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1 Introduction
When transmitting data, the goal ofsource coding (data compression)is to represent the source with
a minimum of symbols. On the other hand, the goal ofchannel coding (error correction)is to repre-
sent the source with a minimum of error probability in decoding. These goals are obviously in conflict.
Traditionally, additional symbols are transmitted when performing error correction.

In ?, an algorithm for joint data compression and error correction is presented; the compression per-
formance is not degraded because the algorithm requires no extra symbols for error correction. In this
scheme, a Reed-Solomon error-correcting code is embedded into the Lempel-Ziv ’77 data compression
algorithm (see?). Lonardi and Szpankowski utilize the fact that the LZ’77 adaptive data compression
algorithm is unable to remove all redundancy from the source. Our goal here is to precisely determine the
number of redundant bits that are available to be utilized in the aforementioned scheme.

We recall the basic operation of the LZ’77 data compression algorithm. Whenn bits of the source
have already been compressed, the LZ’77 encoder finds the longest prefix of the uncompressed data that
also appears in the database (namely, the compressed portion of the data). The encoder performs the
compression by storing a pointer into the database (and also the length of this prefix, as well as the next
character of the source). Often, this longest prefix appears more than once in the database. Each of the
database entries areequally eligiblefor use by the encoder; thus,any of the analogous pointersinto the
database is suitable. In practice, the choice of pointer among these candidates has no significance. On the
other hand, by judiciously selecting the pointer, some error correction can be performed. For instance, if
two pointers are available, the encoder could easily perform a parity check by choosing the first pointer for
“0” and the second pointer for “1”. Lonardi and Szpankowski’s scheme for performing error correction is
very elaborate. We refer the reader to their paper for more details.

We letMn denote thenumber of pointers into the databasewhenn bits have already been compressed
(as described above). Throughout this paper, we are primarily interested in precisely determining the
asymptotics ofMn. A thorough analysis ofMn yields a characterization of the degree to which error
correction can be performed in the scheme discussed above. We note thatblog2Mnc bits are available to
be used for correcting errors.

Tries, especially suffix trees, provide a natural way to studyMn. We work here with strings of characters
drawn independently from the binary alphabetA := {0,1}. We let p denote the probability of “0” and
q = 1− p denotes the probability of “1”; without loss of generality, we assume thatq≤ p throughout the
discussion.

We first recall the definition of a binary trie built over a setY of n strings. The construction is recursive.
If |Y | = 0, then the trie is empty. If|Y | = 1, then trie(Y ) is a single node. Finally, if|Y | > 1, thenY is
partitioned into two subsets,Y0 andY1, such that a string is inY0 if its first symbol is 0, and a string is in
Y1 if its first symbol is 1. Then trie(Y0) and trie(Y1) are each constructed in the same way, except that the
splitting of sets at thekth step is based on thekth symbol of the string. This completes the definition of a
binary trie.

Now we briefly recall the construction of a binary suffix tree built over a stringX = X1X2X3 . . .. The
wordX(i) = XiXi+1Xi+2 . . . is theith suffix ofX, which begins at theith position ofX. Then a binary suffix
tree is precisely a binary trie built over the firstn suffixes ofX, namelyX(1),X(2), . . . ,X(n).

In a suffix tree,Mn is exactly the number of leaves in the subtree rooted at the branching point of the
(n+ 1)st insertion (cf. Figure 1). The strings in a suffix tree are highly dependent on each other, which
apparently makes a precise analysis ofMn quite difficult; therefore, we also consider the analogous (but
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Fig. 1: FindingMI
n in a trie.

simpler) situation in a trie built overindependentstrings; namely, we studyMI
n, which is the number

of leaves in the subtree rooted at the branching point of the(n+ 1)st insertion in a trie built overn+ 1
independentbinary strings. For instance, in Figure1, we haven = 4 andMI

n = 2 because there are two
leaves (namely,S1 andS2) in the subtree rooted at the branching point of the 5th insertion.

We are primarily concerned with comparing the distribution ofMn (a parameter of suffix trees) to the
distribution ofMI

n (a parameter of tries built over independent strings). Our approach to the proof begins
with the observation that a variety of parameters have the same asymptotic behavior regardless of whether
they correspond to suffix trees or to tries built over independent strings. This was observed in? and then
made precise in?, where the typical depth in a suffix tree is proven to be asymptotically the same as the
typical depth in a trie built over independent strings when the underlying source is i.i.d. An extension of
such results to an underlying Markovian model is presented in?.

