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Abstract13

We study the partial duplication dynamic graph model, introduced by Bhan et al. in [3] in which a14

newly arrived node selects randomly an existing node and connects with probability p to its neighbors.15

Such a dynamic network is widely considered to be a good model for various biological networks such16

as protein-protein interaction networks. This model is discussed in numerous publications with only17

a few recent rigorous results, especially for the degree distribution. In particular, recently Jordan [9]18

proved that for 0 < p < 1
e
the degree distribution of the connected component is stationary with19

approximately a power law. In this paper we rigorously prove that the tail is indeed a true power law,20

that is, we show that the degree of a randomly selected node in the connected component decays21

like C/kβ where C an explicit constant and β 6= 2 is a non-trivial solution of pβ−2 + β − 3 = 0.22

To establish this finding we apply analytic combinatorics tools, in particular Mellin transform and23

singularity analysis.24
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1 Introduction33

Recent years have seen a growing interest in dynamic graph models [10]. These models are34

often claimed to describe well various real-world structures, such as social networks, citation35

networks and various biological data. For instance, protein-protein and citation networks36

are widely viewed as driven by an internal evolution mechanism based on duplication and37

mutation. In this case, new nodes are added to the network as copies of existing nodes38

together with some random divergence. It has been claimed that graphs generated from these39

models exhibit many properties characteristic for real-world networks such as power-law40

degree distribution, the large clustering coefficient, and a large amount of symmetry [4].41

However, some of these results turned out not to be correct; in particular, the power-law42

degree distribution was disproved in [7]. In this paper we focus on the tail distribution of43

the connected component of such networks and show rigorously the existence of a power law44

improving and making more precise recent result of Jordan [9].45

To focus, we study here one of the more interesting models in this area known as the46

partial (pure) duplication model, in which a new node selects an existing node and connects47

to its neighbors with probability p. More precisely, the model is defined formally as follows:48

let 0 ≤ p ≤ 1 be the only parameter of the model. In discrete steps we repeat the following49

procedure: first, we choose a single vertex u uniformly at random. Then, we add a new50

vertex v and for all vertices w such that uw is an edge (i.e., w is a neighbor of u) we flip a51

coin independently at random (heads with probability p, tails with 1− p) and we add vw52

edge if and only if we got heads. The partial duplication model was defined by Bhan et al.53

in [3] and then was further studied in [1, 4, 7, 9, 8].54

The case when p = 1, also called the full duplication model, was analyzed recently in the55

context of graph compression in [13]. In particular, it was formally proved that the expected56

logarithm of the number of automorphisms (symmetries) for such graphs on n vertices is57

asymptotically Θ(n logn), which is a quite surprising result.58

The partial duplication case 0 < p < 1 was given much more attention, however, with very59

few rigorous results. It was first and foremost analyzed to find the stationary distribution of60

the degree, that is,61

fk = lim
n→∞

fk(n) = lim
n→∞

Fk(n)
n

= lim
n→∞

Pr[deg(Un) = k],62
63

where Fn(k) is the average number of vertices of degree k in a graph generated by this model64

and Un is a random variable denoting vertex chosen uniformly at random from a graph on65

n vertices generated from the partial duplication model. Hermann and Pfaffelhuber in [7]66

proved that there exist a limit with f0 = 1 and fk = 0 for all other k when p ≤ p∗ = 0.58 . . .67

(that is, p∗ being the unique root of pep = 1). They have also shown that if p > p∗ there68

exists only a defective distribution of the degrees with a0 = c < 1 for a certain constant c69

(depending on the initial graph) and fk = 0 for all other k. For the average degree degree70

distribution see also [14].71

This result, although it refuted the power law behavior of the whole graph claimed by72

[4, 2], still left the possibility that it might be the case for the large connected component of a73

graph generated by the partial duplication model. Note that by a simple inductive argument74

it is obvious that in such a graph there can only be one component containing non-isolated75

vertices, so there is no ambiguity. This was exactly the route pursued by Jordan in [9]. Using76

probabilistic tools such as the quasi-stationary distribution of a certain continuous time77

Markov chain embedding of the original discrete graph growth process, Jordan was able to78

prove that for 0 < p < 1
e there is an approximate power law behavior in the pure duplication79
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graphs. More precisely, let us define for a vertex (denoted by Un) picked uniformly at random80

from a connected component of a graph on n vertices generated from the duplication model81

the following conditional probability82

ak(n) = Pr[deg(Un) = k|deg(Un) 6= 0] = fk(n)∑∞
i=1 fi(n)

