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We study a class of stochastic optimization problems for which the cardinality of the set of feasible solutions (called
also configurations) m and the size of every feasible solution N satisfy logm = o(N). Assuming the data to be
random, e.g., weights of a graph, edges in spanning tree problem, elements of matrices in assignment problem, etc.
fluctuate due to measurements, we adopt the maximum entropy framework by weighting solutions with a Boltzmann
distribution where the inverse computational temperature β controls the cost resolution of the solution space. Large
fluctuations of the costs due to high input randomness correspond to a low cost resolution β. For such a high noise
level in the instances implying low β, we estimate the free energy in the asymptotic limit. This quantity plays a
significant role in many applications, including algorithm analysis, robust optimization and so on. In particular, we
prove that the free energy exhibits a phase transition in the second order term.
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1 Introduction
We consider a class of stochastic optimization problems that can be formulated as follows: Let n be an
integer (e.g., number of vertices in a graph, size of a matrix, number of keys in a digital tree, etc.), and Sn
a set of objects (e.g., set of vertices, elements of a matrix, keys, etc). The data X denote a set of random
variables which enter into the definition of an instance (e.g., weights of edges in a weighted graph). One
often is interested in asymptotic behavior of the optimal values Rmax(Sn, X) or Rmin(Sn, X) defined as

Rmax(Sn, X) = max
c∈Cn

{ ∑
i∈Sn(c)

wi(c,X)
}
, Rmin(Sn, X) = min

c∈Cn

{ ∑
i∈Sn(c)

wi(c,X)
}
, (1)

where Cn is a set of all feasible solutions, Sn(c) is a set of objects from Sn belonging to the c-th feasible
solution (e.g., set of edges belonging to a spanning tree), and wi(c,X) is the weight assigned to the i-th
object in the c-th feasible solution. Throughout this work, we assume that the weight distribution only
depends on the data X but it is invariant on the feasible solution c, if Sn(c) is given. By this assumption,
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the data and, consequently, the weights will not change during optimization and we can adopt the notation
wi(X) := wi(c,X).

Combinatorial optimization problems arise in many areas of science and engineering. Among others
we mention here: the assignment problem [15], the quadratic assignment problem [7, 9], computation of
the minimum spanning tree, the minimum weighted k-clique problem [15], geometric location problems,
and so forth. Often, the data entering the problem specification are random and sets of solutions have to
be considered as equally likely given the stochastic instance. We analyze this class of random problems
in a probabilistic framework which assumes that the weights wi(X) are Borel functions of X , s.t. wi(X)
are i.i.d. with some distribution F (·). We also assume that the cardinality of the feasible set is m (i.e.,
|Cn| = m) and the cardinality of Sn(c) is N for every c ∈ Cn. Throughout this paper we shall demand
that logm = o(N).

We study these optimization problems in the maximum entropy framework. Therefore, we consider
the Boltzmann distribution over all configurations. This distribution is parametrized by β = 1/T which
is the inverse computational temperature T . More precisely, defining the objective function R(c,X) =∑
i∈Sn(c) wi(X), the Boltzmann distribution pβ(c|X) of c ∈ Cn is

pβ(c|X) =
1

Z(β,X)
exp(−βR(c,X)) with partition function Z(β,X) =

∑
c∈C

exp(−βR(c,X)) . (2)

It is quite revealing to study optimization problems in the maximum entropy framework through the
Boltzmann distribution. For high temperature when β → 0, this distribution selects all configurations
uniformly. On the other hand, when β →∞ the Boltzmann distribution concentrates on the set of optimal
solutions with costs Rmax. Intermediate values of β define an appropriate resolution of the solution space
such that the fluctuations in the input are not overfitted by the optimization algorithm.
Z(β,X) can also be used to characterize some thermodynamic limits such as entropy and free energy

rates [8, 13]. In this paper, we focus on the free energy rates for high temperature when β → 0. This
high computational temperature limit is most interesting when the instances of optimization problems are
affected by strong fluctuations which only support estimation of low cost resolution results.

