
(
−Cm−δ|k −Am|

)
. (2)147

Then148

E[Xm] = Am + Θ(mδ). (3)149
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Proof. Define Bm = mδ(logB)/C ≤ |k − Am|. Then it is easy to see that EXm =150 ∑
k kP (Xm = k) = Am +

∑
k(k −Am)P (Xm = k), and the latter term can be estimated by151

the integral 2B
∫∞

0 exp(−Cm−δx)(x+ 1)dx = O(mδ). This complete the proof. J152

2.1 Results on DST153

In this section we summarize our results for the m-DST model: We first focus on the number154

of times, T cm := T cm(a), the tail symbol is a when all m Markov sequences start with c ∈ A.155

Then we study the path length Lcm in the m-DST model when all sequences start with c.156

Finally, we present large deviations for both T cm and Lcm.157

For c ∈ A, let Dc
m,k = P (T cm = k) and Dc

m(u) = E[uT cm ] be the probability generating158

function of T cm defined for a complex variable u. We have the recursion:159

Dc
m+1(u) = (P (a|c)u+ 1− P (a|c))

∑
k

(
m

k

)
P (a|c)kP (b|c)m−kDa

k(u)Db
m−k(u) (4)160

subject to Dc
0(u) = 1 and Dc

1(u) = P (a|c)u+ 1− P (a|c). Furthermore, define the bivariate161

Poisson transform Dc(z, u) =
∑
m≥0 E[uT cm ] z

m

m! e
−z. From above we easily find the following162

differential-functional equation163

∂zDc(z, u) +Dc(z, u) = Dc
1(u)Da(P (a|c)z, u)) ·Db(P (b|c)z, u) (5)164

with Dc(z, 1) = 1 where ∂z is the partial derivative with respect to variable z.165

We now focus on the first Poisson moment Xc(z) = ∂uDc(z, 1) where ∂u is the derivative
with respect to variable u. We also study the Poisson variance Vc(z) = ∂2

uDc(z, 1) +Xc(z)−
(Xc(z))2, and the limiting distribution of T cm. After finding asymptotic behavior of the
Poisson mean Xc(z) and variance Vc(z) for large z → ∞ we invoke the depoissonization
lemma of [4] to extract the original mean and variance:

E[T cm] = Xc(m)− 1
2m∂zXc(m) +O(Xc(m)/m), Var[T cm] ∼ Vc(m)−m[∂zXc(m)]2.

Let us start with the Poisson mean Xc(z). Taking the derivative of (5) with respect to u166

and setting u = 1 we find167

∂zXc(z) +Xc(z) = P (a|c) +Xa(P (a|c)z) +Xb(P (b|c)z). (6)168

To complete this equation we need to calculate the initial values of E[T cm]. It is easy to see169

that170

E[T c0 ] = 0, E[T c1 ] = P (a|c), E[T c2 ] = P (a|c) + P (a|c)P (a|a) + P (b|c)P (a|b). (7)171

In a similar fashion we can derive the differential-functional equation for the Poisson172

variance. After some tedious algebra we arrive at173

∂zVc(z) + Vc(z) = P (a|c)− P 2(a|c) + [∂zXc(z)]2 + Va(P (a|c)z) + Vb(P (b|c)z). (8)174

Both differential-functional system of equations (5) and (7) can be solved using complicated175

Mellin transform approach [16]. We will provide details of our approach in the Appendix.176

For now we need to introduce some extra notation to present our main results. For complex177

s define178

P(s) =
[
P (a|a)−s P (b|a)−s
P (a|b)−s P (b|b)−s

]
. (9)179
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For such P(s) we denote by λ(s) the main eigenvalue and π(s) the main eigenvector. We
notice that π(−1) is the stationary vector of the Markov process. We also need another
matrix

Q(s) =
∏
i≥1

(I−P(s− i))−1
j=−2∏
j=−∞

(I−P(j))

defined for <(s) ∈ (−2, 0). Furthermore, 〈x,y〉 is the scalar product of vectors x and y.180

Now we are in the position to formulate our main result.181

I Theorem 2. Consider a digital search tree built over m independent sequences (m-DST)182

generated by a Markov source. We have E[T cm] = τc(m)m and E[Lcm] = m logm/h + m +183

µc(m)m such that:184

τc(m+ 1)− τc(m) = O(1/m) and µc(m+ 1)− µc(m) = O(1/m)185

∀(c, d) ∈ A2 τc(m)− τd(m) = O(1/m) and µc(m)− µd(m) = O(1/m).186

Thus τc(m) = τ(m) +O(1/m) where τ(m) does not depend on initial symbol c. In fact,187

τ(m) depends on the tail symbol, but since throughout the paper we assume the tail symbol188

is always a, we drop this dependency on a in τ(m). We present precise formula on τ(m) in189

the next theorem.190

Similarly we have µc(m) = µ(m) + O(1/m). The function µ(m) for Markov sources is191

given in Theorem 1 of [6]. For the memoryless source, it is h2
h + γ − 1 + α and the average192

path length is m logm/h+mµ(m), as discussed in [3].193

To complete our analysis of the tail symbol, we present now precise behaviour of τ(m).194

We give a detailed proof in the Appendix.195

I Theorem 3. For (a, b, c) ∈ A3 define196

αabc = log
[
P (a|b)P (c|a)

P (c|b)

]
. (10)197

(i) [Aperiodic case] If not all {αabc} are rational, then τ(m) = τ̄ + o(1) with198

τ̄ = πa + 1
λ′(−1) 〈(π

′(−1) + πQ′(−1)) (I−P)Pea〉, (11)199

where πa is the stationary distribution of symbol a, and ea is the vector made of a single 1200

at the position corresponding to symbol a and zero otherwise.201

[Periodic case] If all {αabc} are rationally related, then for some ε > 0 we have τ(m) =202