= fk(n)
1− f0(n) . (1)83

84

Jordan proved that ak(n) → ak as n → ∞ as long as the underlying process is positive85

recurrent which holds for for p < 1
e [9]. Moreover, Jordan showed that for β(p) 6= 2 being86

a solution of pβ−2 + β − 3 = 0 the tail behavior of ak is approximately a power law in the87

sense that it is lighter than any heavier tailed power law (with any index β(p) + ε, ε > 0)88

and heavier than any lighter tailed power law (with index β(p)− ε, ε > 0).89

It is worth noting that it partially confirmed the non-rigorous result by Ispolatov et al.90

from [8], who claimed that the connected component exhibits a power-law distribution both91

for 0 < p < 1
e (with index β(p) as above), and for 1

e ≤ p <
1
2 (with index 2). Furthermore,92

by the virtue of (1) we observe following [9, 7] that f0(n) = 1− o(1) and fk(n) = o(1) for93

k ≥ 1 which begs the question of the asymptotic behavior of fk(n) and Fk(n) for large k94

and n. We can only say for certainty that fk(n) does not grow linearly with n as suggested95

in some papers (cf. [2]). We conjecture that Fk(n) = O(n−αk−β) for some 0 < α < 1 and96

β > 2. We leave this problem for future research.97

In this paper we finally establish the precise behavior of the tail of the degree distribution98

for pure duplication model for 0 < p < 1
e completing the work of Jordan [9]. More precisely,99

we use tools of analytic combinatorics such as the Mellin transform and singularity analysis100

to prove in Theorem 2 that the tail of a node degree in the connect component of the partial101

duplication model decays as C/kβ where C an explicit constant and β > 2 is a non-trivial102

solution of pβ−2 + β − 3 = 0.103

The paper is organized as follows: in Section 2 we present a formal definition of the104

model, introduce the tracked vertex approach, and the quasi-stationary distribution as105

defined by Jordan in [9]. In Section 3 we state our results and using Mellin transform and106

singularity analysis we establish our main results. In concluding Section 4 we indicate a107

possible extension of our findings and pointing to some further work.108

2 The model and Jordan’s approach109

We follow the standard graph-theoretical notation, e.g. from [5]. We consider only simple110

graphs, i.e. without loops or parallel edges.111

Let us recall first the definition of the pure duplication model. Let Gn0 = (Vn0 , En0)112

be an initial graph with a set of vertices Vn0 and a set of edges En0 , such that |Vn0 | = n0.113

Throughout the paper, we assume that Gn0 is fixed and connected. For n = n0, n0 + 1, . . .114

we build Gn+1 = (Vn+1, En+1) from Gn = (Vn, En) in the following way:115

1. pick a vertex u ∈ Vn uniformly at random,116

2. create a new node vn+1 and let Vn+1 = Vn ∪ {vn+1}, En+1 = En,117

3. for every w ∈ Vn such that uw ∈ En add edge vn+1w to En+1 independently at random118

with probability p.119

We call the process G = (Gn)∞n=n0
the partial duplication graph.120

Jordan in [9] introduced the continuous-time embedding of this process, defined as121

following: we start at time 0 with a fixed connected graph Γ0 = G0 and let (Γt)t≥0 be a122

continuous time Markov chain on graphs, where each vertex is duplicated independently123

at times following a Poisson process of rate 1, with the rules for duplication as in the pure124

duplication model.125

CVIT 2016
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Jordan also defined the so called vertex tracking approach: we pick a vertex from Γ0126

uniformly at random and then define the process (Vt)t≥0 in the following way: at time t127

we jump to a vertex v if and only if the vertex Vt− was duplicated and its „child” is v. He128

proved that for any k ≥ 1 and for (Ut)t≥0 being defined as a uniform choice of vertices over129

Γt we have130

lim
t→∞

Pr[deg(Ut) = k]
Pr[deg(Vt) = k] = 1.131

132

Therefore, asymptotically the behavior of a tracked vertex approximates the behavior of a133

random vertex in Γt when t→∞, and therefore in Gn when n→∞.134

The tracked vertex approach allowed Jordan to construct the generatorQ of the continuous-135

time Markov chain (deg(Vt))t≥0, defined over the state space N0, with the following transitions136

qj,k =
(
j

k

)
pk(1− p)j−k for 0 ≤ k ≤ j − 1,137

qj,j = −jp−
(
1− pj

)
,138

qj,j+1 = jp.139
140

Then we may proceed to the analysis of the quasi-stationary distribution (ak)∞k=1, i.e.141

the left eigenvector of a subset of Q, defined as ak = limn→∞ Pr[deg(Un) = k|deg(Un) 6= 0].142

