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1 Introduction
Let C ⊆ R2

≥0 be a bounded connected region of the first quadrant of the plane with the property that if
an integer lattice point(k1,k2) 6= (0,0) with non-negative integersk1,k2 is contained inC, then either
(k1−1,k2) or (k1,k2−1) is in C, too. Let alsoL (C) denote the set of lattice paths starting at the origin
(0,0) with steps of the formL = (1,0) and R = (0,1) such that they exit regionC at the last stepD
(exit time). Figure 1 illustrates such a walk and regionC (grey area). We shall study both the exit time
distribution and the number of paths.

In this paper, we are particularly interested in regionsC that are bounded by two lines of the form
ax1 + bx2 = c1 (with a,b > 0 anda 6= b) andx1 + x2 = c2 (cf. Figure 2). For later use we will assume
(w.l.o.g.) thata = log2

1
p andb = log2

1
q, where 0< p < q < 1 andp+q = 1; log2 denotes the logarithm

to base 2.

L R

R

L

Fig. 1: Lattice paths and binary trees

We should point out that there is an obvious bijection between L and a binary treeT, where every
path inL corresponds to an external node� as illustrated in Figure 1. Note that the shape ofC implies
some restrictions on the structure of the binary treeT that appears in this bijection. In our example the
pathRLRRLis not the only one that terminates at(2,3). There are two further paths, namelyRRLRLand
LRRRLthat have the same endpoint(2,3). Thus, the endpoint(2,3) corresponds to three leaves inT. In
what follows we will only consider regionsC with the property that if(k1,k2) is an endpoint of lattice
paths thenL (C) will contain all

(k1+k2
k1

)

paths that connect(0,0) and(k1,k2).
The correspondence between leaves in trees and lattice paths was in fact the starting point of our anal-

ysis. In our recent work (2) we studied Tunstall and Khodak variable-to-fixed codes, see also (9) for a
related result. Briefly, letD be a dictionary of binary phrases – usually a complete prefix free set of binary
words – then a variable-to-fixed length encoder partitions the source string into a concatenation of phrases
that belong to the given dictionaryD . If the dictionaryD hasM entries, then we can encode each phrase
of D by ⌈log2M⌉ bits. Thus, the source string that is partitioned into phrases ofvariable lengths (of
D ) is finally encoded by a sequence of phrases offixed length⌈log2 M⌉. Of course, we can represent a
dictionaryD by a complete binary parsing treeT, that is, the dictionary entriesd ∈ D correspond to the
leaves ofT.

Tunstall’s code (12) is the best known variable-to-fixed length code; however, it was independently
discovered by Khodak (6). Since then these codes has been studied extensively (cf. the survey article (1).)
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Fig. 2: Lattice paths in a bounded region

Khodak’s construction is particularly simple: Letp andq = 1− p > p be the probability of the binary
symbols and letr be a given positive parameter. If a nodey in a binary tree is connected with the root by
a path ofk1 steps to the left andk2 steps to the right then we setP(y) = pk1qk2. We now consider the set
Y of nodesy (in a potentially infinite binary tree) withP(y)≥ r. These nodes constitute the internal nodes
of a complete parsing tree that we are looking for, that is, the set of external nodes that are adjacent toY
corresponds to the dictionaryD of the Khodak code. Of course, all external nodesd satisfypr ≤P(d) < r.

Let v = 1/r. Then, it is shown in (2) that in order to analyze the Khodak code, one needs to investigate
the following sums

A(v) = ∑
y:P(y)≥1/v

f (v)

for some functionf (v). SinceP(y) = pk1qk2 for some nonnegative integersk1,k2 ≥ 0, we conclude that
the above summation set can be expressed, after settingv = 2V , as

k1 log2
1
p

+k2 log2
1
q
≤V

which corresponds to the first line of the boundary of regionC for our walksL (C). Imposing another
condition on the phrase length (path in the parsing tree), namely, that it cannot exceed, sayK, the above
sum becomes

AK(v) = ∑
y:P(y)≥1/v, |y|≤K

f (v)

with the second boundary line becomingk1 +k2 ≤ K as we introduced before.
Note further that by construction∑d∈D P(d) = 1. Thus,P(d), d∈ D , is a probability distribution onD .

