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The method of types is one of the most popular techniques in information theory and combinatorics. Two sequences
of equal length have the same type if they have identical empirical distributions. In this paper, we focus on Markov
types, that is, sequences generated by a Markov source (of order one). We note that sequences having the same
Markov type share the same so calledbalanced frequency matrixthat counts the number of distinct pairs of symbols.
We enumerate the number of Markov types for sequences of length n over an alphabet of sizem. This turns out
to be asymptotically equivalent to the number of the balanced frequency matrices as well as with the number of
speciallinear diophantine equations, and also balanced directed multigraphs. For fixedm we prove that the number
of Markov types is asymptotically equal to

d(m)
nm2−m

(m2−m)!
,

whered(m) is a constant for which we give an integral representation. For m→ ∞ we conclude that asymptotically
the number of types is equivalent to √

2m3m/2em2

m2m22mπm/2
nm2−m

provided thatm= o(n1/4) (however, our techniques work form= o(
√

n)). These findings are derived by analytical
techniques ranging from multidimensional generating functions to the saddle point method.

Keywords: Markov types, integer matrices, linear diophantine equations, multidimensional generating functions,
saddle point method

1 Introduction
Themethod of typesis one of the most popular and useful techniques in information theory (e.g., source
and channel coding) and combinatorics. Two sequences of equal length are of the same type if they
have identical empirical distributions. The essence of themethod of types was known for some time
in probability and statistical physics. But only in the 1970’s Csiszár and his group developed a general
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method and made it a basic tool of information theory of discrete memoryless systems [5]; see also
[4; 6; 9; 11; 12; 14; 20; 21].

In this paper, we discuss Markov types. For concreteness, wefirst focus on Markov sources of order
one. LetA = {1,2, . . . ,m} be anm-ary alphabet, and consider a class of Markov distributionsPn(m) on
A n, n≥ 1. We often simply writePn := Pn(m). Throughout, we study sequencesxn = x1 . . .xn of length
n. For a distributionP∈ Pn the type classof xn is defined as

Tn(x
n) = {yn : P(xn) = P(yn)},

that is, all sequences having the same distribution asP(xn). Clearly,
⋃

xn Tn(xn) = A n. Thenumberof type
classes, or equivalently, the number of distinct distributions, is therefore equal to the cardinality ofPn(m)
that we also often simplify to|Pn| := |Pn(m)|. We aim at deriving an asymptotic expression for|Pn| for
fixed or largemwhenn→ ∞. For example, for binary memoryless sources, there are|Pn(2)|= n+1 type
classes, and a class consisting of all sequences containingk 1’s has cardinality|Tn(xn)|=

(n
k

)
.

Markov sourcesXt and corresponding Markov types are completely characterized by their transition
probabilities that we denote byP, that isP= {pi j }i, j∈A is the transition matrix ofpi j =P(Xt+1 = j|Xt = i).
The empirical distribution of a sequencexn (with some fixed initial state) is

P(xn) = ∏
i, j∈A

p
ki j
i j ,

whereki j is the number of pairs(i j ) ∈ A 2 in the sequencexn. For example,P(01011) = p2
01p10p11. In

passing we should point out that in the abovepi j can be viewed either as “a formal indeterminate” or
better as the ratio of the number of pairs(i j ) ∈ A 2 to the length of the string (empirical distribution).

For a fixed transition matrixP, the frequency matrixk = {ki j }i, j∈A defines atype class. This matrix is
an integer matrix satisfying two properties:

∑
i, j∈A

ki j = n−1,

and additionally for anyi ∈ A [11; 21]

m

∑
j=1

ki j =
m

∑
j=1

k ji ± δ(x1 = xn), ∀i ∈ A ,

whereδ(A) = 1 whenA is true and zero otherwise. The last property is called theflow conservation
propertyand is a consequence of the fact that the number of pairs starting with symbolsi ∈ A must equal
to the number of pairs ending with symboli ∈ A with the possible exception of the last pair. To avoid
this exception, throughout we only considercyclicstrings in which the first elementx1 follows the lastxn.
Thus, we consider integer matricesk = [ki j ] satisfying the following two properties

∑
i, j∈A

ki j = n, (1)

m

∑
j=1

ki j =
m

∑
j=1

k ji , ∀ i ∈ A . (2)
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Such integer matricesk will be calledbalanced frequency matrices. We shall call (2) the “conservation
law” equation. In this paper, we enumerate the number of Markov types|Pn| which is, forn→ ∞, asymp-
totically the same as the number of distinct balanced frequency matrices satisfying (1) and (2). We call
the number of these solutionsFn(m).