The free energy is related to EX [logZ(β,X)] while the free energy rate is the normalized version of
the free energy. The normalization matters! Usually, one defines the free energy rate as

γ(β) = lim
n→∞

EX [logZ(β,X)]

log |Cn|
. (3)

However, such a limit may not exist or it may be trivial. The latter refers to the case where either
logm = log |Cn| or N = |Sn| dominates, that is, logm 6= Θ(N). In [14] the case logm � O(N)
was analyzed, while here we focus on a class of optimization problems with logm = o(N) (e.g., the
quadratic assignment problem [7, 9, 10] in which N = n2 and m = n!). For this class of optimization
problems, Szpankowski [10] proved that any solution is asymptotically optimal with high probability.

Furthermore, the free energy rate plays an important role in the novel verification approach for cost
functions and algorithms proposed recently in [1]. Namely, optimization of R(c,X ′) and R(c,X ′′) under
the two sample set scenario with noisy instances X ′, X ′′ requires to be robust w.r.t. noise. A framework
of robust optimization has been developed in [1, 2] by using information theoretic arguments (see also
[3]). Stable recovery of solution sets under two noisy inputs requires to optimize the resolution of the
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solution space w.r.t. β by

β? ∈ arg max
β∈R+

Iβ = arg max
β∈R+

EX′,X′′ log
(
|Cn|

∑
c∈Cn

pβ(c|X ′)pβ(c|X ′′)
)

(4)

and then considering the solutions sampled from the Gibbs measure pβ?(c|X ′) taken at the optimal β?. Iβ
can be interpreted as a generalization capacity for cost functions or algorithms. Maximizing Iβ requires
to understand how EX logZ(β,X) behaves as a function of β.

For the mentioned framework, it is crucial to understand the asymptotics of the terms in the above
equation. In the present paper, we establish such asymptotics for certain temperature regimes. We shall
argue that for the case logm = o(N), the proper normalization requires β = Θ(

√
logm/N) → 0. In

this “high temperature” regime we will be able to determine the free energy rate. In fact, we shall prove
that the second order term of the free energy rate exhibits a phase transition. We illustrate our findings on
the quadratic assignment problem.

2 Main Results and Their Consequences
In this section, we formally introduce the problem, and present our main findings. We aim at understand-
ing the asymptotic behavior of the expectation of logarithm of partition function defined in (2), that is,

Z(β,X) =
∑
c∈C

exp(−βR(c,X)) (5)

where C := Cn of cardinality m := |Cn| is the set of configurations or feasible solutions of the objective
function R(c,X) =

∑
i∈Sn(c) wi(X).

Since the weights wi(X) are Borel functions of X , they are random variables. We assume them to be
i.i.d. realizations of a random variable W (X) with the probability distribution F that does not depend
on i. Furthermore, we postulate that the moment generating function EX [exp(tW (X))] < ∞ exists for
some t > 0. In particular, we denote

µ = EX [W (X)], and σ2 = VX [W (X)], (6)

where VX [W (X)] := EX [(W (X) − EX [W (X)])2] denotes the variance. To simplify our analysis, we
actually shall investigate the centralized weightsW (X) := W (X)−µ and denote by Ĝ(β), where β > 0,
the moment generating function of (−W (X)), that is

Ĝ(β) = EX [exp(β(−W (X)))] <∞. (7)

Our goal is to estimate EX [logZ(β,X)] which can be upper bounded by Jensen’s inequality as

EX [logZ(β,X)] ≤ logEX [Z(β,X)]. (8)

Remark. In the following, we will omit X as an argument of Z(β,X) and R(c,X) for the sake of
simplicity. (The expectation E[.], the variance V[.] and other probabilistic operations are still meant to be
taken with respect to the randomness of X).
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We need to evaluate E[Z(β)], so we proceed as follows