We relate this distribution to the eigenvalue −λ (see [11] for details of this approach) being143

the solution of the equation AQ = −λQ, where A = (ak)∞k=1. This leads us to the following144

equation:145

∞∑
j=k

aj

(
j

k

)
pk(1− p)j−k = −(k − 1)pak−1 − (λ− kp− 1) ak (2)146

147

for k = 1, 2, 3, . . ..148

Using (2) and the generating function A(z) =
∑∞
k=0 akz

k Jordan found the following149

differential-functional equation150

A(pz + 1− p) = (1− λ)A(z) + pz(1− z)A′(z) +A(1− p). (3)151
152

We notice that the above equation implies that A(0) = 0. Since it is a probability distribution,153

the function A(z) exists for at least |z| ≤ 1. By letting z → 1− in (3) and assuming finite154

A′(1) we get A(1− p) = λA(1).155

Furthermore with the identity156

A′(z) = A(pz + 1− p)−A(1)
pz(1− z) − (1− λ)A(z)−A(1)

pz(1− z) (4)157

and letting z → 1− Jordan found158

A′(1) = −A′(1) + 1− λ
p

A′(1),159

160

namely, if A′(1) is non-zero and finite, then λ = 1− 2p. Finally, using the assumptions that161

the distribution (ak)∞k=0 is non-degenerate (i.e., A(1) = 1) and that the mean degree A′(1) is162

finite, Jordan found that for 0 < p < 1
e the quasi-stationary distribution ak does not have163

q-th moment for pq−2 + q − 3 < 0.164

In summary Jordan proved in [9] the following result.165
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I Theorem 1 ([9, Theorem 2.1(3)]). Assume 0 < p < 1
e . Let β(p) be the solution of166

pβ−2 + β − 3 = 0. Then the tail behaviour of (ak)∞k=0 has a power law of index β(p), in the167

sense that as k →∞,168

lim
k→∞

ak
kq

= 0 for q < β(p),169

lim
k→∞

ak
kq

=∞ for q > β(p).170
171

We should note that, although it’s missing from the statement of the theorem, β(p) is172

supposed to be non-trivial solution of pβ−2 + β − 3 = 0, i.e. other than β = 2. It may be173

checked that for the whole range 0 < p < 1
e it is guaranteed to be unique.174

In the next section we present our refinement of this theorem and provide precise175

asymptotics for (ak)∞k=0.176

3 Main results177

In this section we state and prove the main result of our paper that is a refinement of178

Theorem 1.179

I Theorem 2. If 0 < p < 1
e , then the stationary distribution (ak)∞k=0 of the pure duplication180

model has the following asymptotic tail behavior as k →∞:181

ak
kβ(p) = 1

E(1)− E(∞) ·
p−

1
2 (β(p)− 3

2 )2Γ(β(p)− 2)
D(β(p)− 2)(p−β(p)+2 + ln(p))Γ(−β(p) + 1)

(
1 +O

(
1
k

))
(5)182

183

where β(p) > 2 is the non-trivial solution of pβ−2 + β − 3 = 0, Γ(s) is the Euler gamma184

function and185

D(s) =
∞∏
i=0

(
1 + p1+i−s(s− i− 2)

)
, (6)186

E(1)− E(∞) = 1
2πi

∫
Re(s)=c

p−
1
2 (s− 1

2 )2 Γ(s)
D(s) ds, for c ∈ (0, 1).187

188

As we see from Figure 1, all coefficients in (3) are positive for 0 < p < 1
e .189

The rest of this section is devoted to the proof of our main result. We will accomplish190

it by a series of lemmas. The main idea is as follows: we take (3) and apply a series of191

substitutions to obtain a functional equation which is in suitable form for applying Mellin192

transform. Observe that we cannot apply directly Mellin transform to the functional equation193

(3) due to the term A(pz + 1− p).194

We already know that if A′(1) <∞ then λ = 1− 2p. We first substitute z = 1− v and195

B(v) = A(1− v) in (3). Thus196

A(1− pv) = 2pA(1− v) + pv(1− v)A′(1− v) +A(1− p),197

B(pv) = 2pB(v)− pv(1− v)B′(v) +A(1− p).198
199

Observe now that the functional equation on B(v) is suitable for the Mellin transform.200

However, to ease some computation we further let w = 1
v and C(w) = B

( 1
w

)
. Then201

B
( p
w

)
= 2pB

(
1
w

)
− p

w

(
1− 1

w

)
B′
(

1
w

)
+A(1− p),202

CVIT 2016
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(a) β(p) (b) E(1)− E(∞)

(c) D(β(p)− 2) (d) p−
1
2 (β(p)− 3

2 )2
Γ(β(p)−2)

(p−β(p)+2+ln(p))Γ(−β(p)+1)

Figure 1 Numerical values of different parts of (3) for 0 < p < 1
e
.