Example. Let’s first consider a binary Markov source. The balanced frequency matrix is of the following
form

k =

[
k11 k12

k21 k22

]

where the nonnegative integerski j satisfy

k11+ k12+ k21+ k22 = n,

k12 = k21.

The above system of linear equations can be reduced to

k11+2k12+ k22= n, (3)

and the enumeration of Markov types over a binary alphabet reduces to finding the number of nonnegative
solutions of (3). The answer is obviously

|Fn| =
⌊ n

2⌋

∑
k12=0

(n−2k12+1)

=
(⌊n

2

⌋

+1
)

(n−
⌊n

2

⌋

+1) =
n2

4
+O(n).

Let’s now look at them= 3 case. The balanced frequency matrix has nine elements{ki j}i, j∈{1,2,3}, and
they satisfy

k11+ k12+ k13+ k21+ k22+ k23+ k31+ k32+ k33 = n

k12+ k13 = k21+ k31

k12+ k32 = k21+ k23

k13+ k23 = k31+ k32.

How many nonnegative integer solutions does the above system of linear equations have? We shall show
that it is asymptotically n6

12·6! .

Our goal is to enumerate the number of Markov classes, that is, to find (asymptotically) the cardinality
of |Pn|. Our previous example demonstrated that this number is asymptotically equivalent to the number of
nonnegative integer solutions to the system of linear equations (1)-(2). Such an enumeration, for a general
class of system of homogeneous diophantine equations, was investigated in Chap. 4.6 of Stanley’s book
[16] (cf. also [10]). Stanley developed a general theory to construct the associated generating function.
However, ultimately only the denominator of this generating function is given in a semi-explicit form in
[16], thus allowing the author to derive the growth rate of the number of integer solutions.
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In this paper, we propose an approach based on previous work of Jacquet and Szpankowski [11] where
analytic techniques such as multidimensional generating functions and the saddle point method were used.
This allows us to derive precise asymptotic results. In particular, for fixedm we prove that the number of
Markov types is asymptotically equal to

|Pn| ∼ d(m)
nm2−m

(m2−m)!
, n→ ∞,

whered(m) is a constant for which we only found an integral representation.§ For largem→ ∞ with
m4 = o(n) we find that asymptotically the number of types is

|Pn| ∼
√

2m3m/2em2

m2m22mπm/2
nm2−m.

However, our techniques also allow us to derive asymptoticsfor m2 = o(n). In passing we observe that
the number of Markov types are often needed for minimax redundancy evaluation [1; 2; 11; 13; 15; 19].

Markov types were studied in a series of papers; see [11; 12; 20; 21]. However, existing literature
mostly concentrates on finding the cardinality of a Markov type class, that is,|T (xn)| with an exception
of Martin et al. [12]. In particular, Whittle [21] already in1955 computed|T (xn)| for Markov chains
of order one Regarding the number of types, it was known for a long while [4; 5; 6] that they grow
polynomially, but only in [20] Weinberger et al. mentioned (without proof) that|Pn| = Θ(nm2−m). This
was recently rigorously proved by Martin et al. in [12] for tree sources (that include Markov sources) for
fixedm. However, the constant was never identified. We accomplish it here, as well as present asymptotic
results for largem.

The paper is organized as follows. In Section 2 we formulate precisely our problem and present our
main results for fixed and largem. The proofs are given in Section 3.

2 Main Results
In this section we present our main results and some of their consequences. We start with some notation.
Throughout the paper, we letF be the set of all integer matricesk satisfying the conservation law equation
(2), that is,

m

∑
j=1

ki j =
m

∑
j=1

k ji , ∀ i ∈ A .

For a givenn, we letFn be a subset ofF consisting of matricesk such that the balance equations (1) and
(2) hold.