E[Z(β)] = E
[∑
c∈C

exp(−βR(c))
]

= exp(−βNµ)E
[∑
c∈C

exp
(
−β(R(c)−Nµ)

)]
= exp(−βNµ)mĜN (β). (9)

Thus
logE[Z(β)] = −βNµ+ logm+N log Ĝ(β) (10)

since the r.v.s Wi are i.i.d.
From the above relation (10) one must conclude that in order to get a nontrivial limit of logE[Z(β)]/ logm

we need to choose the limit β → 0. Under this assumption, we can expand Ĝ(β) in the Taylor series to
obtain

Ĝ(β) = 1 +
1

2
β2σ2 +O(β3). (11)

We find as long as β → 0

logE[Z(β)] = −βNµ+ logm+N log Ĝ(β) = −βNµ+ logm+N log
(

1 +
1

2
β2σ2 +O(β3)

)
= −βNµ+ logm+

1

2
Nβ2σ2(1 +O(β)). (12)

This suggests that the right choice for β is

β = β̂

√
logm

N
(13)

for some constant β̂. Thus we arrive at

logE[Z(β)] + βNµ

logm
= 1 +

1

2
β̂2σ2(1 +O(β)). (14)

In terms of E[logZ(β)] we find

E[logZ(β)] + β̂µ
√
N logm

logm
≤ 1 +

1

2
β̂2σ2

(
1 +O

(√
logm

N

))
. (15)

But there is a surprise! Let us denote

φ(β) = E[logZ(β)] + βNµ =: E[log Ẑ(β)] (16)

where Ẑ(β) =
∑
c∈C exp(βR(c)) with R(c) = −

∑
i∈S(c)W i. It is easy to observe that

βmax
c∈C

R(c) ≤ log Ẑ(β). (17)

Using the upper bound obtained in (15) we find

E[maxc∈C R(c)]

logm
≤

√
N

logm

(
β̂−1 +

1

2
β̂σ2

)
. (18)
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Choosing β̂∗ =
√

2/σ that minimizes the right-hand side of (18) we arrive at

E[max
c∈C

R(c)] ≤
√

2σ2N logm (19)

Now proceeding as in Talagrand [13, Proposition 1.1.3] we obtain

φ′(β) ≤ E[max
c∈C

R(c)]. (20)

But for β > β∗ := β̂∗
√

logm/N ,

φ(β) ≤ φ(β∗) + φ′(β∗)(β − β∗), (21)

since φ(β) is known to be convex. Applying the upper bound for φ′(β) yields

E[log Ẑ(β)] ≤ β̂σ
√

2 logm (22)

and the second upper bound in Theorem 1.
It is now worth proving that the lower bounds for E[log Ẑ(β)] are asymptotically the same as (15),(22).

For that, we will follow the techniques used in Talagrand [13, Proposition 1.1.5, pp. 11–12].
For the following, note that since the weights are i.i.d., then R(c)

d−→ N (0, Nσ2), where N represents
normal distribution. Let Y be the cardinality of the solution subset for which the centered negative cost
function (see above) R(c) is large enough:

Y := card{c : R(c) ≥ s logm} for some s ≥ 0. (23)

It is obvious that
E[Y ] = ma, where a := P(R(c) ≥ s logm). (24)

It is quite straightforward then to prove that

E[Y 2] = ma+m(m− 1)a, thus V[Y ] = ma−ma2 ≤ ma. (25)

Let A denote an event {Y ≤ ma/2}. Now by Markov inequality (second transition in the following
chain)

P(A) ≤ P
(
(Y − E[Y ])2 ≥ m2a2/4

)
≤ 4V[Y ]/(m2a2) ≤ 4/(ma). (26)

Next, we derive lower bounds for E[logZ(β)] on the events A and Ω \A. For the latter, we have:

Ẑ(β) =
∑
c∈C

exp(βR(c)) ≥
∑
c∈C

exp(βs logm) ≥ m

2
a exp(βs logm), (27)

thus
E[1Ω\A log Ẑ(β)] ≥ (1− 4/(ma))(logm− log 2 + log a+ βs logm). (28)

For eventA, we derive the lower bound in the following way. Choosing an arbitrary solution c0, we notice
that Z(β) ≥ exp(βR(c0)) and thus

E[1A log Ẑ(β)] ≥ −βE[−1AR(c)] ≥ −βE[|R(c)|] ≥ −Lσβ
√
N, (29)
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where L is some constant coming from expectation of half-normal distribution, which is the thermo-
dynamic limit distribution for |R(c)|. Here we use the fact that |R(c)| converges in distribution to a
half-normal (due to CLT), and then we determine that, due to the dominated convergence theorem and
uniform integrability of |R(c)| [6, Ch. XVI.7], the expectation value of |R(c)| also converges to the one
of half-normal.

Combining (28) and (29), we obtain

E[log Ẑ(β)] ≥
(

1− 4

ma

)
(logm− log 2 + log a+ βs logm)− Lσβ

√
N. (30)

From the properties of centered Gaussian, which is the thermodynamic limiting distribution of R(c),
we get the following bound on a (small terms correspond to large deviation bounds):

(1 + o(1))
σ
√
N

Ls logm
exp
(
−s

2 log2m

2σ2N

)
≤ a ≤ (1 + o(1)) exp

(
−s

2 log2m

2σ2N

)
, (31)

which means that in the thermodynamic limit (n → ∞) holds true ma → ∞, thus (30) turns into (we
also normalize by logm here)

E[log Ẑ(β)]

logm
≥ 1− s2 logm

2σ2N
+ βs− Lσβ

√
N

logm
+ log

(
σ
√
N

Ls logm

)
/ logm+ o(1) (32)

Now for the regime β ≤ β̂∗
√

logm/N we choose s := β σ2N
logm = β̂σ2

√
N/ logm, which yields a lower

bound
E[log Ẑ(β)]

logm
≥ 1 +

β̂2σ2

2
+O

( 1

logm

)
+O

( log logm

logm

)
+ o(1), (33)

and for regime β ≥ β̂∗
√

logm/N we choose s =
√

2σ2N/ logm, which yields a lower bound

E[log Ẑ(β)]

logm
≥ β̂
√

2σ +O
( 1

logm

)
+O

( log logm

logm

)
+ o(1). (34)

Additional terms O(·) are small in the thermodynamic limit, so we obtain the requested asymptotical
lower bounds.

In passing, one should observe that the bounds (both lower and upper) are distinctively different for
two different regimes. Thus the normalized free energy rate exhibits a phase transition at the second order
term.

In summary, we have just proved the following finding.

Theorem 1 Consider a class of combinatorial optimization problems in which the cardinality of feasible
solutions m and the size of feasible solution N are related as logm = o(N). Assume that weights Wi are
i.i.d. distributed with mean µ and variance σ2 and moment generating function of (−Wi) is finite. Define

β = β̂
√

logm/N. (35)
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Then the function Z(β) satisfies

lim
n→∞

E[logZ(β)] + β̂µ
√
N logm

logm
=


1 +

β̂2σ2

2
, β̂ <

√
2

σ
,

β̂σ
√

2, β̂ ≥
√

2

σ
.

(36)

In other words, the free energy rate γ(β) = limn→∞ E[logZ(β)]/ logm becomes

γ(β) = −β̂µ

√
N

logm
+O(1) (37)

with a phase transition at the second order term.

