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The method of types is one of the most popular techniquedannration theory and combinatorics. Two sequences
of equal length have the same type if they have identical eoapidistributions. In this paper, we focus on Markov
types, that is, sequences generated by a Markov sourcedef one). We note that sequences having the same
Markov type share the same so calledanced frequency matrtoat counts the number of distinct pairs of symbols.
We enumerate the number of Markov types for sequences offlengver an alphabet of sizen. This turns out
to be asymptotically equivalent to the number of the baldrfcequency matrices as well as with the number of
speciallinear diophantine equationgnd also balanced directed multigraphs. For firede prove that the number
of Markov types is asymptotically equal to
pP-m
Qe

whered(m) is a constant for which we give an integral representati@r.nfr— c we conclude that asymptotically
the number of types is equivalent to

\/zmSm/zemZ m—m

P o2 |
provided thaim= o(nl/“) (however, our techniques work fan= o(,/n)). These findings are derived by analytical
technigques ranging from multidimensional generating fiams to the saddle point method.

Keywords: Markov types, integer matrices, linear diophantine equati multidimensional generating functions,
saddle point method

1 Introduction

Themethod of types one of the most popular and useful techniques in informnatieory (e.g., source
and channel coding) and combinatorics. Two sequences &l éepgth are of the same type if they
have identical empirical distributions. The essence ofrttethod of types was known for some time
in probability and statistical physics. But only in the 1%rGsiszar and his group developed a general
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method and made it a basic tool of information theory of ditermemoryless systems [5]; see also
[4;6;9; 11; 12; 14; 20; 21].

In this paper, we discuss Markov types. For concreteneséirstdocus on Markov sources of order
one. Leta = {1,2,...,m} be anm-ary alphabet, and consider a class of Markov distributia{sn) on
4", n> 1. We often simply writer, := ®,(m). Throughout, we study sequencds= x; ... x, of length
n. For a distributiorP € 2, thetype clasof x" is defined as

Tn(x") = {y": P(x") =P(Y")},

that s, all sequences having the same distributidd(@%). Clearly, U 7n(X") = 2". Thenumberof type
classes, or equivalently, the number of distinct distidng, is therefore equal to the cardinality®f(m)
that we also often simplify to?,| := |2,(m)|. We aim at deriving an asymptotic expression |fex| for
fixed or largemwhenn — . For example, for binary memoryless sources, therémy(@)| = n+ 1 type
classes, and a class consisting of all sequences contéifiadnas cardinality7n(x")| = (}).
Markov sources; and corresponding Markov types are completely charaet i/ their transition

probabilities that we denote B that isP = { pjj }i jc4 is the transition matrix opjj; = P(X11 = j|% =1).
The empirical distribution of a sequenc®(with some fixed initial state) is

PO = [ B’

i,jea

wherekj; is the number of pairéij) € 42 in the sequencr”. For exampleP(01011) = p%lplopn. In
passing we should point out that in the abgygcan be viewed either as “a formal indeterminate” or
better as the ratio of the number of pajrg) € 47 to the length of the string (empirical distribution).

For a fixed transition matri®, the frequency matrik = {ki; }i jcs defines aype class This matrix is
an integer matrix satisfying two properties:

klj :n_la

i,jea

and additionally for any € 2 [11; 21]
m m
D> kij= kitda=xn), Viea,
=1 =1

whered(A) = 1 whenA is true and zero otherwise. The last property is calledflitne conservation
propertyand is a consequence of the fact that the number of pairggtavith symbols € 2 must equal
to the number of pairs ending with symbot 2 with the possible exception of the last pair. To avoid
this exception, throughout we only consiagclic strings in which the first elemert follows the lasix;.
Thus, we consider integer matrides= [k;; | satisfying the following two properties

T ki = n (1)

kji, Viea. (2)

M3

i,J€a
m

Sk -
=1 =1
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Such integer matricds will be calledbalanced frequency matrice$Ve shall call (2) the “conservation
law” equation. In this paper, we enumerate the number of Blatipes|?,| which is, forn — o, asymp-
totically the same as the number of distinct balanced frequenatrices satisfying (1) and (2). We call
the number of these solutiorrs(m).