τ̄(m) +O(m−ε) with τ̄(m) = τ̄ +Q1(logm), where Q1(.) is a periodic function.203

(ii) [Variance] The variance Var[T cm] grows linearly, that is Var[T cm] ∼ mωa(m), where204

ωa(m) = ω̄a for the aperiodic case and ωa(m) = ω̄a +Q2(m) for the periodic case, where ω̄a205

is given explicitly in the Appendix in (A.17) of Theorem 14, and Q2(m) is a nonzero periodic206

function for rationally related case, and zero otherwise.207

(iii) [Central Limit Theorem] For any c ∈ A we have

T cm −E[T cm]
Var[T cm] → N(0, 1)

where N(0, 1) denotes the standard normal distribution.208

Similarly we have the same behaviour for µ(m) which is equal to µ̄+ o(1) in the aperiodic209

case and, in the periodic case, is equal to µ̄+Q3(logm) + O(m−ε) whose expressions are210

in [3] and [6] where Q3(.) is a periodic function. For details the reader is referred to [6].211
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We notice that, unexpectedly, the number of tail symbols equal to a is not converging to212

nπa as we should expect from a Markovian sequence. The reason is that the tail symbol is213

not picked up at random in the sequence but occurs when the sequence path leaves the tree.214

Finally, we present joint large deviations for both T cm and Lcm which is a new result215

needed to establish large deviations for the LZ model. We prove it in Section 3.216

I Theorem 4. Consider a digital search tree (DST) built over m independent sequences217

generated by a Markov source. For all δ > 1/2 there exist B, C and β strictly positive such218

that for all x > 0 uniformly in x219

P
(
|T cm −E[T cm]|+ |Lcm −E[Lcm]| ≥ xmδ

)
≤ Be−xCm

β

(12)220

for large m.221

2.2 Results for the LZ78 Model222

Let us start with the m-LZ model. For a given m, let Lcm (note calligraphic L) be the length223

of the LZ’78 string composed of m phrases when the first phrase starts with symbol c. For224

memoryless sources, this quantity is equivalent to the path length Lm in the associated DST225

built over m independent strings. However, it is not the case for Markov sources. In Section 4226

we prove Theorem 5 presented below by showing that E[Lcm]−E[Lcm] = Θ(m), unlike in the227

memoryless case. Figure 2 compares the difference E[Lcm]−E[Lcm] obtained by simulation228

results confirming our theoretical findings.229

I Theorem 5. For m given, let m∗ := m∗(m) be the root of x− xτ(x)− (m− x)τ(m− x).230

(i) The average length E[Lcm] of the LZ-sequence consisting of the first m phrases is (for the231

aperiodic case)232

E[Lcm] = m logm/h+µ(m∗)m∗+µ(m−m∗)(m−m∗)+m(1−H(m∗/m)/h)+O(mδ) (13)233

where H(x) = −x log x− (1− x) log(1− x) is the binary entropy.234

(ii) For all δ > 1/2 there exist B,C, β > 0, and γ > 0 such that uniformly for all x > 0235

P
(
|Lcm − E[Lcm]| ≥ xmδ

)
≤ Bmγe−xCm

β

(14)236

for large m.237

Remark238

The property of function τ(·) implies that the equation x− xτ(x)− (m− x)τ(m− x) has a239

single root as we will see in the proof of Section 4. Notice that m∗/m converges to τ̄ in the240

aperiodic case, and similarly µ(m∗)m∗ + µ(m−m∗)(m−m∗) is asymptotically equivalent241

to µ̄m. In the periodic case there will be small periodic contributions (contained in τ(m)242

and µ(m)) as shown in Theorem 3. Notice that H(m∗/m) is the tail symbol entropy, which243

is equal to h when the source is memoryless.244

Our next goal is to present large deviation for the number of LZ phrases in the n-LZ245

model. LetM c
n be the number of phrases obtained by parsing a Markovian sequence of length246

n starting with symbol c. By the renewal equation (1) we have P (M c
n > m) = P (Lcm < n)247

for all legitimate m and n. This allows us to read large deviation of M c
n from Theorem 5.248

Following the footsteps of Theorem 2 of [5] we arrive at our next main result.249
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Figure 2 The difference E[Lc
m]−E[Lc

m] by simulation confirming that it grows linearly with m.

I Theorem 6. For all δ > 1/2 there exist B, C, β, and γ all strictly positive such that

P
(
|M c

n − `−1
c (n)| ≥ xnδ

)
≤ Bnγe−xCn

β

where `−1
c (.) is the inverse function of `c(m) = `(m)+o(1) defined as `(m) = m

h (logm+ β(m))
with

β(m) = hµ(m∗)m∗/m+ hµ(m−m∗)(m−m∗)/m− h+H(m∗/m)

where µ(m) contains the extra fluctuating function in the periodic case.250

Using Theorem 6 we can find a precise estimate on the LZ’78 redundancy. Indeed,251

a good approximation for the LZ’78 code length is Ccn = M c
n(logM c

n + 1). The average252

conditional redundancy is defined as rcn := E[Ccn]/n− h, while the total average redundancy253

is rn = πar
a
n + πbr

b
n.254

I Corollary 7. The average redundancy rate rn satisfies for all 1
2 < δ < 1:

rn = h
1− β(`−1(n))

log `−1(n) + β(`−1(n)) +O(nδ−1 logn) ∼ h1− β(`−1(n))
logn ,

and more specifically in the aperiodic case we have

rn ∼ h
1− µ̄
logn + H(τ̄)− h

logn

for large n.255

3 Proof of Theorem 4 for DST256

Now we prove Theorem 4, that is, the joint large deviations for T cm and Lcm in the m-DST
model. We use Chernoff’s bounds, so we need to introduce some bivariate generating
functions. Define P cm,k,` = P (T cm = k & Lcm = `), P cm(u, v) = E[uT cmvLcm ] =

∑
k,` P

c
m,k,`u

kv`

and Pc(z, u, v) to be the Poisson generating function Pc(z, u, v) =
∑
m P

c
n(u, v) z

m

m! e
−z. The

following partial differential equation for Pc(z, u, v) is easy to establish from (5)

∂zPc(z, u, v) + Pc(z, u, v) = (uP (a|c) + P (b|c))Pa(P (a|c)zv, u, v)Pb(P (b|c)zv, u, v).