Alternatively we can adjust the lattice paths inL (C) with a natural probability distribution. Ify∈ L (C)
consists ofk1 steps of the formR andk2 steps of the formL thenP(y) := pk1qk2 equals the probability
distribution that is induced by a random walk that starts at(0,0) and is generated by independent stepsR
andL with probabilitiesp andq.

While there is a substantial literature on random walks in the first quadrant of the plane (3; 5), the
problem we analyze here seems to be unique and only some partial results were reported thus far; see
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Janson (7). Our methodology belongs to analytic algorithmics and is rather sophisticated. After translating
the above sums into a recurrence, we apply the Mellin transform and Tauberian theorem to discover that
we need to handle infinite saddle points on a line (incidently, already encountered in (8)). This leads to
some oscillations in the leading term for the number of paths. We also prove the central limit theorem for
the exit time.

2 Main Results
We will discuss two problems. The first one is a counting problem. Set

CK,V := {(x1,x2) ∈ R
2
≥0 : x1 +x2 ≤ K, x1 log2

1
p

+x2 log2
1
q
≤V}

Let LK,V be the corresponding set of lattice paths andTK,V be the associated binary tree. The first result
concerns the number of paths

|LK,V | = ∑
k1+k2≤K, k1 log2

1
p+k2 log2

1
q≤V

(

k1 +k2

k1

)

.

In this context it is natural to letK be an integer variable andV a positive real variable.
In the formulation of the theorem we will make use ofssp = ssp(K,V) defined as

R(ssp) =
p−ssp +q−ssp

p−ssp log 1
p +q−ssp log 1

q

=
K

V log2

Note thatssp > −1 if and only if K/V <
(

plog2
1
p +1log2

1
q

)−1
.

We further set

T(s) =
p−s log2 1

p +q−slog2 1
q

p−s+q−s −
(

p−s log 1
p +q−slog 1

q

p−s+q−s

)2

and will use the periodic function

QL(s,x) =
L

1−esLesL〈 x
L 〉 = ∑

m∈Z

1

(−s)+ 2πim
L

e
2πim

L x,

wheres∈ C andx,L ∈ R; 〈y〉 = y−⌊y⌋ denotes the fractional part of a real numbery.
Finally, we setH = plog(1/p)+ qlog(1/q) (that can be interpreted as the entropy of the distribution

p,q) and and for later use we setH2 = plog2(1/p)+qlog2(1/q).

Theorem 1. Suppose thatδ > 0 is given.

1. Assume that K and V satisfy the constraints

V log2
H

· (1+ δ)≤ K ≤ V log2
min{log(1/p), log(1/q)} · (1− δ). (1)
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If logp/ logq is irrational, then as K,V → ∞

|LK,V | =
2V

H
(1+o(1)). (2)

However, if log p
logq is rational then

|LK,V | =
QL(−1,V log2)

H
2V +O(2V(1−η)) (3)

for someη > 0, where L> 0 is the largest real number for whichlog(1/p) andlog(1/q) are integer
multiples of L.

2. Next, if
2V log2

log(1/p)+ log(1/q)
· (1+ δ)≤ K ≤ V log2

H
· (1− δ), (4)

then

|LK,V | ∼ ∑
ℓ≥0

Qδ
(

ssp,(K − ℓ) logp−V log2
)

(p−ssp +q−ssp)ℓ
· (p−ssp +q−ssp)K2−Vssp

√

2πK T(ssp)
, (5)

where∆ = logq− logp. If logp/ logq = d/r is rational, then (5) simplifies to

|LK,V | ∼
d−r−1

∑
j=0

e2πi j
δ QL

(

ssp− 2πi j
δ ,K logp−V log2

)

1− e
2πi jd

d−r

p−ssp+q−ssp

· (p−ssp +q−ssp)K2−Vssp

√

2πK T(ssp)
. (6)