Example. Let’s first consider a binary Markov source. The balancedudency matrix is of the following

form
K — kiz ka2
ko koo
where the nonnegative integdsgs satisfy
Kiz+kio+koi+ko = n,
ko = ko

The above system of linear equations can be reduced to
ki1 +2ki2+ ko2 =n, (3)

and the enumeration of Markov types over a binary alphaloeioes to finding the number of nonnegative
solutions of (3). The answer is obviously

13)
|Fn] = Z(n—2k12+1)
k1o=0
2

(5)+2)- [5]+2 - o0

Let’s now look at then= 3 case. The balanced frequency matrix has nine elerj&nis ;<12 3), and
they satisfy

ki1 +kio+kig+koi+koo+koz+ ks +ksz+kss = n
kio+kiz = koi+kag
kio+ksz = kor+kos

Kiz+koz = kai+kao.

How many nonnegative integer solutions does the abovemystéinear equations have? We shall show
that it is asymptoticallyl’z%. [ |

Our goal is to enumerate the number of Markov classes, thit find (asymptotically) the cardinality
of |#,|. Our previous example demonstrated that this number is pisfitally equivalent to the number of
nonnegative integer solutions to the system of linear egusi{1)-(2). Such an enumeration, for a general
class of system of homogeneous diophantine equations,nwestigated in Chap. 4.6 of Stanley’s book
[16] (cf. also [10]). Stanley developed a general theorydostruct the associated generating function.
However, ultimately only the denominator of this genemfinction is given in a semi-explicit form in
[16], thus allowing the author to derive the growth rate @& ttumber of integer solutions.
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In this paper, we propose an approach based on previous Wwaddcquet and Szpankowski [11] where
analytic techniques such as multidimensional generatingtfons and the saddle point method were used.
This allows us to derive precise asymptotic results. Inipaldr, for fixedm we prove that the number of
Markov types is asymptotically equal to

nmz—m

|Pn| ~ d(m)ma n— oo,

whered(m) is a constant for which we only found an integral represé@nadt For largem — oo with
m* = o(n) we find that asymptotically the number of types is

\/QmSm/Zemz m2—m

|Pn| ~ Wn .
However, our techniques also allow us to derive asymptétice? = o(n). In passing we observe that
the number of Markov types are often needed for minimax rddony evaluation [1; 2; 11; 13; 15; 19].

Markov types were studied in a series of papers; see [11; @;227]. However, existing literature
mostly concentrates on finding the cardinality of a Markqeetylass, that i§7 (x)| with an exception
of Martin et al. [12]. In particular, Whittle [21] already ih955 computedT (x")| for Markov chains
of order one Regarding the number of types, it was known farrg lwhile [4; 5; 6] that they grow
polynomially, but only in [20] Weinberger et al. mentionadthout proof) that 7| = @(nmz*m). This
was recently rigorously proved by Martin et al. in [12] foedrsources (that include Markov sources) for
fixedm. However, the constant was never identified. We accomglisére, as well as present asymptotic
results for largem.

The paper is organized as follows. In Section 2 we formuladeipely our problem and present our
main results for fixed and larga. The proofs are given in Section 3.

2 Main Results

In this section we present our main results and some of thesequences. We start with some notation.
Throughoutthe paper, we gt be the set of all integer matricksatisfying the conservation law equation
(2), that is,

3
3

kij: kji, Viea.

For a givern, we let 7, be a subset of consisting of matricek such that the balance equations (1) and
(2) hold.

We first make some general observations about generatirggidns over matrices, and summarize
some results obtained in [11]. In general,detbe a sequence of scalars indexed by mattcasd define
the generating function

G(z) = ngzk

8itisa simple exercise to extend these resultsdoder Markov chains. Indeed, one needs to reptacsy m'.
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where the summation is over all integer matrices anrel {zj }i jcs is anmx m matrix that we often

denote simply ag = [z;j] (assuming the indicasandj run from 1 tom). Herezk = i z‘-kj” wherek;; is
the entry in rowi columnj in the matrixk. We denote by

)= Y gz¥= O Z<
) kez? “ ngbkezfn ‘

the 7 -generating function ofi, that is, the generating function gf over matricek € # satisfying the
balance equations (1) and (2). The foIIowing useful lemmpraved in [11] but for completeness we
repeat it here. Lefz;j ] be the matrixA~1(x)zA(x) whereA(x) = diag(xy, ..., Xm) is a diagonal matrix

with elements, .. xm, that is, the elemersj in z is replaced by X /X;.
Lemmal Let G(z) =y gkZ¥ be the generating function of a complex ma#ixthen

o 1\™ [dx dXn Xj
e@;%éngcﬁ)-ﬁmfﬁemfn @

with the convention that the ij-th coefficient af );?] is a, , andi = v/—1. In other words,[z; %] =
A~1(x)zA(x) whereA(x) = diag(x1, ..., Xm). By the change of variables x exp(i6;) we also have