Lemma below is equivalent to Theorem 10 of [5] so we skip the proof in this conference257

paper.258
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I Lemma 8. For all real number ε′ > 0 and ε > 0, there exists 0 < ϑ < π/2 and a complex259

neighborhood U(0) of 0 such that for (t1, t2) ∈ U(0)2 and | arg(z)| < ϑ log(Pc(z, et1|z|
−ε′

, et2|z|
−ε′ ))260

exists and log(Pc(z, et1|z|
−ε′

, et2|z|
−ε′ ) = O(z1+ε) uniformly in (t1, t2) ∈ U(0)2.261

To prove Theorem 4 we need the following property that will be established in the final262

version of this paper.263

I Lemma 9. For all δ > 1/2 there exists B such that264 ∣∣∣P cm(eτ1m
−δ
, eτ2m

−δ
) exp(−m−δ(τ1E[T cm] + τ2E[Lcm]))

∣∣∣ ≤ B√m. (15)265

266 Now we proceed to prove Theorem 4. We apply Markov inequality for all θ and for all x > 0

P (|T cm−E[T cm|+|Lcm−E[Lcm]| ≥ 2xmδ) ≤ P (|T cm −E[T cm]| ≥ xmδ∨(|Lcm −E[Lcm]| ≥ xmδ) ≤

=
(
P cm(eθ, 1)e−E[T cm]θ + P cm(e−θ, 1)eE[T cm])θ

)
e−xθm

δ

+
(
P cm(1, eθ)e−E[Lcm]θ + P cm(1, e−θ)eE[Lcm])θ

)
e−xθm

δ

.

To complete the proof we will use (15) of Lemma 9. If we take τ1 = ±C and τ2 = 0 (and
reverse) for some C > 0 such that (τ1, τ2) ∈ U(0)2, and θ = Cm−δ

′ for some δ′ < δ, then we
find eθmδ = e−Cm

β with β = δ − δ′ > 0, and

P (|T cm −E[T cm]|+ |Lcm −E[Lcm]| ≥ 2xmδ) ≤ 4
√
mBe−xCm

β

which prove (12) of Theorem 4. We can readjust by taking 0 < β′ < β and the value of B to267

omit the factor
√
m.268

4 Proof of Theorem 5 for LZ269

We now consider the LZ’78 algorithm over a single infinite sequence generated by a Markov270

source, that is, the n-LZ model and connect it to the n-DST model in which the path length271

is equal to n (over a variable number of independently inserted strings). In the m-LZ model272

there are exactly m LZ phrases, each being a block carved in the Markovian sequence. The273

blocks are not i.i.d Markovian sequences.274

Let Pcm,n be the probability that the length of the first m LZ phrases is exactly n (when275

the first symbol is c), leading to the n-LZ model. Notice that not every pair (n,m) is feasible276

in the LZ model since by adding another phrase the path length may “jump” by more than277

one. We are interested in finding an asymptotic estimate of Pcm,n. We start by introducing278

yet another model. Let s be a sequence of m symbols, namely s = (c1, . . . , cm) ∈ Am. For279

c ∈ A we now compute the probability Pcs,n that an infinite Markovian sequence starting280

with symbol c when parsed by LZ algorithm satisfies the following two properties: (i) the281

first m blocks have tail symbols ci ∈ s for i ≤ m so that ci is the first symbol of block i+ 1;282

(ii) the length of the first m LZ phrases is equal to n. If a string satisfies these two conditions,283

then we say it is (s, n) compatible and that it belongs to the (s, n)-LZ model.284

Given a string s of tail symbols we denote by tac (s) (resp. tbc(s)) the subsequence of s285

consisting of tail symbols of the LZ blocks starting with symbol a (resp. starting by symbol286

b). Now, it is easy to see that given the initial symbol c we can deduce the sequence of287

tails symbols and initial symbols of all phrases just by looking at the sequence s, where the288

initial symbol of the next phrase is the tail symbol of the previous phrase. For example, if289

s = (a, b, a, b, b) and c = a we have the following tail symbol and initial symbol sequence290

displayed in the following table:291
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block # initial symbol tail symbol
1 a a

2 a b

3 b a

4 a b

5 b b

292

By taking the blocks (phrases) starting with c = a we find taa(s) = (a, b, b) and the blocks293

starting with b yield tba(s) = (a, b).294

Now we consider a sequence t of m symbols and introduce a new n-DST model which295

we call (t, n)-DST model. We define by P ct,n the probability that m i.i.d. (independent)296

Markovian sequences all starting with c satisfy the following two conditions (notice that297

we use roman P for this probability and calligraphic P for LZ model): (i) the tail symbol298

sequence follows the sequence t; (ii) the external path length of the DST is exactly n. We299

will say that such m strings are (t, n)-fit if they satisfy the above conditions and call it300

(t, n)-DST model. We also define301

P cm,k,n =
∑

t: |t|=m,|t|a=k

P ct,n (16)302

with |t| being the length of sequence t and |t|a being the number of symbols equal to a in it.303