3. If
V log2

max{log(1/p), log(1/q)} · (1+ δ)≤ K ≤ 2V log2
log(1/p)+ log(1/q)

· (1− δ). (7)

then (for someη > 0)
|LK,V | = 2K+1−O(2K(1−η)). (8)

For the second problem we assign to the lattice paths inLK,V a natural probability distribution. Recall
that if y∈ LK,V consists ofk1 steps of the formRandk2 steps of the formL then we setP(y) := pk1qk2 and
that this is exactly the probability distribution that is induced by a random walk that starts at(0,0) and is
generated by independent stepsR andL with probabilitiesp andq. Further, since every pathy eventually
leavesCK,V we surely have∑y∈LK,V

P(y) = 1. Certainly, we can also think of the corresponding treesTK,V

and its external nodes. Our second result concerns the exit time DK,V of this random walk, that is, the
number of steps|y| = k1 +k2 of y∈ LK,V (cf. Figure 3).

Theorem 2. Let DK,V denote the exit time of the above described random walk and fixδ > 0.

1. If (1) holds, then we have, as K,V → ∞,

DK,V − 1
H log|LK,V |

((

H2
H3 − 1

H

)

log|LK,V |
)1/2

d−→ N(0,1),
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Fig. 3: The drift in the first and second case of Theorem 2

where N(0,1) denotes the standard normal distribution. Furthermore,

EDK,V =
log|LK,V |

H
+

logH
H

+
H2

2H2 +
− logL+ log(1−e−L)+ L

2

H
+o

(

1
log|LK,V |

)

,

where L= 0 if logp/ logq is irrational and L> 0 is defined as in Theorem 1 iflogp/ logq is
rational. Further

VarDK,V =

(

H2

H3 − 1
H

)

log|LK,V |+O(1).

2. If (4) or (7) holds, then the distribution of DK,V is asymptotically concentrated at K+1, that is,

Pr{DK,V 6= K +1}= O(e−ηK)

as K,V → ∞ for someη > 0. We also haveEDK,V = K +1+O(e−ηK) andVarDK,V = O(e−ηK).

In passing we observe that a random walk (that starts at(0,0) and is generated by independent stepsR
andL with probabilitiesp andq) has an average position(pm,qm) aftermsteps. Further by approximating
this random walk by a Brownian motion it is clear that the deviation from the mean is (almost surely)
bounded byO(

√
mloglogm). Thus, if (1) holds then the Brownian motion approximation can be used

to derive the central limit theorem, (see, for example, (7)). The bound coming fromk1 + k2 ≤ K has
practically no influence (cf. Figure 3). However, in the second and third case ((4) and (7)), the bound
k1 log 1

p + k2 log 1
q ≤ V is negligible and, thus, the exit time is concentrated atK + 1. This also explains

the first thresholdK/V ∼ (log2)/H of Theorem 1. The second thresholdK/V ∼ (2log2)/(log 1
p + log 1

q)

comes from the fact that∑k1+k2≤K

(k1+k2
k1

)

= 2K+1−1 and that

∑
k1+k2≤K, k1 log2

1
p+k2 log2

1
q>V

(

k1 +k2

k1

)

(9)

becomes negligible, that is,O(2K(1−η)), if K/V < (1− δ) ·2/(log2
1
p + log2

1
q).

The two thresholdsK/V ∼ (log2)/H andK/V ∼ 2/(log2
1
p + log2

1
q) are not covered by Theorems 1

and 2. In fact it is possible to characterize the limiting behaviour of |LK,V | andDK,V also in these cases
but the statements (and also the derivations) are very involved and are not discussed here.
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3 Analysis of a Recurrence
As above, for any lattice pathy we setP(y) = pk1qk2 if y consists ofk1 stepsRandk2 stepsL. We further
setv = 2V . Thenk1 log2

1
p +k2 log2

1
q ≤V is equivalent toP(y) ≥ 1/v. Observe that

AK(v) = ∑
y:P(y)≥1/v, |y|≤K

1

is the number of lattice paths with endpoints contained inCK,V . Due to the binary tree interpretation of
these lattice paths we have

|LK,V | = AK(v)+1= AK(2V)+1

since the number of external nodes of a binary tree exceeds the number of internal nodes by exactly 1.
For the proof of the limit laws of the exit time we will also make use of the following similar sum