The limiting distribution of several trie parameters is given in? and?. More results about trie param-
eters are found in?. The variance of the external path in a symmetric trie is given in?. The depth of a
digital trie with an underlying Markovian dependency is analyzed in?. Many results about a variety of
tree structures are collected in?. Average-case studies of several parameters of suffix trees are found in?
and?.

We briefly summarize the methodology of our proof. Our goal is to compare the distribution ofMn (the
multiplicity matching parameter of a suffix tree) to the distribution ofMI

n (the MMP of a trie built over
independent strings). Our proof that these two parameters have the same asymptotic distribution consists
of several steps. We first derive bivariate generating functions forMn andMI

n, denoted asM(z,u) and
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MI (z,u), respectively. We noted above that a suffix tree is built over the suffixesX(1),X(2), . . . ,X(n) of a
stringX. These suffixes are highly dependent on each other. Therefore, in deriving the bivariate generating
functionM(z,u), an interesting obstacle arises: We need to determine the degree to which a suffix ofX can
overlap with itself. Fortunately, the autocorrelation polynomialSw(z) of a wordw measures the amount
of overlap of a wordw with itself. The autocorrelation polynomial was introduced in? and was utilized
extensively in? and?. The autocorrelation polynomial is defined as

Sw(z) = ∑
k∈P (w)

P(wm
k+1)z

m−k (1)

wherem= |w| and whereP (w) denotes the set of positionsk of w satisfyingw1 . . .wk = wm−k+1 . . .wm,
that is,w’s prefix of lengthk is equal tow’s suffix of lengthk. Using the autocorrelation polynomial,
we can overcome the difficulties inherent in the fact that suffixes of a wordX overlap with each other.
By utilizing Sw(z), we are able to obtain a succinct way of describing the bivariate generating function
M(z,u). Fortunately, the autocorrelation polynomial is well-understood. Note that the autocorrelation
polynomialSw(z) has aP(wm

k+1)z
m−k term if and only ifw has an overlap with itself of lengthk. All

wordsw overlap with themselves trivially, so all autocorrelation polynomials have a constant term (i.e.,
zm−m = z0 = 1 term). On the other hand, with high probability,w has very few large nontrivial overlaps
with itself. Therefore, with high probability, all nontrivial overlaps ofw with itself are small; such overlaps
correspond to high-degree terms ofSw(z).

In order to compareM(z,u) andMI (z,u), we utilize complex analysis. Specifically, we take advantage
of Cauchy’s theorem, which allows us to analyze the poles of the generating functionsM(z,u) andMI (z,u)
in order to obtain precise information about the distributions ofMn andMI

n. During this residue analysis,
it is necessary that the generating function forMn is analytically continued from the unit disk to a larger
disk.

Our ultimate conclusion is that the distribution of the multiplicity matching parameterMn is asymp-
totically the same in suffix trees and independent tries, i.e.,Mn andMI

n have asymptotically the same
distribution.

The asymptotics for the distribution and factorial moments ofMI
n were given in?. Specifically,MI

n
asymptotically follows the logarithmic series distribution (plus some fluctuations when lnp/ lnq is ra-
tional). Since we prove here thatMn andMI

n have asymptotically the same distribution, then as a con-
sequence, we see thatMn also asymptotically follows the logarithmic series distribution. One striking
property of this distribution is the high concentration around the mean. We see thatE[Mn] is asymptoti-
cally 1

h (whereh denotes the entropy of the source) and alsoMn is highly concentrated around this average
value; this property ofMn is very desirable for the error correction scheme described in?.

This paper is a concise version of the first author’s Ph.D. thesis; see?.

2 Main Results
We consider the stringX = X1X2X3 . . ., where theXi ’s are i.i.d. random variables onA := {0,1} with
P(Xi = 0) = p andP(Xi = 1) = q. (Without loss of generality, we assume throughout the discussion that
q≤ p.) Let X(i) denote theith suffix of X. In other words,X(i) = XiXi+1Xi+2 . . .. Consider thelongest
prefix w of X(n+1) such thatX(i) also hasw as a prefix, for somei with 1≤ i ≤ n. ThenMn is defined as
the number ofX(i)’s (with 1≤ i ≤ n) that havew as a prefix. So

Mn = #{1≤ i ≤ n | X(i) = XiXi+1Xi+2 . . . hasw as a prefix} . (2)
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An alternate definition ofMn is available viasuffix trees. First, consider a suffix tree built from the first
n+ 1 suffixes ofX. Next, consider theinsertion pointof the (n+ 1)st suffix. ThenMn is exactly the
number of leavesin the subtree rooted at the branching point of the(n+ 1)st insertion. For instance,
suppose that the(n+1)st suffix starts withwβ for somew∈ A∗ andβ ∈ A . Then, examining the firstn
suffixes, if there are exactlyk suffixes that begin withwα (whereα = 1−β, i.e.,{α,β}= {0,1}), and the
othern−k suffixes do not begin withw, we conclude thatMn = k.