We finally establish the following fundamental lemma that connects the above two304

parameters which also connects the LZ parsing over a single Markovian sequence and the305

DST made of independent Markovian sequences, that is, (s, n)-LZ model and (t, n)-DST306

model where t is a function of s.307

I Lemma 10. For any s ∈ Am we have308

Pcs,n =
∑
na

P atac (s),naP
b
tbc(s),n−na (17)309

where nc (equal either to na or nb) is the path length in nc-DST model with all strings310

starting with c, and tac (s), tbc(s) are substrings of s as defined above.311

Proof. In this conference paper, we give a proof using an example to ease the present-312

ation. Let us consider X = aabbababab · · · which results in the following LZ blocks:313

()(a)(ab)(b)(aba)(ba)(b · · · ). Or equivalently X = aabbababab · · · where the initial block314

(phrase) symbols are displayed in bold. We notice that the first five blocks (excluding315

the initial empty block) accounts for a string of length 9. Thus the sequence X is (s, 9)316

compatible with s = (a, b, a, b, b). Given that X starts with symbol a we have P (X) =317

P (a|a)P (aa|a)P (abb|a)P (ba|b))P (abab|a)P (bab|b). Notice that we display in bold the tail318

symbol of each block (which is the initial symbol of the next block). We must incorporate319

P (X) into P as,9. In fact X should be viewed as the set of (infinite) strings having aabbababab320

as the common prefix. We can rewrite P (X) by regrouping the terms with respect to the321

initial symbol of each block as: P (X) = [P (aa|a)P (abb|a)P (abab|a)] × [P (ba|b)P (bab|b)] .322

Observe that the sequence of strings (aa, abb, abab) are the prefixes of a set of tuples of323

independent infinite strings that are all (sa, 6) compatible with sa = taa(s) = (a, b, b) under324

the condition that the strings start with symbol a (the path length in the DST excludes the325

tail symbols, thus we must remove one from the length of each prefix). The probability of such326

event is exactly P (aa|a)P (abb|a)P (abab|a) and must be incorporated in P asa,6. Furthermore,327

these sequences are used to build one (left) part of the DST tree with independent Markov328

strings all starting with a. The same holds for the sequence of strings (ba, bab) which is (sb, 3)329

compatible with sb = tba(s) = (a, b) and used to build the other part (right) of the DST tree.330

This leads to (17). J331
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The next crucial lemma connects n-LZ and n-DST models.332

I Lemma 11. The following holds333

Pcm,n ≤
∑
na

∑
k

∑
ma

(
P ama,k,naP

b
m−ma,ma−k,n−na (18)334

+P ama,k,naP
b
m−ma,ma−k−1,n−na + P ama,k,naP

b
m−ma,ma−k+1,n−na

)
335

where na is the total path length of the first ma phrases starting with an “a”.336

Proof. We naturally have Pcm,n =
∑
|s|=m Pcs,n where |s| is the length of the sequence s.337

Similarly we have P cm,k,n =
∑

t,|t|=m,|t|a=k P
c
t,n with |t|a is the number of symbols identical338

to a in t. The rest follows from Lemma 10 but we need to take into account some boundary339

effects.340

Let’s look at it in more details. By (17) and above we find

Pcm,n =
∑
|s|=m

∑
na

P atac (s),naP
b
tbc(s),n−na .

We now partition Aminto four sets Sc0(m), Sc1(m), Sc2(m) and Sc3(m):341

s ∈ Sc0(m): if neither of the initial symbol c or the final symbol of s, namely cm is identical342

to a. Thus the total number of tail symbols equal to a, namely |s|a is equal to |tac (s)|;343

s ∈ Sc1(m): if both the final symbol and c are equal to a so that the total number of tail344

(and initial) symbols equal to a is |tac (s)|.345

s ∈ Sc2(m): if c = a but cm 6= a so that the number of tail symbols equal to a is |tac (s)|−1.346

s ∈ Sc3(m): if c 6= a but the final symbol cm = a. Thus the number of tail symbols equal347

to a is |tac (s)|+ 1.348

Regrouping we have

Pcm,n =
∑

s∈Sc0(m)∪Sc1(m)

Pcs,n +
∑

s∈S2(m)

Pcs,n +
∑

s∈S3(m)

Pcs,n.

Now we have to deal with the right hand side of (18), that is, with the DST model. Let349

T1(m) be the set of pairs of arbitrary sequences denoted as (ta, tb) such that |ta|+ |tb| = m350

and |ta|a + |tb|a = |ta|. We notice that for s ∈ Sc1(m) ∪ Sc2(m): (tac (s), tbc(s)) ∈ T1(m), hence351 ∑
s∈Sc0(m)∪Sc1(m)

Pcs,n =
∑
na

∑
s∈Sc0∪Sc1(m)

P ata(s),naP
b
tb(s),n−na ≤

∑
na

∑
(ta,tb)∈T1(m)

P ata,naP
b
tb,n−na .352

Notice that we have an upper bound, since for some pair (ta, tb) in T c1 (m) there may not353

exist s ∈ Sc1(m) ∪ Sc2(m) such that ta = ta(s) and tb = tb(s). For example, let c = a and for354

m = 4 we set ta = (a, b) and tb = (b, a), so that |ta|a + |tb|a = |ta| but it is impossible to355

find s such that (taa(s), tb(s)) = (ta, tb).356

Thanks to (16) we have
∑

t: |t|=m,|t|a=k P
c
t,n = P cm,k,n leading to∑

(ta,tb)∈T1(m)

∑
na

P ata,naP
b
tb,n−na =

∑
ma,k

P ama,k,naP
b
m−ma,ma−k,n−na .