G*(z) = Q%/Zdel---/:deme([z,-exp((e,- —8)i)]

where[zj exp(0; — 6;)] = exp(—A(8))zexp(A(8)).
Proof. Observe that

_ i~k
G(A(x)2B(x)) = ;gzqz“z” 5)
ThereforeG*(z) is the coefﬁuent of5([z ,X—J]) atx1x2 -xp, sincey j kji — ¥ kij = 0 for matricesk € 7 .
We write it in shortly asG*(z [ x%] o( z{J X . The result follows from the Cauchy coefficient
formula (cf. [18]). ]

We consider the number of solutions to (1) and (2), which &sigmptotically equivalent to the number
of Markov types®,(m)| over the alphabet, whose generating function is

2) = Zolfn(m)li“-

Then applying the above lemma with = zx /x; we conclude that

Fi(2) = 1 X3 x0] {1 Al } -’ (6)
and thus, by the Cauchy formula,
|Tn( | = m

2T|1 zn+1
In the next section we evaluate asymptotically this expoed® yield the following main result of this
paper
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Theorem 1 (i) For fixed m and n— o« the number of Markov types is

r]mz—m

en(m)] = d(m) o O™ Y 7)

where dm) is a constant that also can be expressed by the followingiate

1 o0 0 M—1 1 1
d(m) = 7,/ / : ded@y - - - d@m—1. (8)
eot) . L e ) ire—er
(m-1)—fold
(i) When m— oo we find that
A 9
|Pn(mM)] ~ P 9)

provided that rfy = o(n).

Remark 1. It is easy to count the number of matridesatisfyingonly equation (1), that isy;; kij = n.
Indeed, in this case, it coincides with the number of integgdution of (1), which turns out to be the
number of combinations with repetitions (the number of walyselecting? objects frorm), that is,

n+m—1\ /n+nm?-1 w1
()=

Thus the conservation law equation (2) decreases the alydwe tiactoro(n™1),

Remark 2. The evaluation of the integral (8) is quite cumbersomefdngmall values omwe computed
it to find that

7@~ 3 10)
@ ~ S (11)
7o)~ e 12)
708~ g 13)

for largen. It appears that the coefficients¥ —™ are rational numbers, though we have no proof of this.

Remark 3. We now compare the coefficient @ ™ for fixed min (7) with its asymptotic counterpart
in (9). They are shown in Table 1. Observe extremely smallasbf these constants even for relatively
smallm.
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Tab. 1: Constants at™ ™ for fixed mand largem.

m constantin (7) constantin (9)

2 | 1.92014083210% | 2.500000000 10!

3 | 9.31565936810° | 1.157407407 10°

4 | 1.767043356 10! | 2.174662186 10!

5 | 3.57789178210%° | 4.400513659 10°?

3 Analysis and Proofs

In this section we prove Theorem 1. Our starting formula )gti&t we repeat below

-1
Filo) = g A 12| (14

We first compute this explicitly fom= 2,3,4,5.
Whenm= 2, we have

sy _ 1 1 1
F2 (Z) - (1_2)2[)(2)(3] |:1—ZX]_/X2 1—ZX2/X]_:| . (15)

Let us setA = x; /x> so we need the coefficient & in (1— Az)~%(1—z/A)~L. Using a partial fractions
expression irA, we have

11 1 [1 ., 0z
1-Az1-z/A 1-Z|1-Az A-z]

For definiteness, we can assume tiat: |A| < |1/2 so that the coefficient & in (1— Az~ is one and
thatinz(A—2)~1is zero. HenceF; (2) = (1-2) ?(1-2) 1= (1+2}(1-23and

1 1 1 1
[#70(2)] ~ 1722 = 2T|if2”+11+z(1—z)3dz
n? 3 1 mo 1
= Z+n+z+§[1+(—1)]’\'§z, n— oo, (16)

Form > 3 we use recursive partial fractions expansions. When3 we setx; /Xo = A, X1/X3 = B so
that we wish to compute

1 1 1 1 1 1
ABC . 17
[ ]<1—2A1—Z/A 1-Bz1-2z/B 1-Az/B l—Bz/A) (17)