Remarks: First, the reader should note that the critical inverse temperature β̂∗ =
√

2/σ relates the
low β limit to the high noise regime of optimization problems (see also Derrida’s random energy model
[5]). Second, it may be useful to provide an heuristic argument behind Theorem 1. Let Z(β) =

exp(−βNµ)Ẑ(β) where (note the minus sign which we put into R̂(c) for convenience)

Ẑ(β) =
∑
c∈C

exp

(
−β
√
N

∑
i∈S(c)Wi −Nµ
√
N

)
=
∑
c∈C

exp
(
β
√
N · R̂(c)

)
. (38)

Since Wi are i.i.d. we conclude that R̂(c)
d→N (0, σ2), where N (0, σ2) represents the normal distribution

with mean zero and variance σ2. We now consider two regimes of β. In the first regime, we re-compute
E[Ẑ(β)] by noting that its main contribution comes from one large R̂(c). Indeed, note that

E
[
exp
(
β
√
NR̂(c)

)]
∼ 1√

2πσ

∫
exp

(
β
√
Nt− t2

2σ2

)
dt. (39)

But the above integral achieves at t0 = βσ2
√
N its maximum value (by the saddle point method)

E[exp(β
√
NR̂(c))] ∼ exp

(
β2Nσ2

2

)
. (40)

Most of E[Ẑ(β)] comes from this one large R̂(c). But its probability is bounded by

P
(⋃
c∈C

R̂(c) > t0

)
≤ exp

(
logm− β2Nσ2

2

)
(41)

which is very small for
β > β̂∗

√
logm/N, β̂∗ =

√
2/σ. (42)

Thus for β̂ < β̂∗ we recover the first upper bound in (36).
To find the second bound, we we postulate for β >

√
2 logm/(Nσ2) that

Ẑ(β) ∼ exp
(
β
√
N max

c∈C
R̂(c)

)
so that log Ẑ(β) ∼ β

√
N max

c∈C
R̂(c). (43)
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But

P
(

max
c∈C

R̂(c) > t

)
≤ exp

(
logm− t2

2σ2

)
. (44)

Therefore, with high probability we can assume that

max
c∈C

R̂(c) ∼
√

2σ2 logm. (45)

Combining it with the above lead to the second bound in (36).

In many applications (see [1, 2]) one needs more refined information about logZ(β). In particular, we
must know whether logZ(β) is concentrated around E[logZ(β)]. In other words, whether

logZ(β)/E[logZ(β)]
P→ 1 (46)

where P→ represents convergence in probability.
To address this question, we first estimate the variance of Z(β) or, preferably, of logZ(β). The next

lemma gives us a precise evaluation of the variance V[Z(β)] = E[(Z(β)− E[Z(β)])2].

Lemma 1 For any β > 0 we have

V[Z(β)] = (E[Z(β)])2

(
ED
(
G(2β)

(G(β))2

)D
− 1

)
(47)

whereD is a random variable denoting the cardinality of the overlap S(c)∩S(c′) for two distinct (chosen
uniformly at random) feasible solutions c, c′ ∈ C. Here, G(β) is the moment generating function of the
negative weights (−W ).

To illustrate an application of the above lemma and the behavior of the overlap D we discuss below the
quadratic assignment problem [7, 9].

Example 1. Quadratic Assignment Problem
In the Quadratic Assignment Problem (further referred to as QAP), we consider two n × n matrices,
namely the weight matrix V and the distance matrix H . The solution space is the set of all the n-element
permutations Sn. The objective function island

RQAP(π) =

n∑
i,j=1

V (i, j) ·H(π(i), π(j)), π ∈ Sn.

Thus, in our notation, C = Sn, N = n2 and m = n!.
As introduced above, D is a random variable denoting the overlap of two arbitrary feasible solutions.