This proves the first term in the right hand side of (18). To prove the other two terms
we introduce T2(m) as the set of pairs of sequence (ta, tb) such that |ta| + |tb| = m and
|ta|a + |tb|a = |ta| − 1. In this case∑

s∈S2(m)

Pcs,n ≤
∑
na

∑
(ta,tb)∈T2(m)

P ata,naP
b
tb,n−na ,
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and the second term of (18) is proved. And finally with T3(m) as the set of pairs of sequence357

(ta, tb) such that |ta|+ |tb| = m and |ta|a + |tb|a = |ta|+ 1, we establish the third term of358

(18). J359

To finish the proof of Theorem 5 we now use previous lemmas to upper bound Pm,n. Let
Pcm,n ≤ Kc

m,n(0) +Kc
m,n(1) +Kc

m,n(−1) with

Kc
m,n(i) =

∑
ma

∑
na

∑
k

P ama,k,naP
b
m−ma,ma−k−i,n−na .

To simplify our presentation we only studyKc
m,n(0). First, we rewrite the bound in Theorem 4

for the DST model as follows: for δ > 1/2 there exist B and C strictly positive such that

P cm,k,n ≤ B exp
[
−Cm−δ|k −E[T cm]| − Cm−δ|n−E[Lcm]|

]
.

Thus360

Kc
m,n(0) ≤

∑
ma+mb=m

∑
k≤ma

∑
na+nb=nB

2 exp
[
−Cm−δa |k −E[T cma ]− Cm−δa |na −E[Lama |361

Cm−δb |ma − k −E[T bmb ]− Cm
−δ
b |nb −E[Lbmb |

]
.362

From here we use ma,mb ≤ m to find

Cm−δa |k −E[T cma ] + Cm−δa |na −E[Lama |+ Cm−δb |ma − k −E[T bmb ] + Cm−δb |nb −E[Lbmb | ≥

Cm−δ|k −E[T cma ] + Cm−δ|na −E[Lama |+ Cm−δ|ma − k −E[T bmb ] + Cm−δ|nb −E[Lbmb |

≥ Cm−δ|ma −E[T ama ]−E[T bmb ]|+ Cm−δ|n−E[Lama ]−E[Lbmb ]|.

Replacing the E[T cm] by τc(m)m and E[Lcm] by m logm/h+m+mµc(m) we arrive at363

Kc
m,n(0) ≤ B2m

∑
ma+mb=m

exp
(
−Cm−δ|ma −maτa(ma)−mbτb(mb)|

)
364

× exp
(
−Cm−δ|n−m logm/h+m(H(ma/m)/h− 1)−maµa(ma)−mbµb(ma)|

)
.365

Without changing the order of magnitude we further can replace τc(m) by τ(m) and µc(m)366

by µ(m).367

We now focus only on the aperiodic case and set τ(m) = τ̄m and µ(m) = µ̄m. (We know
that even in this case for small values of m, the µ(m) and τ(m) are not exactly linear in m,
but we handle it later.) Thus our term Kc

m,n(0) is bounded by

Kc
m,n(0) ≤ B2m

∑
ma≤m

exp[−Cm−δ|ma−τ̄m|] exp[−Cm−δ|n−m logm/h−µ̄m+m(H(ma/m)/h−1)|].

If we take any δ′ > δ we find

Kc
m,n(0) ≤ B2m

∑
ma≤m

exp[−Cm−δ|ma − τ̄m|]

× exp[−Cm−δ
′
|n−m logm/h− µ̄m+m(H(ma/m)/h− 1)|].

We observe that exp[−Cm−δ|ma − τ̄m|] attains its maximum at ma = m∗ = τ̄m. Thus

Kc
m,n(0) ≤ B2

∑
ma≤m∗

eCm
−δ(m−m∗)×exp[−Cm−δ

′
|n−m logm/h−µ̄m+m(H(ma/m)/h−1)|]]
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+B2
∑

ma≥m∗
eCm

−δ(m∗−m) × exp[−Cm−δ
′
|n−m logm/h− µ̄m+m(H(ma/m)/h− 1)|]].

Notice that the terms eCm−δ(m−m∗) and eCm−δ(m∗−m) form a geometrically decreasing series
with rate e−Cm−δ . Since |mH((ma + 1)/m)−mH(ma/m)| ≤ logm, the term

exp[−Cm−δ
′
|n−m logn/h− µ̄m+m(H(ma/m)/h− 1)|]]

is at most geometrically increasing with a rate em−δ
′

logm/h which is smaller than eCm−δ .
Therefore, the whole series has its maximum at ma = m∗ and

Kc
m,n(0) ≤ 2B2

∑
k=0∞

e−Ck(m−δ−logm/hm−δ
′
)

× exp[−Cm−δ
′
|n−m logn/h− µ̄m+m(H(m∗/m)/h− 1)|]]

= 2B2

1− e−(m−δ−logm/hm−δ′ )C

× exp[−Cm−δ
′
|n−m logm/h− µ̄m+m(H(m∗/m)/h− 1)|]]

= O(2B2mδ) exp[−Cm−δ
′
|n−m logm/h− µ̄m+m(H(τ̄)/h− 1)|]].

Including all contributions, the final estimate for some B′ > 0 is

Pcm,n ≤ B′m1+δ exp[−Cm−δ|n−m logm− µ̄m+m(H(τ̄)/h− 1)|].