SK(v,z) = ∑
y:P(y)≥1/v, |y|≤K

P(y)z|y|.

that will be analyzed asAK(v).
First, by definition it is clear thatAK(v) = 0 andSK(v,z) = 0 for v< 1 and allK ≥ 0, however, forv≥ 1

we recursively have

AK+1(v) = 1+AK(vp)+AK(vq) and SK+1(v,z) = 1+ pzSK(vp,z)+qzSK(vq,z).

From this recursive description we immediately obtain the corresponding relations for the Mellin trans-
forms, namely

A∗
K+1(s) = −1

s
+(p−s+q−s)A∗

K(s) (ℜ(s) < −1)

and

S∗K+1(s,z) = −1
s

+(zp1−s+zq1−s)S∗K(s,z) (ℜ(s) < 0).

Recall that the Mellin transformf ∗(s) of a function f (v) is defined by

f ∗(s) =

Z ∞

0
f (v)vs−1dv.

SinceA∗
0(v) = S∗0(v,z) = − 1

s we explicitly find

A∗
K(s) = −1− (p−s+q−s)K+1

s(1− (p−s+q−s))
and S∗K(s,z) = −1− (z(p1−s+q1−s))K+1

s(1−z(p1−s+q1−s))
.

In order to find asymptotics ofAK(v) asv→ ∞ we must compute the inverse transform ofA∗
K(s):

AK(v) =
1

2πi
lim

T→∞

Z σ+iT

σ−iT
A∗

K(s)v−sds, (10)

whereσ < −1.
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3.1 First case of Theorem 1
We first assume that we are in the first case of Theorem 1, that is, the relation (1) holds. Then we know
thatssp < −1. We split up the integral (10) into two parts:

I1 = − 1
2πi

lim
T→∞

Z σ+iT

σ−iT
− 1

s(1− (p−s+q−s))
v−sds, I2 = − 1

2πi
lim

T→∞

Z σ+iT

σ−iT

(p−s+q−s)K+1

s(1− (p−s+q−s))
v−sds.

In order to handleI1 we have to know something about the set of zeros of the denominator. The following
lemma is probably due to Schachinger (10) and independentlydue to Jacquet, see (11).

Lemma 1. Suppose that0 < p < q < 1 and set Z= {s∈ C : p−s+q−s = 1}. Then we have

(i) All s ∈ Z satisfy−1≤ ℜ(s) ≤ σ0, whereσ0 is a positive solution of1+ q−s = p−s. Furthermore,
for every integer k there uniquely exists sk ∈ Z with (2k−1)π/ logp < ℑ(sk) < (2k+1)π/ logp and
consequently Z= {sk : k∈ Z}.

(ii) If logp/ logq is irrational then s0 = −1 andℜ(sk) > −1 for all k 6= 0.

(iii) If logp/ logq = d/r is rational, wheregcd(r,d) = 1 for integers r,d > 0, then we haveℜ(sk) = −1
if and only if k≡ 0 modd. In particularℜ(s1), . . . ,ℜ(sd−1) > −1 and

sk = sk modd +(k− (k modd))
2πi

logp
,

that is, all s∈ Z are uniquely determined by s0 = −1 and by s1,s2, . . . ,sd−1, and their imaginary
parts constitute an arithmetic progression.

This means that if logp/ logq is irrational, then there is only onedominating zeroon thecritical line
ℜ(s) = −1 and we directly getI1 ∼ 2V/H by an application of the Tauberian theorem of Wiener-Ikehara
(formulated for the Mellin transform) as discussed in (2).