C

(
w

p

)
= 2pC(w) + p(w − 1)C ′(w) +A(1− p). (7)203

204

Therefore, we are essentially looking at a solution of (7) with boundary conditions205

C(1) = A(0) = 0 and limw→∞ C(w) = A(1) (which is equal to 1, as pointed out in [9]).206

Our objective is to find an asymptotic expansion for C(w) when w →∞. Notice that it207

is equivalent of finding the asymptotic expansion of A(z) when z → 1 by inferior values. For208

this purpose we will use the Mellin transform which is a powerful tool for extracting accurate209

asymptotic expansions [12]. Unfortunately we cannot directly apply the Mellin transform210

over function C(w) since we do not know the behavior of C(w) for w → 0. To circumvent this211

problem we search for a similar function E(w) defined by the following functional equation212

E

(
w

p

)
= 2pE(w) + p(w − 1)E′(w) +K (8)213

214

for some constant K for which the Mellin transform215

E∗(s) =
∫ ∞

0
ws−1E(w) dw216

217

exists in some fundamental strip.218
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To connect E(w) with our function C(w) we notice that we necessarily have C(1) = 0219

which corresponds to the fact that A(0) = 0. Clearly, if we know that E(w) is a solution of220

(8) with some finite values of E(1) and denoting E(∞) = limw→∞E(w), then we know also221

that222

C(w) = A(1) E(w)− E(1)
E(∞)− E(1) (9)223

224

is a solution of (7) with C(1) = 0 which also satisfies limw→∞ C(w) = A(1) = 1.225

Let us now proceed though definition and lemmas. We first define226

E∗(s) = p−
1
2 (s− 1

2 )2 Γ(s)
D(s) (10)227

for D(s) =
∏∞
i=0
(
1 + p1+i−s(s− i− 2)

)
defined already in (6).228

Now we notice that D(s) = 0 only if 1 + p1+i−s(s − i − 2) = 0 for some i ∈ N. This229

equation for 0 < p < 1
e has only two solutions: s = i+ 1 and s = i+ 1 + s∗, where s∗ is the230

non-trivial (i.e. other than s = 0) solution of ps + s− 1 = 0.231

Therefore, E∗(s) has only isolated poles of three types:232

for s = 0,−1,−2, . . ., introduced by Γ(s),233

for s = 1, 2, 3, . . ., introduced by 1
D(s) ,234

for s = s∗ + 1, s∗ + 2, s∗ + 3, . . ., introduced by 1
D(s) .235

Moreover, if we omit isolated poles, then D(s) converges to a non-zero finite value when236

Re(s) < 0 because pi−s exponentially decays. We summarize it in the next lemma.237

I Lemma 3. For Re(s) ∈ (−1, 0) and 0 < p < 1
e we have 1

|D(s)| absolutely convergent.238

Due to its technical intricacies, the proof of Lemma 3 was moved to the Appendix. In239

Figure 2 we present an example plot of 1
|D(s)| .240

Figure 2 Numerical values of 1
|D(c+it)| for p = 0.2 and c = −0.5.

CVIT 2016
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I Lemma 4. It holds that241

E∗(s) = p(s− 1)
ps + ps− 2pE

∗(s− 1).242

Proof. We have the identity243

p
1
2 (s− 1

2 )2

Γ(s) E∗(s) = p
1
2 (s− 3

2 )2

Γ(s− 1)E
∗(s− 1) 1

1 + p1−s(s− 2)244

Thus245

E∗(s) = p−
1
2 (s− 1

2 )2+ 1
2 (s− 3

2 )2

1 + p1−s(s− 2)
Γ(s)