We claim that ED[D] = O(1).
Indeed, let π, π′ be two random permutations and Yij be an indicator random variable of the event

ovr(i, j) = {V (i, j) ·H(π(i), π(j)) = V (i, j) ·H(π′(i), π′(j))},

thus

ED[D] = ED
[ n∑
i,j=1

Yij

]
=

n∑
i,j=1

ED[Yij ] =

n∑
i,j=1

P(ovr(i, j)).
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Now note that for each i, j the event ovr(i, j) occurs, if and only if π(i) = π′(i) and π(j) = π′(j). Thus
P(ovr(i, j)) = 1/n(n− 1) and

ED[D] =

n∑
i,j=1

P(ovr(i, j)) = n2 1

n(n− 1)
= O(1), (48)

which proves ED[D] = O(1).

Now, we are ready to formulate our second main finding.

Theorem 2 If βED[D]→ 0, then

Z(β)/E[Z(β)]
P→ 1. (49)

More precisely,

P(|Z(β)− E[Z(β)]| ≥ εE[Z(β)]) ≤ V[Z(β)]

ε2(E[Z(β)])2
= O(β2ED[D])→ 0. (50)

Proof: Put G(β) = E[exp(β(−W ))], where W is a random variable with expectation µ and variance σ2.
The Taylor expansion of G(β) around 0 is

G(β) = 1− βµ+
β2E[W 2]

2
+O(β3). (51)

Thus,(
G(2β)

(G(β))2

)D
=

(
1− 2βµ+ 2β2E[W 2] +O(β3)

[1− βµ+ β2E[W 2]/2 +O(β3)]2

)D
=

(
1− 2βµ+ 2β2E[W 2] +O(β3)

1− 2βµ+ (µ2 + E[W 2])β2 +O(β3)

)D
= (1 + (E[W 2]− µ2)β2 +O(β3))D = 1 +Dσ2β2 +O(β3) (52)

leading to

ED
(
G(2β)

(G(β))2

)D
= 1 + σ2β2ED[D] +O(β3). (53)

From the above, we obtain the β-asymptotics of V[Z(β)]:

V[Z(β)] = (E[Z(β)])2

(
ED
(
G(2β)

(G(β))2

)D
− 1

)
= (E[Z(β)])2(σ2β2ED[D] +O(β3)), (54)

and the theorem is proved. 2

The last theorem implies that
logZ(β)− E[logZ(β)]

P→ 0. (55)

But we would like to establish a stronger statement, say

logZ(β)− logE[Z(β)]
P→ 0 (56)
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or even logZ(β)/E[logZ(β)]
P→1. The following considerations should imply this. Observe that by

expanding logZ(β) in the Taylor series around E[Z(β)] we have

logZ(β) = logE[Z(β)] +
Z(β)− E[Z(β)]

E[Z(β)]
− 1

2

(Z(β)− E[Z(β)])2

(E[Z(β)])2

+

∞∑
k=3

(−1)k+1

k!

(Z(β)− E[Z(β)])k

(E[Z(β)])k
.

Taking the expectation, we obtain

E[logZ(β)] = logE[Z(β)]− 1

2

V[Z(β)]

(E[Z(β)])2
+

∞∑
k=3

(−1)k+1

k!

E[(Z(β)− E[Z(β)])k]

(E[Z(β)])k
. (57)

Now we apply Theorem 2 in a stronger form. From the proof of Lemma 1 presented in the next section,
we actually can conclude a stronger form of (50), namely, for any k ≥ 2

P
(
|(Z(β)− E[Z(β)])k| ≥ ε(E[Z(β)])k

)
≤ E[(Z(β)− E[Z(β)])k]

ε(E[Z(β)])k
= O(β2ED[D2(k)]) (58)

whereD2(k) is a random variable representing the cardinality of the joint pairwise overlaps
⋃
s<t

(
S(cs)∩

S(ck)
)

among k selected configurations c1, . . . , ck ∈ C. In many combinatorial optimization problems
E[D2(k)] is constant or grows very slowly (e.g., in the quadratic assignment problemE[D2(k)] = O(1)).
Then (56) will follow.