We first make some general observations about generating functions over matrices, and summarize
some results obtained in [11]. In general, letgk be a sequence of scalars indexed by matricesk and define
the generating function

G(z) = ∑
k

gkzk

§ It is a simple exercise to extend these results tor order Markov chains. Indeed, one needs to replacem by mr .
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where the summation is over all integer matrices andz = {zi j }i, j∈A is anm×m matrix that we often

denote simply asz = [zi j ] (assuming the indicesi and j run from 1 tom). Herezk = ∏i, j z
ki j
i j whereki j is

the entry in rowi column j in the matrixk. We denote by

G∗(z) = ∑
k∈F

gkzk = ∑
n≥0

∑
k∈Fn

gkzk

theF -generating function ofgk, that is, the generating function ofgk over matricesk ∈ F satisfying the
balance equations (1) and (2). The following useful lemma isproved in [11] but for completeness we
repeat it here. Let[zi j

xi
xj
] be the matrix∆−1(x)z∆(x) where∆(x) = diag(x1, . . . ,xm) is a diagonal matrix

with elementsx1, . . . ,xm, that is, the elementzi j in z is replaced byzi j xi/x j .

Lemma 1 Let G(z) = ∑k gkzk be the generating function of a complex matrixz. Then

G∗(z) := ∑
n≥0

∑
k∈Fn

gkzk =

(
1

2iπ

)m∮
dx1

x1
· · ·

∮
dxm

xm
G([zi j

x j

xi
]) (4)

with the convention that the i j-th coefficient of[zi j
xj
xi
] is zi j

xj
xi

, and i =
√
−1. In other words,[zi j

xj
xi
] =

∆−1(x)z∆(x) where∆(x) = diag(x1, . . . ,xm). By the change of variables xi = exp(iθi) we also have

G∗(z) =
1

(2π)m

∫ π

−π
dθ1 · · ·

∫ π

−π
dθmG([zi j exp((θ j −θi)i)]

where[zi j exp(θ j −θi)] = exp(−∆(θ))zexp(∆(θ)).

Proof. Observe that

G(∆−1(x)z∆(x)) = G([zi j
x j

xi
]) = ∑

k
gkzk

m

∏
i=1

x
∑ j kji−∑ j ki j
i . (5)

Therefore,G∗(z) is the coefficient ofG([zi j
xj
xi
]) atx0

1x0
2 · · ·x0

m since∑ j k ji −∑ j ki j = 0 for matricesk ∈ F .

We write it in shortly asG∗(z) =
[
x0

1 · · ·x0
m

]
g([zi j

xj
xi
]). The result follows from the Cauchy coefficient

formula (cf. [18]).

We consider the number of solutions to (1) and (2), which is isasymptotically equivalent to the number
of Markov types|Pn(m)| over the alphabetA , whose generating function is

F∗
m(z) = ∑

n≥0

|Fn(m)|zn.

Then applying the above lemma withzi j = zxi/x j we conclude that

F∗
m(z) =

1
(1− z)m[x0

1x0
2 · · ·x0

m]∏
i 6= j

[

1− z
xi

x j

]−1

(6)

and thus, by the Cauchy formula,

|Fn(m)|= [zn]F∗
m(z) =

1
2πi

∮
F∗

m(z)
zn+1 dz.

In the next section we evaluate asymptotically this expression to yield the following main result of this
paper
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Theorem 1 (i) For fixed m and n→ ∞ the number of Markov types is

|Pn(m)|= d(m)
nm2−m

(m2−m)!
+O(nm2−m−1) (7)

where d(m) is a constant that also can be expressed by the following integral

d(m) =
1

(2π)m−1

∫ ∞

−∞
· · ·

∫ ∞

−∞
︸ ︷︷ ︸

(m−1)− f old

m−1

∏
j=1

1

1+φ2
j

·∏
k6=ℓ

1
1+(φk−φℓ)2 dφ1dφ2 · · ·dφm−1. (8)

(ii) When m→ ∞ we find that

|Pn(m)| ∼
√

2m3m/2em2

m2m22mπm/2
·nm2−m (9)

provided that m4 = o(n).

Remark 1. It is easy to count the number of matricesk satisfyingonly equation (1), that is,∑i j ki j = n.
Indeed, in this case, it coincides with the number of integersolution of (1), which turns out to be the
number of combinations with repetitions (the number of waysof selectingm2 objects fromn), that is,

(
n+m2−1

n

)

=

(
n+m2−1

m2−1

)

∼ nm2−1.

Thus the conservation law equation (2) decreases the above by the factorΘ(nm−1).

Remark 2. The evaluation of the integral (8) is quite cumbersome, butfor small values ofmwe computed
it to find that

|Pn(2)| ∼ 1
2

n2

2!
(10)

|Pn(3)| ∼ 1
12

n6

6!
(11)

|Pn(4)| ∼ 1
96

n12

12!
(12)

|Pn(5)| ∼ 37
34560

n20

20!
(13)

for largen. It appears that the coefficients ofnm2−m are rational numbers, though we have no proof of this.