If log p/ logq is rational, then we have to be more careful. We shift the integral to σ > −1 with
σ < min{ℜs1, . . . ,ℜsd−1} and obtain

I1 = − lim
T→∞ ∑

s′∈Z, ℜ(s′)=−1,|ℑ(s′)|<T

Res(A∗(s)v−s, s= s′)− 1
2πi

lim
T→∞

Z σ+iT

σ−iT

1
s(1− p−s−q−s)

v−sds

= − lim
T→∞ ∑

s′∈Z, ℜ(s′)=−1,|ℑ(s′)|<T

v−s′

s′H(s′)
− 1

2πi
lim

T→∞

Z σ+iT

σ−iT

1
s(1− p−s−q−s)

v−sds

provided that the series of residues converges and the limitT → ∞ of the last integral exists. Here we
have used the notationH(s) = −p−slogp−q−slogq. Observe thatH(−1) = −plogp−qlogq equalsH.
We have to face the problem that, both, the series and the integral are not absolutely convergent since the
integrand is only of order 1/s. Nevertheless it is possible to show that these limits exists – we omit the
technical details – and we find (with help of Lemma 1)

I1 = ∑
m∈Z

v1−2πi m
L

(1−2πi m
L )H

+O(v1−η1) = 2V S(−1,V log2)
H

+O(v1−η1),
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where 0< η1 = σ+1< min{ℜs1, . . . ,ℜsd−1}+1.
The integralI2 has to be treated in a completely different way. First of all,we shift the integral to the

line σ = ssp < −1 and observe that

(p−ssp +q−ssp)Kv−ssp = vR(ssp) log(p−ssp+q−ssp)−ssp

and thatR(ssp) log(p−ssp +q−ssp)−ssp< 1 if ssp 6= −1. Hence, we expect thatI2 can be estimated by

I2 = O
(

vR(ssp) log(p−ssp+q−ssp)−ssp
)

= O
(

2V(1−η2)
)

(for someη2 > 0) which is actually true. Again we have to overcome the technical problem that the
integral is not absolutely convergent.

3.2 Second case of Theorem 1
Next we assume that we are in the second case of Theorem 1, thatis, the relation (4) holds. Heressp>−1
and we do not split the integral (10) into two parts. Of course, we again shift the integral to a lineσ >−1,
namely toσ = ssp > −1. Note that the zerosZ of the denominator are no singularities of the function
A∗

K(s) since the numerator has the same zeros. Nevertheless, the integral

AK(v) = − 1
2πi

lim
T→∞

Z ssp+iT

ssp−iT

1− (p−s+q−s)K+1

s(1− (p−s+q−s))
v−sds, (11)

needs a delicate analysis. It is again not absolutely convergent but this is just a technical question. The
second problem comes from the fact that on the line of integration there are infinitely manysaddle points.
First note thats= ssp is a saddle point of the mappings 7→ (p−s+q−s)Kv−s = eK log(p−s+q−s)−sVlog2 and,

thus the integral fromssp− iK
1
2−ε to ssp+ iK

1
2−ε (for someε > 0) is asymptotically given by

1
√

2πK T(ssp)

(p−ssp +q−ssp)K+12−sspV

ssp(1− (p−ssp+q−ssp))

However, as already noted this is not the only saddle point onthis line of integration. Setth = 2πh/(logp−
logq) = −2πih/∆. Then all pointss = ssp+ ith, h ∈ Z, are saddle points, as already observed in (8).
Consequently, the total contribution of the integral is asymptotically given by

∑
h∈Z

1
√

2πK T(ssp)

(p−ssp +q−ssp)K+12−sspV p−ith(K+1)2−iVth

(ssp+ ith)(1− (p−ssp+q−ssp)p−ith)
.

The representations (5) and (6) follow after a few lines of computation by using the Fourier expansion of
QL(s,x).

3.3 Third case of Theorem 1
If (7) holds thenssp > 0. Thus if we shift the line of integration of the integral (11) to σ = ssp we have to
take into account the residue 2k+1 corresponding to the polar singularitys= 0. The saddle point machinery
for the remaining integral at the lineσ = ssp provides the error term.

Alternatively we can directly deal with the sum (9) in an elementary way.
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4 Exit Time
In order to treat the exit timeDK,V we make again use of the corresponding treeTK,V and the following
useful lemma (cf. (2)).