3 Proof of Lemma 1
We prove now Lemma 1. Let

Z(β) = exp(−βNµ)
∑
c∈C

T (c), T (c) = exp
(
β
(
−
∑
i∈S(c)

W i

))
. (59)

Now define Ẑ(β) =
∑
c∈C T (c). To compute V[Ẑ(β)], we proceed as follows

E[(Ẑ(β))2] = E
[∑
c∈C

T (c) ·
∑
c′∈C

T (c′)
]

=
∑
c,c′∈C

E exp
(
−β
( ∑
i∈S(c)

W i + β
∑

j∈S(c′)

W j

))
. (60)

Now let the solutions c and c′ have an overlap S(c, c′) := S(c) ∩ S(c′) of cardinality d = d(c, c′) :=
|S(c, c′)| (which we will call a summand overlap). We also define the symmetric difference S(c, c′) :=
S(c)4S(c′) and continue the chain of equalities:

E[(Ẑ(β))2] =
∑
c,c′∈C

E exp
(
−β
(

2
∑

i∈S(c,c′)

W i +
∑

j∈S(c,c′)

W j

))
. (61)
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Here the sets of S(c, c′) and S(c, c′) are independent, allowing us to decompose the expectation into the
product:

E[(Ẑ(β))2] =
∑
c,c′∈C

E exp
(
−β
(

2
∑

i∈S(c,c′)

W i

))
· E exp

(
−β
( ∑
j∈S(c,c′)

W j

))

=
∑
c,c′∈C

(Ĝ(2β))d(Ĝ(β))2(N−d) = (Ĝ(β))2N
∑
c,c′∈C

(
Ĝ(2β)

(Ĝ(β))2

)d
. (62)

Now assume that the probability of the two solutions c and c′, chosen uniformly at random, to have a
d-element overlap is Povr(d) and rewrite the above as follows:

E[(Ẑ(β))2] = (Ĝ(β))2N
N∑
d=0

m2Povr(d)

(
Ĝ(2β)

(Ĝ(β))2

)d
= m2(Ĝ(β))2N

N∑
d=0

Povr(d)

(
Ĝ(2β)

(Ĝ(β))2

)d

= (E[Ẑ(β)])2
N∑
d=0

Povr(d)

(
Ĝ(2β)

(Ĝ(β))2

)d
. (63)

We conclude that

V[Ẑ(β)] = E[(Ẑ(β))2]− (E[Ẑ(β)])2 = (E[Ẑ(β)])2

(
ED
(
Ĝ(2β)

(Ĝ(β))2

)D
− 1

)
,

whereD is a random variable denoting the summand overlap in two randomly chosen solutions. Recalling
that Z(β) = exp(−βNµ)Ẑ(β) and, as well, G(β) = exp(−βµ)Ĝ(β), we obtain the version without
hats:

V[Z(β)] = E[(Z(β))2]− (E[Z(β)])2 = (E[Z(β)])2

(
ED
(
G(2β)

(G(β))2

)D
− 1

)
.

This proves Lemma 1.

4 Conclusion and Outlook
This paper discusses the low β asymptotics of the free energy for a class of optimization functions that
show a bounded growth of the configuration space w.r.t. the solution complexity. In the concrete example
of the quadratic assignment problem, the configuration space is the symmetric group with n! configura-
tions and assignment solutions of complexity n2 for n × n matrices. Theorem 1 establishes a propor-
tionality between the critical temperature and the noise level in the optimization problem. Consequently,
the low β limit is justified for very noisy optimization problems as they arise in a variety of modern high
throughput experimental designs, especially in the life sciences. There, the precision of the individual
experiments is traded off against the number of experiments that can be performed. This situation appears
to us being prevalent in many big data scenarios today.

In addition, we like to emphasize that free energies evaluated on two different data instances determine
a model validation criterion for cost functions and algorithms. The results of theorem 1 will enable us to
determine the optimal resolution of optimization problems and the optimal precision of algorithms in the
high noise limit.
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