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We study a random walk with positive drift in the first quadrafthe plane. For a given connected reg®of the
first quadrant, we analyze the number of paths contain€dand the first exit time fron€. In our case, regio is
bounded by two crossing lines. It is noted that such a walkjigvalent to a path in a tree from the root to a leaf not
exceeding a given height. If this tree is the parsing tredefTfunstall or Khodak variable-to-fixed code, then the exit
time of the underlying random walk corresponds to the phiexsgth not exceeding a given length. We derive precise
asymptotics of the number of paths and the asymptotic digtdn of the exit time. Even for such a simple walk, the
analysis turns out to be quite sophisticated and it involebin transforms, Tauberian theorems, and infinite number
of saddle points.
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1 Introduction

LetC C Rio be a bounded connected region of the first quadrant of theepléth the property that if
an integer lattice pointki,ky) # (0,0) with non-negative integers;, ky is contained irC, then either
(k1 —1,kp) or (ki, ko — 1) is in C, too. Let alsar (C) denote the set of lattice paths starting at the origin
(0,0) with steps of the formL = (1,0) andR = (0,1) such that they exit regio@ at the last stefd
(exit time). Figure 1 illustrates such a walk and regib(grey area). We shall study both the exit time
distribution and the number of paths.

In this paper, we are particularly interested in regi@that are bounded by two lines of the form
ax; +bx = ¢; (with a,b > 0 anda # b) andx; + X2 = ¢, (cf. Figure 2). For later use we will assume
(w.l.o.g.) thata= Iogz% andb = log, %, where 0< p < g < 1 andp+qg= 1, log, denotes the logarithm
to base 2.

f L R
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Fig. 1. Lattice paths and binary trees

We should point out that there is an obvious bijection betweeand a binary tred, where every
path in £ corresponds to an external nodeas illustrated in Figure 1. Note that the shap&€amplies
some restrictions on the structure of the binary ffethat appears in this bijection. In our example the
pathRLRRLis not the only one that terminates(@t3). There are two further paths, nam&RLRLand
LRRRLthat have the same endpoii2 3). Thus, the endpoint,3) corresponds to three leavesTin In
what follows we will only consider regior@ with the property that if ki, k2) is an endpoint of lattice
paths therc (C) will contain all (1/12) paths that conne¢0,0) and (ki k).

The correspondence between leaves in trees and lattice ywathin fact the starting point of our anal-
ysis. In our recent work (2) we studied Tunstall and Khodatkalde-to-fixed codes, see also (9) for a
related result. Briefly, leb be a dictionary of binary phrases — usually a complete predix$et of binary
words — then a variable-to-fixed length encoder partitibessburce string into a concatenation of phrases
that belong to the given dictionamy. If the dictionaryD hasM entries, then we can encode each phrase
of » by [log,M] bits. Thus, the source string that is partitioned into pésasfvariable lengths (of
D) is finally encoded by a sequence of phrasefxa&d length[log, M]. Of course, we can represent a
dictionaryp by a complete binary parsing tr@e that is, the dictionary entriese » correspond to the
leaves ofT.

Tunstall's code (12) is the best known variable-to-fixedgtancode; however, it was independently
discovered by Khodak (6). Since then these codes has beliadtxtensively (cf. the survey article (1).)
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Fig. 2: Lattice paths in a bounded region

Khodak’s construction is particularly simple: Lptandg= 1— p > p be the probability of the binary
symbols and let be a given positive parameter. If a nogim a binary tree is connected with the root by
a path ofk; steps to the left anky steps to the right then we sety) = p¢g2. We now consider the set
Y of nodesy (in a potentially infinite binary tree) witR(y) > r. These nodes constitute the internal nodes
of a complete parsing tree that we are looking for, that is st of external nodes that are adjacen to
corresponds to the dictionagy of the Khodak code. Of course, all external nodestisfypr < P(d) <r.

Letv=1/r. Then, itis shown in (2) that in order to analyze the Khodaltez@ne needs to investigate
the following sums

Av) = z f(v)
yP(y)=1/v

for some functionf (v). SinceP(y) = p4¢*2 for some nonnegative integeks ko > 0, we conclude that
the above summation set can be expressed, after settry, as

1 1
kilog, I_D + kzlogza <V

which corresponds to the first line of the boundary of redgiofor our walks £ (C). Imposing another
condition on the phrase length (path in the parsing treafehg that it cannot exceed, s#y the above
sum becomes
AW= Y W)
YP(y)=1/v]yl<K
with the second boundary line becomikigt ko, < K as we introduced before.