8 Philippe Jacquet and Charles Knessl and Wojciech Szpardows

First we do a partial fractions expansion in theariable, for fixedB andz Thus the factor inside the
parentheses in (17) becomes

1 1 1 1 1 1
1-zA1-21-Bz1-z/B1-1/B1-B2
n 1 1 1 1 1 1
1-z/A1-721-Bz1-z/B1-72/B1-B
n 1 1 1 1 1 1
1-AzB1-B1-2/B1-B/z1-z/B1-27
1 1 1 1 1 1
. 18
+ 1-Bz/A1-BZ1-1/B1-Bz1-2z/B1-2 (18)
To coefficient ofA? in the first term in (18) is
1 1 1 1 1
19
1-221-Bz1-z/B1-1/B 1-BZ’ (19)
and that in the third term is 1 1 1 1
(20)

1-B1-2/B1-Bz1-z/B 1-2’
while the coefficients oA? are zero in the second and fourth terms. Combining (19) a@pv2 must
now compute

[B°]<1+22 1 1 1 1 ) 1)

1-221-Bz1-z/B1-B2 1-72/B
Now expanding (21) by a partial fractions expansioBileads to

1+2 5 1 1 1 1 1 1 1 1
1—22[ ] <1—Bz 1-21-z2 1—224—1—2/81—22 1-21-2
1 1 1 1 1 1 1 1
Y 1C121-A1-B21-Z 1-A1-1z21-72 1—22/B>
1+27

1 1 1 n -z 1 1] 1-2+2
 1-Z2|1-21-21-2 (1-21-Z1-7Z]| (1-2%01+221+z+2)’
Hence,

1-z+7
(1-2"(1+22(1+z+2)°

F3(2) =
Forz— 1,F(2) ~ +5(1—2)~" so that

1nd
|2n(3)] ~ 1260 n— oo, (22)

Using similar recursive partial fractions expansionshuwlite help of the symbolic computation program
MAPLE, we find that fom=4 andm=15
B2 43P+ 2P -2+ 222+ 3P - 2z+1

Fi(2) = (1-2B3(1+ 251+ 2)(1+ 2+ 2)? “
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Tab. 2: Poles and their orders for varioos

m\root | 1 -1 et21/3 4j et2W/5 gtani/s

2 3 01 - - - -

3 7 2 1 - - -

4 13 5 2 1 - -

5 21 8 4 2 1 1
and )
* . Q(Z
Fe(2) = (1-224(1+2)8(1+ 2)2(1+ 2+ 241+ 2+ 2+ B+ 2’ (24)
where
Q2 = Z°-32%4 74843274 27154 172°4 35714 + 29713 + 45742 1 5071
+ 7228094 502° + 458 + 297" + 358 + 179+ 24" + 32+ 72 — 32+ 1.
These results show that it is unlikely that a simple formala be found foF;,(z) for generaim.
By expanding (23) and (24) neae= 1 we conclude that as— o
1 nt? 37 n?®
|2n(4)| ~ 96 121’ |2n(5)] ~ 34560 201" (25)

It is easy to inductively show that at= 1, F%(z) has a pole of order? — m+ 1 and the other singular-
ities are poles at the roots of unity that are of order? — m+ 1. These poles and their orders are given
in Table 2.

Thus, forn — o, we have

pe—m
|Pn(M)| ~ d(m)ma (26)
where
d(m) =lim[(1- 2™ "Ry (2)]

asz— 1. However, there seems to be no simple formula for the segueficonstantd(m). We proceed
to characterizel(m) as an(m— 1) fold integral.

First consider the simple case= 2. SettingA = €% and using a Cauchy integral, we have

RO S _i/” do
1-z/A1-Az 2m /) g 1-2zcosd+22
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Now setz=1— d and expand the integral far— 1. The major contribution will come from whede~ 0
and scalingb = d@and using the Taylor expansion-12(1— &) cogd@) + (1 — 8)? = &[1+ ¢?] + O(&°),
we find that

. 11
F2(2 6221'[/ 621+cp2] ~35 070

Whenm = 3, we use (3.4) and the Cauchy integral formula wits €® andB = €" to get

/ / = L 1 dody
(2m? J_n Jon 1—2zcosd+272 1—2zcosW+272 1—2zco§P—W)+ 2 '

Again expanding the above fae=1— 8 — 1 and® = dp= O(d), W = dY = O(d), we obtain the leading
order approximation

1 1 11
&* (2m)2 lmlm 14+ @ 1+y2 1+ (o—y)? dedyp = 312

Thusagz— 1,F;(2) ~ 1 50 = 12(1 z)~’ which follows also from the exact generating function.