This gives the large deviation estimate and E[Lcm,n] = m logm/h+ µ̄m−m(H(τ̄)/h− 1) +368

O(mδ) by Fact 1. We recognize in H(τ̄) the entropy of the tail symbol.369

In fact the quantities τ(m) and µ(m) are not exactly τ̄m and mµ̄. To handle it we observe
that due to their slowly varying properties, the function exp(−Cm−δ|ma−τ(ma)ma−τ(m−
mb)(m−ma)| attains the maximum for m∗ such that

m∗ = −τa(m∗)m∗ − τb(m∗)(m−m∗).

Indeed the function ma −E[T ama ]−E[T bmb ] is a strictly increasing thus this value is unique.370

Then again E[Lcm] = m logm/h+m∗µ(m∗) + (m−m∗)µ(m−m∗)−m(H(m∗/m)/h− 1),371

and therefore E[Lcm] +mH(m∗/m) + o(m). The latter is equal to E[Lcm] +mH(τ̄) + o(m)372

in the aperiodic case. To complete the proof of Theorem 5 we just use Fact 1 applied to Lm.373

5 Conclusions374

In this paper we analyze the Lempel-Ziv’78 algorithm for binary Markov sources, a problem375

left open since the algorithm inception. To handle the strong dependency between Markov376

phrases, we introduce and precisely analyze the so called tail symbol which is the first symbol377

of the next phrase in the LZ’78 parsing. We focus here on the large deviations for the number378

of phrases in the LZ78 and also give a precise asymptotic expression for the redundancy which379

is the excess of LZ78 code over the entropy of the source. In future work we plan to extend380

our analysis to non-binary Markov sources and present some bounds on the central limit381

theorem. Furthermore, we shall study LZ78 for Markov sources of higher order, however, this382

will require a new approach to the tail symbols which may span over consecutive phrases.383
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Appendix: Proofs of Theorem 3(i)-(ii)423

A Proof of Theorem 3(i): Mean424

We first analyze asymptotically X(z) = (Xa(z), Xb(z)) that satisfies the system of differential-425

functional equations (6). We solve this system, and then apply Mellin transform and426

depoissonization to prove Theorem 3(i).427

Since for all integer m, we have T cm ≤ m, we notice that the function Xc(z) is O(z) both428

when z → ∞ and when z → 0. Thus the function X(z) has no Mellin transform defined429

as Xc(s) =
∫∞

0 Xc(z)zs−1dz (see [16] for more on the Mellin transform). To correct this430

we introduce X̃c(z) = Xc(z)−Gc(z) with Gc(z) = (E[T c1 ]z + E[T c2 ]z2/2)e−z which is O(z3)431

when z → 0, where E[T c1 ] and E[T c2 ] are defined in (7).432

The Mellin transform X∗c (s) of X̃c(z) on the strip <(s) ∈] − 3,−1[ exists. The Mellin433

transform of ∂zX̃c(z) exists too on the strip <(s) ∈]− 2, 0[. Thus the two Mellin transforms434

coexist on the strip <(s) ∈]− 2,−1[ and satisfies [16]435

−(s− 1)(X∗c (s− 1) +G∗c(s)) +X∗c (s) +G∗c(s) = P (a|c)−s(X∗a(s) +G∗a(s)) + P (b|c)−s(X∗b (s) +G∗b(s))436

where G∗c(s) for c ∈ A is the Mellin transform of Gc(z) and has the explicit expression437

E[T c1 ]Γ(1 + s) + E[T c2 ]Γ(s+ 2)/2. This expression is here for completeness.438

An alternative but convenient way to see this equations is to consider the vector X∗(s)439

made of the quantities X∗c (s), c ∈ A which is also the Mellin transform of the vector X̃(z)440

made of the coefficients X̃c(z). This yields the linear equation441

−(s− 1)(X∗(s− 1) + G∗(s− 1)) + X∗(s) + G∗(s) = P(s)(X∗(s) + G∗(s)) (A.1)442

where G∗(s) is the vector of the G∗c(s). It can be rewritten in

(s− 1)(X∗(s− 1) + G∗(s− 1)) = (I−P(s))(X∗(s) + G∗(s)).

This kind of equation has been studied in [6] where we introduce a new function x(s)

X∗(s) + G∗(s) = Γ(s)x(s).

Thus the equation becomes x(s− 1) = (I−P(s))x(s), which leads to x(s) =
∏
i≥0(I−P(s−443

i))−1K where K is a constant vector. Notice that the matrices very likely don’t commute444

thus the product order is specified from the left to right. Indeed we have445

K =

∏
j≥2

(I−P(−j))−1

−1

x(−2) =
j=2∏
j=−∞

(I−P(j))x(−2). (A.2)446

To handle it we need an explicit formula for x(−2). The following lemma from [6] is447

useful in this regard. We provide a proof for completeness.448

I Lemma 12. Let {fn}∞n=0 be a sequence of real numbers having the Poisson transform449

F̃ (z) =
∞∑
n=0

f̃n
zn

n! e
−z :=

∞∑
n=0

fn
zn

n! , (A.3)450

which is an entire function. Furthermore, let its Mellin transform F (s) have the following
factorization

F (s) =M[F̃ (z); s] = Γ(s)γ(s).
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Assume that F (s) exists for <(s) ∈ (−2,−1), and that γ(s) is analytic for <(s) ∈ (−∞,−1).451

Then452

γ(−n) =
n∑
k=0

(
n

k

)
(−1)kf̃k = (−1)nfn, for n ≥ 2. (A.4)453

Proof. Notice that fn and f̃n are related by [16]

f̃n =
n∑
k=0

(
n

k

)
(−1)n−kfk , n ≥ 0 .