Note further that by constructidfyc, P(d) = 1. Thus,P(d), d € D, is a probability distribution om .
Alternatively we can adjust the lattice paths4iC) with a natural probability distribution. lj € £ (C)
consists ok; steps of the fornR andk; steps of the forni thenP(y) := pX.¢*2 equals the probability
distribution that is induced by a random walk that start€ab) and is generated by independent stBps
andL with probabilitiesp andg.

While there is a substantial literature on random walks & filst quadrant of the plane (3; 5), the
problem we analyze here seems to be unique and only somalpasults were reported thus far; see



4 Michael Drmota and Wojciech Szpankowski

Janson (7). Our methodology belongs to analytic algoritisrand is rather sophisticated. After translating
the above sums into a recurrence, we apply the Mellin transéond Tauberian theorem to discover that
we need to handle infinite saddle points on a line (incideallgady encountered in (8)). This leads to
some oscillations in the leading term for the number of patits also prove the central limit theorem for
the exit time.

2 Main Results

We will discuss two problems. The first one is a counting peobl Set
. 2 . 1 1
Ckyv = {(x1,X2) € RSg 1 X1+ %2 < K, x1l0g, _p +leogza <V}

Let Lk v be the corresponding set of lattice paths @rg be the associated binary tree. The first result
concerns the number of paths

k1+k2>
Lkv|= .
oyl s (%

k1+ko <K, kp log, T)+kzlogz 3 <V

In this context it is natural to lef be an integer variable andla positive real variable.
In the formulation of the theorem we will make usesgf= ssp(K,V) defined as

pPq > K

P p~Srlog % + q*SSp|og?11 Vlog2

1
Note thatss, > —1 if and only ifK /V < (plogz 2 +1log, %) .
We further set

2
e = p*slogzl—ﬂ—qfslogza1 - p*slog%Jrq*SIog%
p*S_i_ q*S p*S_i_ q*S

and will use the periodic function
L

X 1 2nim
e5L<[> — *eTX’
1-et m%z (_S) + 2r+m

QL(s,x) =

wherese C andx, L € R; {(y) =y— |y| denotes the fractional part of a real numbper

Finally, we setH = plog(1/p) +glog(1/q) (that can be interpreted as the entropy of the distribution
p,q) and and for later use we sdp = plog?(1/p) + qlog?(1/q).

Theorem 1. Suppose thal > 0 is given.
1. Assume that K and V satisfy the constraints

Vlog2
H

(1+8) <K< Viog2

< minflog(1/p).log(r/q)] © %" @)
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If logp/logqis irrational, then as KV — o

2V
kvl = 17 (1+0(1)). )
However, if',g%; is rational then
lky| = wz\/ +O(2V(1fn)) ©)
for somen > 0, where L> Qis the largest real number for whidbg(1/p) andlog(1/q) are integer
multiples of L.
2. Next, if
2Vlog?2 Vlog2
(149) <K< -(1-9), 4
iog(1/p) + log(t/q) -+ T @
then

Qs (Ssp, (K—2¢)logp—Vlog 2) . (p*ssp + q*SSP)KZ*VSsp

L ~ , 5
| K,Vl go (pfssp_"_qfssp)[ 2T[|<T(Ssp) ( )
whereA = logq— logp. Iflogp/logq = d/r is rational, then (5) simplifies to
ey d-r-1 eZTriéQL (ssp—zlgj,KIogp—VIogZ) (PSP + g Sp)K2 Vs ©)
KV~ ] : .
YT A ok TS
T g
3. If
Vlog2 2Vlog?2
(148 <K< -(1-9). 7
max{log(1/p),log(1/a)} (49 log(1/p) +log(1/q) (-9 "
then (for some) > 0)
|k v | = 2K+ — o(2K(A-m). (8)

For the second problem we assign to the lattice patlixi a natural probability distribution. Recall
thatify € Lk v consists ok; steps of the fornR andk; steps of the fornk. then we seP(y) := pgke and
that this is exactly the probability distribution that iglirced by a random walk that starts(@t0) and is
generated by independent stépandL with probabilitiesp andq. Further, since every patheventually
leaveCk v we surely havé v, , P(y) = 1. Certainly, we can also think of the corresponding tiges
and its external nodes. Our second result concerns theimeitx v of this random walk, that is, the
number of stepy| = ki + ko of y € Lk v (cf. Figure 3).