Γ(s− 1)E
∗(s− 1) = p1−s

1 + p1−s(s− 2)(s− 1)E∗(s− 1)246

247

since Γ(s)
Γ(s−1) = s − 1. Multiplying by numerator and denominator by ps completes the248

proof. J249

We now state that for any given c ∈ (−1, 0)250

E(w) = 1
2πi

∫
Re(s)=c

E∗(s)w−s ds = 1
2πi

∫
Re(s)=c

p−
1
2 (s− 1

2 )2 Γ(s)
D(s)w

−s ds. (11)251

We notice that the integral converges for any complex value of w because from Lemma 3252

it follows that 1
|D(s)| is bounded by a constant and Γ(s)p− 1

2 (s− 1
2 )2 decays faster than any253

polynomial. Furthermore the value of E(w) does not depends on the value of quantity c254

thanks to Cauchy theorem.255

I Lemma 5. The function E(w) has function E∗(s) as Mellin transform with its fundamental256

strip being {s : Re(s) ∈ (−1, 0)}.257

Proof. We have258

|E(w)| ≤ |w|
−c

2π

∫ +∞

−∞
|E∗(c+ it)| exp(arg(w)t) dt.259

Now, it is easy to spot that E(c+ it) = O
(

exp
(
− t

2

2

))
since ln(p) < −1, thus the integral260 ∫ +∞

−∞ |E
∗(c + it)| exp(arg(w)t) dt absolutely converges and it follows that E(w) = O(w−c).261

Since it is true for any values of c ∈ (−1, 0) when w → 0 and w → ∞, then the Mellin262

transforms of function E(w) exists with the fundamental strip {s : Re(s) ∈ (−1, 0)}.263

Furthermore, its Mellin transform is E∗(s) because (11) is exactly the inverse Mellin264

transform formula. J265

I Lemma 6. It holds that266

Res
[
E∗(s− 1)p(s− 1)w−s, s = 0

]
= −K.267

268

Proof. The expression269

R(w) = E

(
w

p

)
− 2pE(w)− p(w − 1)E′(w)270

271

can be also expressed via an integral as272

R(w) = 1
2πi

∫
Re(s)=c

E∗(s)
(
psw−s − 2pw−s + spw−s − spw−s−1) ds273



P. Jacquet and K. Turowski and W. Szpankowski 23:9

which can be rewritten as following274

R(w) = 1
2πi

∫
Re(s)=c

E∗(s) (ps − 2p+ ps)w−s ds275

− 1
2πi

∫
Re(s)=c+1

E∗(s− 1)p(s− 1)w−s ds276

= 1
2πi

∫
Re(s)=c

((ps + ps− 2p)E∗(s)− p(s− 1)E∗(s− 1))w−s ds277

− Res[p(s− 1)E∗(s− 1), s = 0]278
279

since280 ∫
Re(s)=c+1

p(s− 1)E∗(s− 1)w−s ds−
∫

Re(s)=c
p(s− 1)E∗(s− 1)w−s ds281

282

define a contour path which encircles a single pole at s = 0 in the counter-clockwise (i.e.283

positive) direction.284

Furthermore from Lemma 5 we have285

(ps + ps− 2p)E∗(s)− p(s− 1)E∗(s− 1) = 0,286

therefore the integral vanishes and we get R(w) = −Res[p(s− 1)E∗(s− 1), s = 0] = K. J287

I Lemma 7. We have288

K = p−
1
8 (1− 2p)
D(0) , E(∞) = − p−

1
8

D(0) .289

290

Furthermore,291

E(∞)− E(1) = − 1
2πi

∫
Re(s)=c

E∗(s) ds, for c ∈ (0, 1). (12)292

293

Proof. From Lemma 6 we infer that294

K = −Res[p(s− 1)E∗(s− 1), s = 0] = p−
1
8

D(−1) .295

296

Moreover, from the definition we know that D(0) = (1− 2p)D(−1), which establishes the297

first identity.298

To find an expression for E(∞) is a little more delicate. Indeed we have from (11) the299

expression300

E(w) = −Res
[
E∗(s)w−s, s = 0

]
+ 1

2πi

∫
Re(s)=c′

E∗(s)w−s ds301

by assuming the contour path is moved right to origin for some c′ ∈ (0, 1). It turns out that302

0 is the single pole encountered in the move, as D(s) 6= 0 for all other s with Re(s) ∈ (0, 1).303

Furthermore, the integral on Re(s) = c′ is in O(w−c′), which allows to conclude that304

E(w) = −Res[E∗(s)w−s, s = 0] +O(w−c′) with c′ ∈ (0, 1), thus305

E(∞) = lim
w→∞

E(w) = −Res
[
E∗(s)w−s, s = 0

]
= −Res[E(s), s = 0] = − p−

1
8

D(0) .306

CVIT 2016
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Re(s)

Im(s)

−3 −2 −1 0 1 2 3

−3

−2

−1

1

2

3

Figure 3 Example integration area for E∗(s) and E(w) with s∗ = 0.7 and M = 2.5.