Unfortunately, the strings in a suffix tree are highly dependent on each other; thus, a precise analysis
of Mn is quite difficult. On the other hand, the asymptotic behavior ofMI

n, an analogous parameter
of tries built over independent strings, is well-understood. Specifically,MI

n asymptotically follows the
logarithmic series distribution (plus some fluctuations when lnp/ lnq is rational). In?, a precise analysis
of MI

n is given via the analysis of independent tries, using recurrence relations, analytical poissonization
and depoissonization, the Mellin transform, and complex analysis.

To defineMI
n, we consider the situation described above, but we build a trie fromn+ 1 independent

strings fromA∗. So we consider independentX(i)’s; specifically, we defineX(i) = X1(i)X2(i)X3(i) . . .,
where{Xj(i) | i, j ∈ N} is a collection of i.i.d. random variables. We letw denote thelongestprefix of
X(n+1) such thatX(i) also hasw as a prefix, for somei with 1≤ i ≤ n. ThenMI

n is defined as the number
of X(i)’s (with 1≤ i ≤ n) that havew as a prefix. So

MI
n = #{1≤ i ≤ n | X(i) = X1(i)X2(i)X3(i) . . . hasw as a prefix} . (3)

To defineMI
n via tries, first consider a trie built from then+1 independent strings fromA∗. Next, consider

theinsertion pointof the(n+1)st string. ThenMn is exactly thenumber of leavesin the subtree rooted at
the branching point of the(n+1)st insertion. As above, suppose that the(n+1)st string starts withwβ.
Then, examining the firstn strings, if there are exactlyk strings that begin withwα (againα = 1−β), and
the othern−k strings do not begin withw, we conclude thatMI

n = k.
Since we know from? thatMI

n follows the logarithmic series distribution plus some fluctuations, then
it suffices to prove thatMn has a similar asymptotic distribution. To accomplish this goal, we compare the
distribution ofMn in suffix trees to the distribution ofMI

n in independent tries.
Briefly, our proof technique is the following: We letM(z,u) = ∑1≤k,n≤∞ P(Mn = k)ukzn andMI (z,u) =

∑1≤k,n≤∞ P(MI
n = k)ukzn denote the bivariate generating functions forMn andMI

n, respectively. To study
these generating functions, we consider thew’s defined above. Specifically, forM(z,u), we recall from
(2) that if w denotes the longest prefix ofX(n+1) = Xn+1Xn+2Xn+3 . . . that appears as a prefix of any
X(i) = XiXi+1Xi+2 . . ., thenMn enumerates the number of such occurrences ofw. This approach toM(z,u)
allows us to sum over allw∈ A∗ instead of summing overk,n∈ N. Similarly, for MI (z,u), we utilize (3)
to see that ifw denotes the longest prefix ofX(n+1) = X1(n+1)X2(n+1)X3(n+1) . . . that appears as a
prefix of anyX1(i)X2(i)X3(i) . . ., thenMI

n is precisely the number of such occurrences ofw. Therefore, to
determineMI (z,u), we can sum over allw∈ A∗ instead of summing over the integersk andn.

We note that theX(i)’s are highly dependent on each other. In fact, ifi ≥ j, thenX(i) = XiXi+1Xi+2 . . .
is a substring ofX( j) = XjXj+1Xj+2 . . .. This apparently makes the derivation of the bivariate generating
functionM(z,u) quite difficult. We overcome this hurdle by succinctly describing the degree to which a
suffix of X can overlap with itself. We accomplish this by utilizing the autocorrelation polynomialSw(z)
of a wordw, which measures the amount of overlap of a wordw with itself. As mentioned above, the
autocorrelation polynomial is defined as

Sw(z) = ∑
k∈P (w)

P(wm
k+1)z

m−k (4)
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whereP (w) denotes the set of positionsk of w satisfyingw1 . . .wk = wm−k+1 . . .wm, that is,w’s prefix of
lengthk is equal tow’s suffix of lengthk. Via the autocorrelation polynomial, we are able to surmount
the difficulties inherent in the overlapping suffixes. Thus, usingSw(z), we obtain a succinct description of
the bivariate generating functionM(z,u). The autocorrelation polynomial is well-understood; we utilize
several results aboutSw(z) from ? and ?. In particular, when comparingM(z,u) and MI (z,u), it is
extremely useful to note that the autocorrelation polynomialSw(z) is close to 1 with high probability (for
|w| large).