Theorem 2. Let Dk v denote the exit time of the above described random walk adfig.

1. If (1) holds, then we have, as¥ — oo,

Dky — & 10g]Lk v | N
(($_%)|09|LK,V|)1/2 N(0,1),
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Fig. 3: The drift in the first and second case of Theorem 2

where NO, 1) denotes the standard normal distribution. Furthermore,

EDkyv

_loglzky| [ logH = H,  —logL+log(l—et)+5 1
~H H  2H? H log|zkv|/’

where L= 0 if logp/logq is irrational and L> 0 is defined as in Theorem 1libgp/logq is

rational. Further

H 1
Var Dxy = (H—g - ﬁ) |Og|LK,V| —I—O(l).

2. 1f (4) or (7) holds, then the distribution ofil is asymptotically concentrated atK1, that is,
Pr{Dkyv #K+1} =0(e "¥)
as K,V — « for somen > 0. We also hav& Dk v = K + 1+ O(e "K) andVar D y = O(e~"K).

In passing we observe that a random walk (that start8,8) and is generated by independent stBps
andL with probabilitiesp andg) has an average positidpm gm) aftermsteps. Further by approximating
this random walk by a Brownian motion it is clear that the d&ein from the mean is (almost surely)
bounded byO(y/mloglogm). Thus, if (1) holds then the Brownian motion approximatiam de used
to derive the central limit theorem, (see, for example,.(7)he bound coming fronk; + ko < K has
practically no influence (cf. Figure 3). However, in the set@nd third case ((4) and (7)), the bound
kllog%) + kzlog% <V is negligible and, thus, the exit time is concentrate at1. This also explains

the first threshold /V ~ (log2)/H of Theorem 1. The second thresh#ldV ~ (2log 2)/(Iog%) + Iogé)
comes from the fact thaty, , ,<k (4 2) = 2+ — 1 and that

k1
ki +ko
(o) ©)

becomes negligible, that i§(2* ")), if K/V < (1-8)-2/(log, 5 +l0g; 7).
The two threshold& /V ~ (log2)/H andK/V ~ 2/(log, % +log, %) are not covered by Theorems 1

and 2. In fact it is possible to characterize the limiting &ébur of| £k v| andDk v also in these cases
but the statements (and also the derivations) are veryvadand are not discussed here.

ki+ko<K, ki log, 3 +kzlog, >V
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3 Analysis of a Recurrence

As above, for any lattice pathwe setP(y) = p*1g*2 if y consists ok; stepsR andk; stepsL. We further
setv=2". Thenk; log, %) + kzlogz%l <V is equivalenttdP(y) > 1/v. Observe that

Ac(v) = Z 1
y:P(y)>1/v|y|<K

is the number of lattice paths with endpoints containe@dry. Due to the binary tree interpretation of
these lattice paths we have
lLkv| =Ac(V) +1=Ac(2Y) +1

since the number of external nodes of a binary tree exceeduimber of internal nodes by exactly 1.
For the proof of the limit laws of the exit time we will also nakise of the following similar sum

swg)= Y Py
y:P(y)>1/v, |y|<K

that will be analyzed a8k (V).
First, by definition it is clear thadk (v) = 0 andS« (v,z) = 0 forv < 1 and allKk > 0, however, for > 1
we recursively have

Ac1(V) =1+ Ac(vp) +Ax(va) and Sci1(V,2) = 14 pzk(vp.2) +4z% (v, 2).

From this recursive description we immediately obtain tbe@sponding relations for the Mellin trans-
forms, namely

Al =+ (P a IS (O < 1)
and

Sea(52) = P Szd IS(s2 (09 <0)

Recall that the Mellin transform* (s) of a functionf (v) is defined by
F(s) = / F (Vv ldv,
0
SinceAy(v) = §(v,2) = —% we explicitly find

1— (p—s+ q—S)K+1
S(1-(p°+079)

In order to find asymptotics & (v) asv — o we must compute the inverse transformAgf(s):

1-(z(pts+qt %)<t
S(1-z(pt-s+qgt9)

A(9) =~ and Si(s2)=-

o+HIT

Ak (V) Ak(s)vds (10)

210 T Jo—iT

whereo < —1.
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3.1 First case of Theorem 1

We first assume that we are in the first case of Theorem 1, thiteiselation (1) holds. Then we know
thatssp < —1. We split up the integral (10) into two parts:

v Sds

1 o+HIT 1 s 1 o+HIT (p*5+ qfs)K+1
|:"fm/ - Wdlzth/
Yoo r  SI-(prq) o 2T 2zmTs)om S1-(potq )

In order to handlé; we have to know something about the set of zeros of the derataniiThe following

lemma is probably due to Schachinger (10) and independéadyo Jacquet, see (11).