Define for some fixed M ≥ 2, the function F̃M (z) =
∑M−1
n=0 fn

zn

n! . Due to our assumptions,
we can continue F (s) analytically to the whole complex plane except s = −2,−3, . . . . In
particular, for <(s) ∈ (−M,−M + 1) we have F (s) =M[F̃ (z)− F̃M (z); s]. As s→ −M , due
to the factorization F (s) = Γ(s)γ(s), we have

F (s) = 1
s+M

(−1)M

M ! γ(−M) +O(1) ;

thus by the inverse Mellin transform, we have454

F̃ (z)− F̃M (z) = (−1)M

M ! γ(−M)zM +O(zM+1) as z → 0 . (A.5)455

But456

F̃ (z)− F̃M (z) =
∞∑
i=M

fn
zn

n! = fM
zM

M ! +O(zM+1) . (A.6)457

Comparing (A.5) and (A.6) shows that γ(−M) = (−1)MfM =
∑M
k=0

(
M
k

)
(−1)kf̃k. J458

Now we can compute x(−2) using above and (7) leading to459

x(−2) =
[
T a2 − 2P (a|a)
T b2 − 2P (a|b)

]
. (A.7)460

In another notation x(−2) = (P2 − P)ea, where ea is the vector made of a single 1 at a461

position and zero otherwise.462

Next, we notice that the vector

Γ(s)
∏
i≥0

(I−P(s− i))−1
j=−2∏
j=−∞

(I−P(j))x(−2)

may have a double pole on s = −1 since Γ(s) has a pole and also (I − P(s))−1 since
I−P(−1) = I−P is singular. But in fact the pole multiplicity is reduced by one, as prove
below. Let us also define

Q(s) =
∏
i≥1

(I−P(s− i))−1
j=−2∏
j=−∞

(I−P(j)).

Then x(s) = (I−P(s))−1Q(s)x(−2).463

We notice that when s→ −1, then Q(s) = I + (s+ 1)Q′(−1) +O((s+ 1)2). Furthermore464

let λ(s) be the main eigenvalue of matrix P(s) and 1(s) and π(s) be respectively the right465
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and left main eigenvectors. We have λ(−1) = 1, 1(−1) = 1 is all made of one’s, and π(−1)466

is the stationary distribution of the Markov source.467

From the matrix spectral representation [16] we have468

P(s) = λ(s)1(s)⊗ π(s) + R(s) = λ(s)Π(s) + R(s) (A.8)469

where R(s) is the automorphism of the eigenplan orthogonal to the main eigenvector and470

Π(s) = 1(s)⊗ π(s) where ⊗ is the tensor product. Note that Π ·P = P ·Π = Π. Then471

(I−P(s))−1 = 1
1− λ(s)1(−s)⊗ π(s)472

− 1
λ′(−1) (1′(−1)⊗ π(−1) + 1⊗ π′(−1)) + R(−1)−1 +O(s+ 1).473

Finally474

(I−P(s))−1Q(s)x(−2) = 1⊗ π(s)(I−P)ea
1− λ(s) − 1

λ′(−1) (1′(−1)⊗ π + 1⊗ π′(−1))475

+R−1(−1) + (s+ 1)
1− λ(s)1⊗Q′(−1) +O(s+ 1).476

Since
s+ 1

1− λ(s) → −
1

λ′(−1)
when s→ −1, and ΠP(I−P)ea = (Π−Π)ea = 0. Also477

R−1(−1)(I−P)Pea = Pea − 〈πPea〉1 = Pea − 〈πea〉1. (A.9)478

We finally have479

lim
s→−1

x(s) = Pea − πa1−
1

λ′(−1)1〈(π′(−1) + πQ′(−1)) (I−P)Pea〉, (A.10)480

where πa is the coefficient of the stationary distribution π at symbol a.481

Now we are in position to establish asymptotics of Xc(z) for large z and through482

depoissonization asymptotics of E[T cm]. The inverse Mellin transform is483

X̃c(z) = 1
2iπ

∫ x+i∞

x−i∞
X∗c (s)z−sds (A.11)484

valid for all x ∈]− 2,−1[. Remembering that Tc(z) = X̃c(z) + P (a|c)z we have indeed485

X̃(z) = 1
2iπ

∫ x+i∞

x−i∞
Γ(s)x(s)z−sds− 1

2iπ

∫ x+i∞

x−i∞
G∗(s)z−sds (A.12)486

We know that T(z)− X̃(z) is decaying exponentially fast when z →∞.487

Moving the line of integration toward the right, we meet a single pole at s = −1 of
G∗(s)z−z and its residues is −zPea. Then

1
2iπ

∫ x+i inf ty

x−i∞
G∗(s)z−sds = −Pea +O(z−M )

for all M > 0.488

The value −1 is also a simple pole for z−sΓ(s)x(s). We know that its residue is489

−z
(

Pea − πa1−
1

λ′(−1)1〈(π′(−1) + πQ′(−1)) (I−P)Pea〉
)
. (A.13)490
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Therefore we have491

X(z) = z

(
πa + 1

λ′(−1)1〈(π′(−1) + πQ′(−1)) (I−P)Pea〉
)

1 + o(z). (A.14)492

For irrational case, we know that s = −1 is the only pole on the line <(s) = −1, leading to493

the error term o(z) coming from other poles of (I−P(s))−1 which may occur on the right494

half plan of s = −1.495

But in the rational case, there is the possibility of other poles regularly spaced on the496

axis <(s) = −1 with some specific matrices P detailed in [6] where the coefficients αabc are497

introduced. In these very specific cases (the uniform probability distribution on A is one498

of them) the o(z) term should be replaced by a term zQc(log z) + O(z1−ε), where Qc is a499

periodic vector of very small amplitude and mean zero, and ε > 0 depends on the matrix P.500