In order to obtain information about the difference of the two BGFs asQ(z,u) = M(z,u)−MI (z,u),
we utilize residue analysis. We make a comparison of the poles ofM(z,u) andMI (z,u) using Cauchy’s
theorem (integrating with respect toz). As a result, we prove thatQn(u) := [zn]Q(z,u) = O(n−ε) uniformly
for |u| ≤ p−1/2 asn→ ∞. Then we use another application of Cauchy’s theorem (integrating with respect
to u). Specifically, we extract the coefficientP(Mn = k)−P(MI

n = k) = [ukzn]Q(z,u) in order to prove our
main result.

Theorem 2.1 There existε > 0 and b> 1 such that

P(Mn = k)−P(MI
n = k) = O(n−εb−k) (5)

for large n.

Therefore, the distributions ofMn andMI
n are asymptotically the same. We conclude thatMn also asymp-

totically follows the logarithmic series distribution (plus some fluctuations when lnp/ lnq is rational).

Theorem 2.2 There existε > 0 and ε j > 0 (for each j∈ N) depending on p such that the jth factorial
moment of Mn is

E[(Mn) j ] = Γ( j)
q(p/q) j + p(q/p) j

h
+ γ j(log1/pn)+O(n−ε j ) (6)

whereγ j is a periodic function with mean 0 and small modulus ifln p/ lnq is rational, and otherwise
γ j(x) → 0 as x→ ∞. Also h= −plogp− qlogq denotes the entropy of the source. The probability
generating function of Mn is

E[uMn] =−qln(1− pu)+ pln(1−qu)
h

+ γ(log1/pn,u)+O(n−ε) , (7)

for |u| ≤ p−1/2 whereγ(·,u) is a periodic function with mean 0 and small modulus ifln p/ lnq is rational,
and otherwiseγ j(u,x)→ 0 (uniformly for|u| ≤ p−1/2) as x→ ∞. More precisely,

E[uMn] =
∞

∑
j=1

[
p jq+q j p

jh
+ ∑

k∈Z\{0}
−e2krπi log1/p nΓ(zk)(p jq+q j p)(zk) j

j!(p−zk+1 ln p+q−zk+1 lnq)

]
u j +O(n−ε) (8)

whenln p/ lnq = r/t for some r, t ∈ Z, we have zk = 2krπi/ ln p. Therefore, as n→ ∞, we conclude that
Mn follows the logarithmic series distribution plus some fluctuations ifln p/ lnq = r/t is rational, i.e.,

P(Mn = j) =
p jq+q j p

jh
+ ∑

k6=0

−e2krπi log1/p nΓ(zk)(p jq+q j p)(zk) j

j!(p−zk+1 ln p+q−zk+1 lnq)
+O(n−ε) . (9)

If ln p/ lnq is irrational, then Mn asymptotically follows the logarithmic series distribution, without fluc-
tuations.
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Note that the average value ofMn is asymptotically1
h, and alsoMn is highly concentrated around the

mean; this property ofMn is very desirable for the error correction scheme described in?.

3 Proofs
We first derive the bivariate generating functions forMn andMI

n, denoted asM(z,u) andMI (z,u), respec-
tively. Then we prove a few useful lemmas concerning the autocorrelation polynomial. Next, we prove
thatM(z,u) can be analytically continued from the unit disk to a larger disk. Afterwards, we determine
the poles ofM(z,u) andMI (z,u). We writeQ(z,u) = M(z,u)−MI (z,u); we use Cauchy’s theorem to that
Qn(u) := [zn]Q(z,u) → 0 uniformly for u≤ p−1/2 asn→ ∞. Then we apply Cauchy’s theorem again to
prove thatP(Mn = k)−P(MI

n = k) = [ukzn]Q(z,u) = O(n−εb−k) for someε > 0 andb > 1.
We conclude that the distribution of the multiplicity matching parameterMn is asymptotically the same

in suffix trees as in tries built over independent strings, i.e.,Mn andMI
n have asymptotically the same

distribution. Therefore,Mn also follows the logarithmic series distribution plus some fluctuations.