Finally,307

E(∞)− E(1) = −Res[E(s), s = 0]− 1
2πi

∫
Re(s)=c

E∗(s) ds = − 1
2πi

∫
Re(s)=c′

E∗(s) ds308

309

for, respectively, c ∈ (−1, 0) and c′ ∈ (0, 1) since310

1
2πi

∫
Re(s)=c′

E∗(s) ds− 1
2πi

∫
Re(s)=c

E∗(s) ds = Res[E(s), s = 0].311

312

This completes the proof. J313

We notice that D(0) > 0 since every element in the product is positive for 0 < p < 1
e .314

Therefore K > 0 and E(∞) < 0.315

Finally we proceed with the proof of our main theorem.316

Proof of Theorem 2. We repeat the observation that E∗(s) has poles for s ∈ {1, 2, . . .} ∪317

{s∗ + 1, s∗ + 2, . . .} ∪ {0,−1,−2, . . .}, for s∗ – the non-zero solution of ps + s− 1 = 0. Note318

that if 0 < p < 1
e , then s

∗ > 0.319

Therefore, if we choose any c ∈ (−1, 0) and draw a rectangle as presented in Figure 3, we320

are in position to write321

C(w) = 1
E(∞)− E(1)

1
2πi

∫
Re(s)=c

E∗(s)w−s ds− E(1)
E(∞)− E(1)322

= − 1
E(∞)− E(1)

(
E(1) + Res[E∗(s), s = 0] + Res

[
E∗(s)w−s, s = 1

])
323

− 1
E(∞)− E(1)

(
Res
[
E∗(s)w−s, s = 2

]
+ Res

[
E∗(s)w−s, s = s∗ + 1

])
324

+ 1
E(∞)− E(1)

1
2πi

∫
Re(s)=M

E∗(s)w−s ds. (13)325

326

for any number M ∈ (2, 2 + s∗).327
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The quantity328

1
2πi

∫
Re(s)=M

E∗(s)w−s ds = O(w−M )329

330

since w−s = w−Mw− Im(s) and the integral in E∗(s)w− Im(s) absolutely converge. Again this331

holds by a similar argument that was used in Lemma 3: p− 1
2 (s− 1

2 )2 decays exponentially332

faster than Γ(s)
D(s)w

Im(s) for complex s.333

By virtue of the residue theorem we have334

C(w) = − 1
E(∞)− E(1)

(
E(1) + Res[E∗(s), s = 0] + Res[E∗(s), s = 1]w−1)

335

− 1
E(∞)− E(1)

(
Res[E∗(s), s = 2]w−2 + Res[E∗(s), s = s∗ + 1]w−1−s∗

)
336

+O(w−M ). (14)337
338

This formula gives us an asymptotic expansion of C(w) up to order w−M whereM ∈ (2, 2+s∗).339

In fact, if we want more precise computations, we may write an expansion to any desired340

value M , just by including all the residues of the poles in k (k ∈ N) and k + s∗ (k ∈ N+)341

which are smaller than M as we know that for 0 < p < 1
e all poles are single.342

Next, we can compute the various residues, e.g.343

Res
[
E∗(s)w−s, s = 0

]
=
[
p−

1
2 (s− 1

2 )2 w−s

D(s) , s = 0
]

= p−
1
8

D(0) = −E(∞),344

Res
[
E∗(s)w−s, s = 1

]
=
[

p−
1
2 (s− 1

2 )2Γ(s)
p1−s − (s− 2)p1−s ln(p)

w−s

D(s− 1) , s = 1
]

345

= p−
1
8

1 + ln(p)
w−1

D(0) ,346

Res
[
E∗(s)w−s, s = s∗ + 1

]
=
[

p−
1
2 (s− 1

2 )2Γ(s)
p1−s − (s− 2)p1−s ln(p)

w−s

D(s− 1) , s = s∗ + 1
]