This proves Theorem 3(i).501

B Proof of Theorem 3(ii): Variance502

We now analyze asymptotically V(z) = (Va(z), Vb(z)) that satisfies the system of differential-
functional equations (8). In order to apply depoissonization, for θ ∈ [0, π/2] we define C(θ)
as the complex cone containing the complex number z such that | arg(z)| ≤ θ on increasing
domains [16; 5]

Ck(θ) = {z, z ∈ C(θ)&|z| ≤ ρk}

with ρ = minc{ 1
P (a|c) ,

1
P (b|c)}.503

Our first goal is to prove that Vc(z) = O(z). We shall use use the increasing domain504

approach [16] applied to (8) following the footsteps of the proof of Lemma 7A of [3]. From505

Fact 1 of [3] we conclude that506

Vc(z) = Vc(ρz)e−z(1−ρ) + e−z
∫ z

ρz

ex (Va(P (a|c)x) + Vb(P (b|c)x) + g(x)) dx (A.15)507

where g(z) = P (a|c)− P 2(a|c) + [Xc
z(z)]2 = O(1). Indeed, it follows from Fact 1 of [3] that508

the differential equation like509

f ′(z) = b(z)− a(z)f(z) (A.16)510

satisfies
f(z) = f(z0)eA(z0)−A(z) +

∫ z

z0

b(x)eA(x)−A(z)dx

where A(z) =
∫
a(z) is the primitive function of a(z). Setting in (A.16) f(z) = Vc(z),511

b(z) = Va(P (a|c)z) + Vb(P (b|c)z) + g(z) and a(z) = 1 we obtain (A.15).512

Now we apply induction over the increasing domains. In short, we assume that for513

z ∈ Ck(θ) we have |Vc(z)| ≤ Bk|z| for some Bk. Using the induction of the increasing514

domains we prove, as in the Appendix of [3] that Bk are bounded. This completes the proof,515

after applying the depoissonization lemma of [4].516

In order to find a precise estimate of the asymptotic development of V(z) we denote
V∗(s) the Mellin transform of V(z). From (8) we arrive at

−(s− 1)V∗(s− 1) + V∗(s) = P(s)V∗(s) + g∗(s),
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where g∗(s) is the Mellin transform of the vector made of the coefficients (∂zXc(z))2. Let
V∗(s) = Γ(s)B(s) and g∗(s) = Γ(s)G(s). Then

B(s) = (I−P(s))−1 (B(s− 1) + G(s)) .

The quantity (I−P(s))−1 has a pole at s = −1. Together with Γ(s) it would give a double517

pole at s = −1 which is not possible, as proved above. Indeed, notice that the coefficient at518

the double pole at s = 1 is Π(B(−2) + G(−1). But G(−1) is the the coefficient at z of g(z)519

and B(−2) is the coefficient at z2 of V(z), as already proved in Lemma 12. Then we easily520

see that B(−2) + G(−1) = P2ea −Pea, and consequently the coefficient at the double pole521

at s = 1− is equal to Π(P2ea −Pea) = (Π−Π)ea = 0, as desired.522

Therefore, the contribution of pole s = −1 to the asymptotic of V(z) is B(−1) becomes523

B(−1) = 1
λ′(−1) (〈π′(−1)(B(−2) + G(−1))〉+ 〈π(B′(−2) + G′(−1))〉) 1524

+(I−R(−1))−1(B(−2) + G(−1)).525

Notice also that (I−R(−1))−1(P2ea −Pea) = 〈πPea〉1−Pea = 〈πea〉1−Pea.526

The real issue here is how to compute B′(−2) and G′(−1), which we address next.527

I Lemma 13. Let a function g(z) =
∑
n≥1

an
n! z

n and f(z) = g(z)e−z =
∑
n≥1

bn
n! z

n. Let528

also gk(z) =
∑
n≤k

an
n! z

n and fk(z) = f(z)− gk(z)e−z with f∗k (s) being its Mellin transform529

defined for −k − 1 < <(s) < 0. Then530

lim
s→−k

(
f∗(s)
Γ(s)

)′
= f∗k (−k)

(
1

Γ(s)

)′
s=−k

+
∑
n≤k

an
n!

(
s〈n〉

)′
s=−k

531

= f∗k (−k)(−1)n−1n! +
∑
n≤k

an
n!

(
s〈n〉

)′
s=−k

532

where s〈n〉 = Γ(s+n)
Γ(s) = (s+ n− 1)× · · · × s.533

Proof. We start with a simple identity
f∗(s)− f∗k (s)

Γ(s) =
∑
n≤k

an
n! s
〈n〉

which is easy to derive. But the Mellin transform of fk(z) and f∗k (s) are defined for
−k− 1 < <(s) < 0. The derivative of f∗k (s)/Γ(s) at s = −k is equal to f∗k (−k)

(
Γ−1(s)

)′
s=−k

since Γ−1(−k) = 0. Finally we notice that [16]

lim
s→−k

(
1

Γ(s)

)′
= lim
s→−k

Ψ(s)
Γ(s) = lim

s→−k

(s+ n)Ψ(s)
(s+ n)Γ(s) = (−1)n−1n!

where Ψ(s) is the psi function. J534

In absence of specific properties on fk(z) there is no other way than numerical computation535

to get an estimate of f∗k (−k). Finally, we can present a precise asymptotic expression for the536

variance.537

I Theorem 14. We have V(z) = ω̄a1z + o(z) in the aperiodic case, and in the periodic case538

V(z) = ω̄a1z +Q2(log z)z +O(z1−ε) for some ε > 0 and Q2(.) being a periodic function of539

small amplitude and mean zero, where540

ω̄a = 1
λ′(−1) (〈π′(−1)((P− I)Pea〉+ 〈π(B′(−2) + G′(−1))〉) + 〈πea〉. (A.17)541

Notice that ω = B(−1) + Pea.542
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