Lemma 1. Supposethad < p<g< landsetZ={seC:pS+q S=1}. Thenwe have

(i) All s € Z satisfy—1 < [I(s) < 0p, wheredy is a positive solution of + q~°= p~S. Furthermore,
for every integer k there uniquely existssZ with (2k— 1)1/ logp < 0(s) < (2k+ 1)1t/ logp and
consequently Z {s: ke Z}.

(i) If logp/logqis irrational then § = —1 and(s) > —1 for all k £ 0.

(iii) If logp/logq=d/r is rational, wheregcdr,d) = 1 for integers rd > O, then we havél () = -1
if and only if k= 0 modd. In particularC(s;),...,0(sg-1) > —1and

2mi
S = Scmodd + (k— (K mOdd))m,

that is, all s€ Z are uniquely determined by s- —1 and by s,s,...,5_1, and their imaginary
parts constitute an arithmetic progression.

This means that if log/logq is irrational, then there is only ordominating zermn thecritical line
0(s) = —1 and we directly get; ~ 2V /H by an application of the Tauberian theorem of Wiener-lkahar
(formulated for the Mellin transform) as discussed in (2).

If log p/logq is rational, then we have to be more careful. We shift thegirsteto o > —1 with
o <min{0sy,...,05-1} and obtain

i S ResA(9vE =) ptim [ L v
— lim egA (VS s=¢)—— lim [ —eLl
T=®gez, 0(¢)=-1,)0(8)|<T 21 T Jo_it S(1—-pS—q~9)

i vs 1 i /o+iT 1 s
= —lim — —— |im — —  vSds
ooy 0wy ne)<r SHE)  2mT-e/oir s(1-p°-q79)

l1

provided that the series of residues converges and theTimit « of the last integral exists. Here we
have used the notatidt(s) = —pSlogp— q °logq. Observe that (—1) = —plogp—qlogq equalsH.

We have to face the problem that, both, the series and thgraitere not absolutely convergent since the
integrand is only of order /5. Nevertheless it is possible to show that these limits existve omit the
technical details — and we find (with help of Lemma 1)

yi-2if

=2 AzmmH

mez

+q¢ﬂg:ﬂ§1%?ﬁa+qwﬂm
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where 0<ni1 =0+ 1< min{0sy,...,05-1}+ 1.
The integrall; has to be treated in a completely different way. First ofva#, shift the integral to the
line 0 = ssp < —1 and observe that

(PP + g ) Ky % = R(S0) log(p™ P+ %P) —s5p
and thatR(ssp) log(p~%r +q~5r) — s5p < 1 if s5p# —1. Hence, we expect thit can be estimated by
l,=0 (VR(ssp) Iog<p*55'°+q*55p)fssp) -0 (zv(lfnz))

(for somen > 0) which is actually true. Again we have to overcome the téairproblem that the
integral is not absolutely convergent.

3.2 Second case of Theorem 1

Next we assume that we are in the second case of Theorem I, tthet relation (4) holds. Hesgp > —1
and we do not split the integral (10) into two parts. Of couvgeagain shift the integral to a lire> —1,
namely too = ssp > —1. Note that the zeroZ of the denominator are no singularities of the function
A (s) since the numerator has the same zeros. Neverthelesstebeain

B SspHiT 1— (p*S_Fq*S)K‘Fl s
A= tm [ ST

ds (11)

needs a delicate analysis. It is again not absolutely cgewgibut this is just a technical question. The
second problem comes from the fact that on the line of integrahere are infinitely mangaddle points
First note thas = sspis a saddle point of the mappirsg— (p~S+q %)Xy = gklog(p™>+a7%)—sViog2 g,

thus the integral fronssp — K2 to Ssp+ Kz (for somee > 0) is asymptotically given by
1 (pwg )Rl
V2K T (s5p) Ssp(1— (P~ +q7>))

However, as already noted this is not the only saddle poitttisriine of integration. Sef, = 2rth/(logp—
logg) = —2mih/A. Then all pointss = ssp+ity, h € Z, are saddle points, as already observed in (8).
Consequently, the total contribution of the integral israpjotically given by

1 (PSP + qSp)K+10—SsV p-it(K+1) -V
hgz 2MK T (Ssp)  (Ssp+itn)(1— (p~Sp+ g Sp)p-itn)

The representations (5) and (6) follow after a few lines afipatation by using the Fourier expansion of

QL(S, X).