Remark 3. We now compare the coefficient atnm2−m for fixed m in (7) with its asymptotic counterpart
in (9). They are shown in Table 1. Observe extremely small values of these constants even for relatively
smallm.
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Tab. 1: Constants atnm2−m for fixedmand largem.

m constant in (7) constant in (9)

2 1.920140832 10−1 2.500000000 10−1

3 9.315659368 10−5 1.157407407 10−5

4 1.767043356 10−11 2.174662186 10−11

5 3.577891782 10−22 4.400513659 10−22

3 Analysis and Proofs
In this section we prove Theorem 1. Our starting formula is (6) that we repeat below

F∗
m(z) =

1
(1− z)m[x0

1x0
2 · · ·x0

m]∏
i 6= j

[

1− z
xi

x j

]−1

. (14)

We first compute this explicitly form= 2,3,4,5.
Whenm= 2, we have

F∗
2 (z) =

1
(1− z)2 [x

0
1x0

2]

[
1

1− z x1/x2

1
1− z x2/x1

]

. (15)

Let us setA= x1/x2 so we need the coefficient ofA0 in (1−Az)−1(1− z/A)−1. Using a partial fractions
expression inA, we have

1
1−Az

1
1− z/A

=
1

1− z2

[
1

1−Az
+

z
A− z

]

.

For definiteness, we can assume that|z|< |A|< |1/z| so that the coefficient ofA0 in (1−Az)−1 is one and
that inz(A− z)−1 is zero. Hence,F∗

2 (z) = (1− z)−2(1− z2)−1 = (1+ z)−1(1− z)−3 and

|Pn(2)| ∼ |Fn(2)| =
1

2πi

∮
1

zn+1

1
1+ z

1
(1− z)3dz

=
n2

4
+n+

3
4
+

1
8
[1+(−1)n]∼ 1

2
n2

2!
, n→ ∞. (16)

For m≥ 3 we use recursive partial fractions expansions. Whenm= 3 we setx1/x2 = A, x1/x3 = B so
that we wish to compute

[A0B0]

(
1

1− zA
1

1− z/A
1

1−Bz
1

1− z/B
1

1−Az/B
1

1−Bz/A

)

. (17)
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First we do a partial fractions expansion in theA variable, for fixedB andz. Thus the factor inside the
parentheses in (17) becomes

1
1− zA

1
1− z2

1
1−Bz

1
1− z/B

1
1−1/B

1
1−Bz2

+
1

1− z/A
1

1− z2

1
1−Bz

1
1− z/B

1
1− z2/B

1
1−B

+
1

1−Az/B
1

1−B
1

1− z2/B
1

1−B/z
1

1− z/B
1

1− z2

+
1

1−Bz/A
1

1−Bz2

1
1−1/B

1
1−Bz

1
1− z/B

1
1− z2 . (18)

To coefficient ofA0 in the first term in (18) is

1
1− z2

1
1−Bz

1
1− z/B

1
1−1/B

1
1−Bz2 , (19)

and that in the third term is
1

1−B
1

1− z2/B
1

1−Bz
1

1− z/B
1

1− z2 , (20)

while the coefficients ofA0 are zero in the second and fourth terms. Combining (19) and (20) we must
now compute

[B0]

(
1+ z2

1− z2

1
1−Bz

1
1− z/B

1
1−Bz2

1
1− z2/B

)

. (21)

Now expanding (21) by a partial fractions expansion inB leads to

1+ z2

1− z2 [B
0]

(
1

1−Bz
1

1− z2

1
1− z

1
1− z2 +

1
1− z/B

1
1− z2

1
1− z3

1
1− z

+
1

1−1/z
1

1− z3

1
1−Bz2

1
1− z4 +

1
1− z3

1
1−1/z

1
1− z4

1
1− z2/B

)

=
1+ z2

1− z2

[
1

1− z2

1
1− z

1
1− z3 +

−z
(1− z)

1
1− z3

1
1− z4

]

=
1− z+ z2

(1− z)4(1+ z)2(1+ z+ z2)
.

Hence,

F∗
3 (z) =

1− z+ z2

(1− z)7(1+ z)2(1+ z+ z2)
.