Lemma 2. Let T be an m-ary tree, let X denote the set of leaves and Y the set of internal nodes. Further-
more, we assume a probability distribution p1, . . . , pm on an m-ary alphabet A and identify a node in T
with a word over A in the usual way. Then we have

∑
x∈X

P(x)z|x| = (z−1) ∑
y∈Y

P(y)z|y| +1. (12)

This lemma directly implies that the probability generating function ofDK(v,z) = EzDK,V (wherev =
2V) is given by

DK(v,z) = (z−1)SK(v,z)+1 (v≥ 1)

and consequently its Mellin transform has the following representation (forℜ(s) < 0):

D∗
K(s,z) = (z−1)S∗K(s,z)− 1

s
=

(1−z)(1−z(p1−s+q1−s)K+1)

s(1−z(p1−s+q1−s))
− 1

s
.

Hence, we have for anyσ < 0

EzDK,V =
1

2πi
lim

T→∞

Z σ+iT

σ−iT

(

(1−z)(1−z(p1−s+q1−s)K+1)

s(1−z(p1−s+q1−s))
− 1

s

)

v−sds.

In the first case of Theorem 2, that is, if (1) holds then we split up the integral into two partsI1(z)+ I2(z):

I1(z) =
1

2πi
lim

T→∞

Z σ+iT

σ−iT

(

(1−z)
s(1−z(p1−s+q1−s))

− 1
s

)

v−sds,

I2(z) = − 1
2πi

lim
T→∞

Z σ+iT

σ−iT

(1−z)(z(p1−s+q1−s)K+1

s(1−z(p1−s+q1−s))
v−sds.

Observe that the residue of thesingular value s= 0 in the integrand ofI1(z) equals 0 (due to the additional
term−1/s). Thus,s= 0 does not contribute if we shift the line of integration toσ > 0. The only polar
singularity on the real line of the integrand ofI1(z0) is s0(z) that is given by the equationz(p1−s0 +q1−s0)=
1 and has an asymptotic representation of the form

s0(z) = −z−1
H

+

(

1
H

− H2

2H3

)

(z−1)2+O(|z−1|3) (z→ 1).

The residue of the integrand inI1(z0) at s = s0(z) equalsv−s0(z). Of course, there is an analogue to
Lemma 1 for all zeros of the equationz(p1−s+ q1−s) = 1. By shifting the line of integration inI1(z) to
the right (and taking care that there is no absolute convergence) one finds

I1(z) = v−s0(z) (1+O(|z−1|)) .
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In the second integralI2(z) we shift the line of integration toσ = ssp+ 1 < 0 and get an negligible
exponentially small error term. Consequently we have

EzDK,V = v−s0(z) (1+O(|z−1|)) = v
z−1
H −

(

1
H − H2

2H3

)

(z−1)2+O(|z−1|3)
(1+O(|z−1|))

which proves asymptotic normality by settingz= et (together with a proper scaling). For the derivation
of the mean value (and variance) we refer to (2).

In the second case of Theorem 2 (where (4) or (7) holds) we do not split up the integral into two parts,
which implies that the integrand has no singular points other thans= 0. We shift the line of integration
to σ = ssp+1 > 0 and obtain (again by taking care that there is no absolute convergence)

EzDK,V = zK+1 +O(|z−1|v−η) (13)

whereη = ssp+1 > 0. By construction we know thatDK,V ≤ K +1. From (13) we can easily deduce that
DK,V is in fact concentrated atK +1. By Markov’s inequality (forz< 1) we directly obtain

Pr{DK,V ≤ K} ≤ z−K
E

(

zDK,V 1{DK,V≤K}
)

= z−K (
EzDK,V −zK+1)+zPr{DK,V ≤ K}

which implies (withz= 1− 1
K ) the estimatePr{DK,V ≤ K} = O(v−η). This proves concentration. We

havev = 2V and, thus,v−η = 2−ηV is exponentially small. By using the corresponding tail estimate
of the formPr{DK,V ≤ K − r} = O(e−r/Kv−η), we can also deal with moments and obtainEDK,V =
K +1+O(K2v−η) andVarDK,V = O(K3v−η).
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