3.3 Third case of Theorem 1

If (7) holds thenssp > 0. Thus if we shift the line of integration of the integral 1t 0 = ssp we have to
take into account the residuk corresponding to the polar singularity= 0. The saddle point machinery
for the remaining integral at the line= ssp provides the error term.

Alternatively we can directly deal with the sum (9) in an etartary way.
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4 Exit Time

In order to treat the exit timBk v we make again use of the corresponding ffe¢ and the following
useful lemma (cf. (2)).

Lemma2. Let T be an m-ary tree, let X denote the set of leaves and Y tloéiséernal nodes. Further-
more, we assume a probability distribution,p.., pm on an m-ary alphabet A and identify a node in T
with a word over A in the usual way. Then we have

PX)ZX =(z-1) S P(y)2Y + 1. (12)
ng (x)z¥ = (z )y; (y)z

This lemma directly implies that the probability genergtfanction of Dk (v,z) = EZ2KV (wherev =
2V) is given by
Dk (v,2) = (z— 1) (v,2)+1 (v>1)

and consequently its Mellin transform has the followingresgentation (fofl(s) < 0):

1 (1-7@-zp"°*+q 9 1

Df? (s, Z) = (z— 1)32(35 z)— S = S(1— Z(p173—|— qlfs)) s

Hence, we have for any < 0

1 O+iT (1_2)(1_ Z(p175+ qlfs)K+1) 1 s
KV — - =
EZL 578 T“an /(HT ( s(1—z(ps+q-9)) s v > ds

In the first case of Theorem 2, that is, if (1) holds then wet syithe integral into two parts(z) + 12(2):

1 qoT (1-2) 1\
w0 =g [ (qraprergrsy —s) v
o+HiT _ 1-s 1-s\K+1

I2(Z):—i. Iim/ (1-7(&p 7+q 7)

2M T /o i1 S(1—2z(pl-S+ql9))

v Sds

Observe that the residue of thimgular value s= 0 in the integrand off;(z) equals 0 (due to the additional
term —1/s). Thus,s= 0 does not contribute if we shift the line of integrationado> 0. The only polar
singularity on the real line of the integrandlefz) is so(z) that is given by the equatiaip’~% 4 g1~%) =

1 and has an asymptotic representation of the form

0ot =25+ (5~ g ) @ D240(2-19) @- D),

The residue of the integrand in(z) at s = s9(z) equalsv%(@. Of course, there is an analogue to
Lemma 1 for all zeros of the equatiap* =S+ q'~S) = 1. By shifting the line of integration ity (z) to
the right (and taking care that there is ho absolute conve)eone finds

l1(2) =v 2@ (1+0(z—1))).
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In the second integrdb(z) we shift the line of integration t@ = ssp+ 1 < 0 and get an negligible
exponentially small error term. Consequently we have

=1 (17H

_ _1\2 113
BV =y 90 (14.0(|z— 1)) =y (758)E 20010 (g oz

which proves asymptotic normality by setting= € (together with a proper scaling). For the derivation
of the mean value (and variance) we refer to (2).

In the second case of Theorem 2 (where (4) or (7) holds) we tisptib up the integral into two parts,
which implies that the integrand has no singular pointsoti@ns = 0. We shift the line of integration
to 0 = s5p+ 1 > 0 and obtain (again by taking care that there is no absoluteszgence)

EPY =X L O(jz—1v ") (13)
wheren = ssp+ 1> 0. By construction we know théik v <K+ 1. From (13) we can easily deduce that
Dk v is in fact concentrated & + 1. By Markov’s inequality (foz < 1) we directly obtain

Pr{Dcy < K} <ZXE (2 1yp <)) =7 ¢ (B — ZF1) + 2Pr{Dicy <K}

which implies (withz= 1— ) the estimaté®r {Dxy < K} = O(v_"). This proves concentration. We
havev = 2V and, thusy " = 2~V is exponentially small. By using the corresponding taiireate
of the formPr{Dky < K —r} = O(e""/Kv™"), we can also deal with moments and obt&iby y =
K+1+0O(K?v ") andVar Dxy = O(K3v").
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