Forz→ 1, F∗
3 (z)∼ 1

12(1− z)−7 so that

|Pn(3)| ∼
1
12

n6

6!
, n→ ∞. (22)

Using similar recursive partial fractions expansions, with the help of the symbolic computation program
MAPLE, we find that form= 4 andm= 5

F∗
4 (z) =

z8−2z7+3z6+2z5−2z4+2z3+3z2−2z+1
(1− z)13(1+ z)5(1+ z2)(1+ z+ z2)2 (23)
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Tab. 2: Poles and their orders for variousm.

m\ root 1 –1 e±2πi/3 ±i e±2πi/5 e±4πi/5

2 3 1 – – – –

3 7 2 1 – – –

4 13 5 2 1 – –

5 21 8 4 2 1 1

and

F∗
5 (z) =

Q(z)
(1− z)21(1+ z)8(1+ z2)2(1+ z+ z2)4(1+ z+ z2+ z3+ z4)

, (24)

where

Q(z) = z20−3z19+7z18+3z17+2z16+17z15+35z14+29z13+45z12+50z11

+ 72z10+50z9+45z8+29z7+35z6+17z5+2z4+3z3+7z2−3z+1.

These results show that it is unlikely that a simple formula can be found forF∗
m(z) for generalm.

By expanding (23) and (24) nearz= 1 we conclude that asn→ ∞

|Pn(4)| ∼
1
96

n12

12!
, |Pn(5)| ∼

37
34560

n20

20!
. (25)

It is easy to inductively show that atz= 1, F∗
m(z) has a pole of orderm2−m+1 and the other singular-

ities are poles at the roots of unity that are of order< m2−m+1. These poles and their orders are given
in Table 2.

Thus, forn→ ∞, we have

|Pn(m)| ∼ d(m)
nm2−m

(m2−m)!
, (26)

where
d(m) = lim[(1− z)m2−m+1F∗

m(z)]

asz→ 1. However, there seems to be no simple formula for the sequence of constantsd(m). We proceed
to characterized(m) as an(m−1) fold integral.

First consider the simple casem= 2. SettingA= eiΦ and using a Cauchy integral, we have

[A0]
1

1− z/A
1

1−Az
=

1
2π

∫ π

−π

dΦ
1−2zcosΦ+ z2 .
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Now setz= 1−δ and expand the integral forz→ 1. The major contribution will come from whereδ ≈ 0
and scalingΦ = δφ and using the Taylor expansion 1−2(1−δ)cos(δφ)+(1−δ)2 = δ2[1+φ2]+O(δ3),
we find that

F∗
2 (z)∼

1
δ2

1
2π

∫ ∞

−∞

δ
δ2[1+φ2]

dφ =
1
2

1
δ3 , δ → 0.

Whenm= 3, we use (3.4) and the Cauchy integral formula withA= eiΦ andB= eiΨ to get

1
(2π)2

∫ π

−π

∫ π

−π

1
1−2zcosΦ+ z2 ·

1
1−2zcosΨ+ z2 ·

1
1−2zcos(Φ−Ψ)+ z2 dΦdΨ.

Again expanding the above forz= 1−δ → 1 andΦ = δφ = O(δ), Ψ = δψ = O(δ), we obtain the leading
order approximation

1
δ4

1
(2π)2

∫ ∞

−∞

∫ ∞

−∞

1
1+φ2

1
1+ψ2

1
1+(φ−ψ)2 dφdψ =

1
δ4 ·

1
12

.

Thus asz→ 1, F∗
3 (z)∼ 1

12δ−7 = 1
12(1− z)−7 which follows also from the exact generating function.

For generalm a completely analogous calculation shows that asδ = 1− z→ 0, F∗
m(z) ∼ δm−m2−1d(m)

where

d(m) =
1

(2π)m−1

∫ ∞

−∞
· · ·

∫ ∞

−∞
︸ ︷︷ ︸

(m−1)− f old

m−1

∏
j=1

1

1+φ2
j

·∏
k6=ℓ

1
1+(φk−φℓ)2 dφ1dφ2 · · ·dφm−1. (27)

We have verified that form= 4 andm= 5, the integral agrees with our previous results. The second
product in the above is over all distinct pairs (k, ℓ), so that this may also be written as

m−2

∏
ℓ=1

m−1

∏
k=ℓ+1

1
1+(φk−φℓ)2 . (28)

This completes the proof of part (i) of Theorem 1.
We now use the saddle point method to prove part (ii) of Theorem 1. Since