347

= p−
1
2 (s∗+ 1

2 )2Γ(s∗)
p−s∗ − (s∗ − 1)p−s∗ ln(p)

w−s
∗−1

D(s∗)348

= p−
1
2 (s∗+ 1

2 )2Γ(s∗)
p−s∗ + ln(p)

w−s
∗−1

D(s∗) .349

350

Observe that in the formulas above both 1 and s∗+1 are not the zeros of p1−s−(s−2)p1−s ln(p),351

so all the presented expressions have finite value.352

Now we are in position to use the classic Flajolet-Odlyzko transfer theorem [6] to (9) and353

(14) and obtain354

A(z) = 1− 1
E(∞)− E(1)

p−
1
8

1 + ln(p)
1− z
D(0)355

− 1
E(∞)− E(1)

p−
1
2 (s∗+ 1

2 )Γ(s∗)
p−s∗ + ln(p)

(1− z)1+s∗

D(s∗)356

− 1
E(∞)− E(1) Res[E∗(s), s = 2](1− z)2

357

− 1
E(∞)− E(1) Res[E∗(s), s = s∗ + 2](1− z)s

∗+2 + o((1− z)2+s∗).358

359
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Finally, we use the fact that (1− z)α for α ∈ N is a polynomial and does not contribute360

to the asymptotics. And for α ∈ R+ \ N [6] we have361

[zk](1− z)α = k−α−1

Γ(−α)

(
1 +O

(
1
k

))
,362

[zk]o(1− z)α = o(k−α−1).363
364

This lead us to the final result, which holds for large k:365

ak = [zk]A(z)366

= − 1
E(∞)− E(1)

p−
1
2 (s∗+ 1

2 )2Γ(s∗)
(p−s∗ + ln(p))Γ(−s∗ − 1)

1
D(s∗)k

−s∗−2
(

1 +O

(
1
k

))
.367

368

Note that since s∗ is the non-trivial real solution of ps + s− 1 = 0, we may equivalently369

write the exponent as β(p) = s∗ + 2 – the the non-trivial (i.e. other than β(p) = 2) real370

solution of the equation pβ−2 + β − 3 = 0.371

Putting all the results together we obtain (5) of Theorem 2. Now it is sufficient to confirm372

that if 0 < p < 1
e , then the tail exponent β(p) > 2, which means that A′(1) is indeed finite.373

This proves Theorem 2. J374

4 Discussion375

We observe that an eventual extension of our analysis for λ = 1 − 2p up to p < 1
2 would376

be almost identical, since the residues remain the same. The only difference would be that377

s∗ ∈ (−1, 0), therefore the fundamental strip would need to be taken more cautiously, with378

c ∈ (−1, s∗). Therefore, our analysis might explain the non-rigorous claim in [8] that for379

1
e < p < 1

2 the index of the power law is equal to 2.380

However, for 1
e < p < 1

2 a formal application of residue theorem would result in ak ∼ k−β381

with β < 2 leading to
∑∞
k=0 k

qak = ∞ for q ≥ 1, which would violate the condition that382

A′(1) is finite. We also note the fact that Jordan [9, Proposition 3.7] has shown that the383

dual Markov chain with respect to the eigenvalue λ = 1− 2p is transient for all p > 1
e .384

However, when A′(1) is infinite we indicate there might be a possible way to extend our385

analysis. In particular, we present the following lemma.386

I Lemma 8. For the pure duplication model with 0 < p < 1
2 it holds that387

λ = 1− p(1− α)− p1−α
388
389

where α is such that limz→1(1− z)αA′(1) is finite and non-zero.390

Proof. Assume that for A′(1) =
∑∞
k=1 kak (the expected degree of the quasi-stationary391

distribution) it holds that limz→1(1 − z)αA′(z) is finite and non-zero for some 0 ≤ α < 1.392

Then from the (3) we have393

lim
z→1

(1− z)αA′(z) = lim
z→1

A(pz + 1− p)− (1− λ)A(z)−A(1− p)
pz(1− z)1−α394

= lim
z→1

p1−α(1− (pz + 1− p))αA′(pz + 1− p)− (1− λ)(1− z)αA′(z)
p(1− z) + pz(α− 1)395

396

which completes the proof. J397
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A Proof of Lemma 3429

We now proceed to the proof of Lemma 3. First, we introduce f(s) = ps + ps− 2p, so that430

D(s) =
∞∏
i=0

f(s− i)p−(s−i).431

432

Observe that f(s) has only two roots, given by Lambert function W , which is the inverse433

of function xex: W−1(x) = xex. There are only two roots for real numbers which corresponds434

to two branches W0 and W−1 of the function W . Therefore, if we pick any c < 0, then it is435

smaller than the roots of f(s) and the distance between c and any root is at least 1.436