For generama completely analogous calculation shows thalasl —z— 0, F;(2) ~ 6m*”‘2*1d(m)
where

1 0 o M—1 1 1
d(m) = [ . de1d@z- - dn-1. (27)
"l ) e ] ecer 1
(m-1)—fold

We have verified that fom = 4 andm = 5, the integral agrees with our previous results. The second
product in the above is over all distinct paiks4), so that this may also be written as

m-2 m-1 1
—_— . (28)
J:ll k:|;|+1 1+ (oc—@)?
This completes the proof of part (i) of Theorem 1.
We now use the saddle point method to prove part (ii) of ThadteSince
N\ Kij
g (ZE) —(1-Z22)1
and setting; = €% we find that
1 z., ,dz dzy
Fi2) = — 7{ 1-74)1%a S 29
"2 a2 53, (29)

— (™ :[/:[ (1— zexpi(6; — 6;))"Ld6y - - d6n . (30)
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By noticing that the expressiqy; (1 —zexp(i(6i —6;))~ 1 does not change when tBgeare all incremented
of the same value, one can integrate d¥eto obtaln

Fi2) — (211)*”‘*1/7“.../7“r|(1—zexr(iei))*l(l—zexr(—iei))’l
X 1% ELl(l—zexr(i(Oi—Gj))’ldez---dem. (31)
Let now
L(zB2.....6m) = log(1—2)+ Y log(1—zexp(i6i)(1 —zexp(—i6;))

+ z log(1— zexp(i(6i — 6;)).
i>1>1
An alternative form of the above is

L(27 927 R em)

log(1—2) + _ilog(l —2zcosh; + 7)

1 m m
+ z;;log(l—chos(ei—Gj)—i-zz).
Notice thatl(z,0,...,0) = rT12Iog(1 7). Hence

dz
[Fn(m 2n S [ [ oLz B 06 o @2

In order to find the asymptotics of this integral we userthdtidimensional saddle point methfid]. The
quantitylL(z 6,,...,6m) + nlogzattains its minimum value &65,...,6m) = (0,...,0) andz=z,= m2L+n
The minimum value is therefore

m?log(1— z,) + nlogz, = m?log(nm?/(m? +n)) 4+ nlog(n/ (m? +-n))
or
m? log(m?) + nlog(n) — (M + n) log(n? +n).
Then
m?log(1— z,) + nlogz, = m?logn? — m?logn — m? 4+ O(m*/n)
provided thatn* = o(n).
After computations it turns out that at this poiat0y, . ..,0m) = (z,,0,...,0):

02 m?
0z A2 (Z GZa 7em) = _(1_Zn)2
02
\VI WL(Z 92,...,9m) == 0
02 _ 2(m-1)z
Vi 062 L(z6,...,6m) = a2
92 2z,
Vi#j: aeae (21921"-7em) = _m, m> 3.
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In other words, the second derivative matpxofL(z, 0z, ...,8m)+nlogzat(z02,...,0m) = (z,0,...,0)

IS
(. _m n 2mz 2%
Q2= ( (1—2z,)2 (Zn)z)uz®Uz+ (1—Zn)2|e (1_Zn)2U9®ue

whereu; = (1,0,...,0),

and
lg=1—Uz®Ug,

i.e., the identity restricted 08 components. In the abowe is the tensor product (in our case, itis a
product of two vectors resulting in a matrix). For example,

O 0 ... O

o 1 ... 1
Up ® Ug =

o 1 ... 1

An application of the saddle point method yields

| Fn(m)] exp(—nflog(1~ z) — nlogzy)

1
" (2122,/3etQy)

where det) denotes the determinant of a matrix. Since

m? m-1
|detQ2)| = <(1_ zn)2 + (Z:)Z) ((1_ann)2) om=1pm-2 anrrr,’;‘,rnerF;]_7

we find that fomt* = o(n)

[a(m)] ~ [Fa(m)]| ~ (20732 iy /2y 3 it

and this completes the proof. The conditimf = o(n) is needed since we used the approximation for
n?log(1 — z,) below (32).
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