∑
ki j

(

z
zi

zj

)ki j

= (1− z
zi

zj
)−1

and settingzi = eiθi we find that

F∗
m(z) =

1
(2iπ)m

∮
· · ·

∮
∏
i j
(1− z

zi

zj
)−1dz1

z1
· · · dzm

zm
(29)

= (2π)−m
∫ π

−π
· · ·

∫ π

−π
∏
i j
(1− zexp(i(θi −θ j))

−1dθ1 · · ·dθm . (30)
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By noticing that the expression∏i j (1−zexp(i(θi −θ j))
−1 does not change when theθi are all incremented

of the same value, one can integrate overθ1 to obtain

F∗
m(z) = (2π)−m+1

∫ π

−π
· · ·

∫ π

−π
∏

i
(1− zexp(iθi))

−1(1− zexp(−iθi))
−1

× 1
1− z ∏

i>1, j>1
(1− zexp(i(θi −θ j))

−1dθ2 · · ·dθm. (31)

Let now

L(z,θ2, . . . ,θm) = log(1− z)+∑
i

log(1− zexp(iθi))(1− zexp(−iθi))

+ ∑
i>1, j>1

log(1− zexp(i(θi −θ j)).

An alternative form of the above is

L(z,θ2, . . . ,θm) = log(1− z)+
m

∑
i=2

log(1−2zcosθi + z2)

+
1
2

m

∑
i=2

m

∑
j=2

log(1−2zcos(θi −θ j)+ z2).

Notice thatL(z,0, . . . ,0) = m2 log(1− z). Hence

|Fn(m)|= 1
i(2π)m

∮ ∫ π

−π
· · ·

∫ π

−π
exp(−L(z,θ2, . . . ,θm))

dz
zn+1 dθ2 · · ·dθm. (32)

In order to find the asymptotics of this integral we use themultidimensional saddle point method[18]. The
quantityL(z,θ2, . . . ,θm)+nlogzattains its minimum value at(θ2, . . . ,θm) = (0, . . . ,0) andz= zn =

n
m2+n

.
The minimum value is therefore

m2 log(1− zn)+nlogzn = m2 log(m2/(m2+n))+nlog(n/(m2+n))

or
m2 log(m2)+nlog(n)− (m2+n) log(m2+n).

Then
m2 log(1− zn)+nlogzn = m2 logm2−m2 logn−m2+O(m4/n)

provided thatm4 = o(n).
After computations it turns out that at this point(z,θ2, . . . ,θm) = (zn,0, . . . ,0):

∂2

∂z2 L(z,θ2, . . . ,θm) = − m2

(1− zn)2

∀i :
∂2

∂z∂θi
L(z,θ2, . . . ,θm) = 0

∀i :
∂2

∂θ2
i

L(z,θ2, . . . ,θm) =
2(m−1)zn

(1− zn)2

∀i 6= j :
∂2

∂θi∂θ j
L(z,θ2, . . . ,θm) = − 2zn

(1− zn)2 , m≥ 3.
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In other words, the second derivative matrixQ2 of L(z,θ2, . . . ,θm)+nlogzat(z,θ2, . . . ,θm)= (zn,0, . . . ,0)
is

Q2 =

(

− m2

(1− zn)2 −
n

(zn)2

)

uz⊗uz+
2mzn

(1− zn)2 Iθ −
2zn

(1− zn)2 uθ ⊗uθ

whereuz = (1,0, . . . ,0),

uθ =
1√

m−1
(0,1, . . . ,1),

and
Iθ = I −uz⊗uz,

i.e., the identity restricted onθ components. In the above⊗ is the tensor product (in our case, it is a
product of two vectors resulting in a matrix). For example,

uθ ⊗uθ =







0 0 . . . 0
0 1 . . . 1
. . . . . . . . . . . .
0 1 . . . 1






.

An application of the saddle point method yields

|Fn(m)| ∼ 1

(2π)m/2zn
√

det(Q2)
exp(−m2 log(1− zn)−nlogzn)

where det(·) denotes the determinant of a matrix. Since

|det(Q2)|=
(

m2

(1− zn)2 +
n

(zn)2

)(
zn

(1− zn)2

)m−1

2m−1mm−2 ∼ n2mm−3m2m−1,

we find that form4 = o(n)

|Pn(m)| ∼ |Fn(m)| ∼
(

m−2m2+3m/2em2
2−mπ−m/2

√
2
)

nm2−m,

and this completes the proof. The conditionm4 = o(n) is needed since we used the approximation for
m2 log(1− zn) below (32).
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