I Lemma 9. For all ε > 0 and c < 0 we have minRe(s)=c |f(s)| ≥ Θ(p(1−ε)(c−1)) > 0.437

Proof. We have f ′(s) = ps ln(p) + p and f ′′(s) = ps ln2(p).438

Let us consider a complex disk of radius R = p−ε(c−1) (R < 1) centered on s. For439

θ ∈ (0, 2π) by virtue of Taylor-Young theorem we have:440

f(s+Reiθ) = f(s) + f ′(s)eiθR+
∫ R

0
f ′′(s+ ρeiθ)e2iθρdρ.441

442

We observe that443 ∣∣∣∣∣
∫ R

0
f ′′(s+ ρeiθ)e2iθρ dρ

∣∣∣∣∣ =

∣∣∣∣∣ps ln2(p)e2iθ
∫ R

0
pρ exp(iθ)ρdρ

∣∣∣∣∣444

=
∣∣∣ps (eR exp(iθ) ln(p) [R exp(iθ) ln(p)− 1] + 1

)∣∣∣445

= O
(∣∣psR2e2iθ∣∣) = O

(
pcR2) ,446

447

where the last line follows from the fact that asymptotically ex(x− 1) + 1 = O(x2) for x→ 0.448

When θ varies the quantity f ′(s)eiθR describes a circle of radius |f ′(s)|R = −pc ln(p)R449

around f(s). The error term bound implies that each point of f(s + Reiθ) is at distance450

O(pcR2) of this circle. Thus the image by f of the disk with center s and radius R contains451

the disk of center f(s) and radius452

R|f ′(s)| −O(R2pc) = −p−ε(c−1)pc ln(p)−O
(
p−2ε(c−1)pc

)
453

= p(1−ε)(c−1)
(
−p ln(p)−O(p−ε(c−1))

)
= Θ(p(1−ε)(c−1)).454

455

We know that 0 cannot be in this disk, otherwise the function f(s) would have other456

roots than the expected ones, thus we necessarily have |f(s)| ≥ Θ(p(1−ε)(c−1)). J457

Let now g(s) = p−sf(s) so that458

D(s) =
∞∏
i=0

g(s− i).459

460

I Lemma 10. For t real and c < 0, we have the following inequality

|g(c+ it)| ≥ |1− p1−c(2− c)− p1−c|t||.

Proof. We have461

|g(c+ it)| = |p−cf(c+ it)| = |pit + p1−c(c− 2) + p1−cit|462

≥ ||pit| − |p1−c(c− 2)| − |p1−cit||.463
464

But now we observe that |pit| = 1, which completes the proof. J465
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I Lemma 11. For c ∈ (−1, 0) and for all real number t outside any neighborhood of 0, for466

all ε > 0 we have 1
D(c+it) = O(exp

(
−(log2

p |t|/2 +O(log |t|)
)
.467

Proof. From Lemmas 9 and 10 we have, neglecting a term p1−c+k(2− c+ k) which exponen-
tially decays:

|D(c+ it)| ≥
∏
k≥0

max{Bp−ε(1−c),
∣∣1− |t|/pk+1−c∣∣}

We denote k(t) = −dc+ logp |t|e. To simplify we assume that t = pc−k(t), ie. c+ logp |t| is468

integer, we have469

|D(c+ it)| ≥

 ∏
k<k(t)

(|t|/t(c− k)− 1)

B′|t|−ε
 ∏
k>k(t)

(1− |t|/t(c− k))

470

≥

 ∏
k<k(t)

(
p−k − 1

)B′|t|−ε
∏
k>0

(1− pk) (15)471

Since p−k−1 = p−k(1−pk) we get
∏
k<k(t)(p−k−1) ≥ pk(t)(k(t)−1)/2∏

k>0(1−pk) and since
p−k(t) = |t|p−c:

|D(c+ it)| ≥ pk(t)(k(t)−1)/2B′|t|−ε
∏
k>0

(1− pk)2 = B′′
|t|−ε

(|t|p−c)(k(t)−1)/2 .

We conclude, since k(t) = c− logp |t|. J472

Notice that D(c+ it) tends to infinity when |t| → ∞. To conclude the proof of Lemma 3473

it is sufficient to observe that the function 1/D(s) for s is any compact set containing a474

neighborhood of Re(s) and away from the roots of f(s) is naturally bounded by dominated475

convergence of the product.476
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