3.1 BGF for the Multiplicity Matching Parameter of Independent Tries
First we obtain the bivariate generating function forMI

n, which is the multiplicity matching parame-
ter for a trie built over theindependentstringsX(1), . . . ,X(n+ 1), whereX(i) = X1(i)X2(i)X3(i) . . . and
{Xj(i) | i, j ∈ N} is a collection of i.i.d. random variables withP(Xj(i) = 0) = p andP(Xj(i) = 1) = q =
1− p. We letw denote thelongest prefixof both X(n+ 1) and at least one other stringX(i) for some
1≤ i ≤ n. We writeβ to denote the(|w|+ 1)st character ofX(n+ 1). WhenMI

n = k, we conclude that
exactlyk stringsX(i) havewα as a prefix, and the othern−k stringsX(i) do not havew as a prefix at all.
Thus the generating function forMI

n is exactly

MI (z,u) :=
∞

∑
n=1

∞

∑
k=1

P(MI
n = k)ukzn =

∞

∑
n=1

∞

∑
k=1

∑
w∈A∗
α∈A

P(wβ)
(

n
k

)
(P(wα))k(1−P(w))n−kukzn . (10)

After simplifying, it follows immediately that

MI (z,u) = ∑
w∈A∗
α∈A

uP(β)P(w)
1−z(1−P(w))

zP(w)P(α)
1−z(1+uP(w)P(α)−P(w))

. (11)

Our reasoning aboutMI (z,u) can be applied when we derive generating functionM(z,u) for Mn in the
next section, but the situation will be more complicated, because the occurrences ofw can overlap.

3.2 BGF for the Multiplicity Matching Parameter of Suffix Trees
Now we obtain the bivariate generating function forMn, which is the multiplicity matching parameter for
a suffix tree built over the firstn+1 suffixes X(1), . . . ,X(n+1) of a stringX (i.e.,X(i) = XiXi+1Xi+2 . . .). The
bivariate generating function for the multiplicity matching parameter is much more difficult to derive in
the dependent (suffix tree) case than in the independent (trie) case, because the suffixes ofX are dependent
on each other. We letw denote thelongest prefixof bothX(n+1) and at least oneX(i) for some 1≤ i ≤ n.
We writeβ to denote the(|w|+1)st character ofX(n+1); whenMn = k, we conclude that exactlyk suffixes
X(i) havewα as a prefix, and the othern− k stringsX(i) do not havew as a prefix at all. Thus, we are
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interested in finding strings with exactlyk occurrences ofwα, ended on the right by an occurrence ofwβ,

with no other occurrences ofw at all. This set of words is exactly the languageRwα(T (α)
w α)k−1T (α)

w β,
where

Rw = {v | v contains exactly one occurrence ofw, located at the right end}
T (α)

w = {v | wαv contains exactly two occurrences ofw, located at the left and right ends} (12)

So, the generating function forMn is

M(z,u) =
∞

∑
k=1

∑
w∈A∗
α∈A

∑
s∈Rw

P(sα)z|s|+1u

(
∑

t∈T (α)
w

P(tα)z|t|+1u

)k−1

∑
v∈T (α)

w

P(vβ)z|v|+1−|w|−1 . (13)

After simplifying the geometric sum, this yields

M(z,u) = ∑
w∈A∗
α∈A

uP(β)
Rw(z)
z|w|

P(α)zT(α)
w (z)

1−P(α)zuT(α)
w (z)

. (14)

We note thatRw(z)/z|w| = P(w)/Dw(z) (?), whereDw(z) = (1− z)Sw(z)+ zmP(w) and whereSw(z) de-
notes the autocorrelation polynomial forw. Recall thatSw(z) measures the degree to which a wordw
overlaps with itself, and specifically

Sw(z) = ∑
k∈P (w)

P(wm
k+1)z

m−k (15)

whereP (w) denotes the set of positionsk of w satisfyingw1 . . .wk = wm−k+1 . . .wm, that is,w’s prefix of
lengthk is equal tow’s suffix of lengthk; also,m= |w|. Returning to (14), it follows that

M(z,u) = ∑
w∈A∗
α∈A

uP(β)P(w)
Dw(z)

P(α)zT(α)
w (z)

1−P(α)zuT(α)
w (z)

. (16)

In order to derive an explicit form ofM(z,u), we still need to findT(α)
w (z). If we define

Mw = {v | wvcontains exactly two occurrences ofw, located at the left and right ends} (17)

then we observe thatαT (α)
w is exactly the subset of words ofMw that begin withα; We useH (α)

w to denote

this subset (i.e.,H (α)
w = Mw∩ (αA∗)), and thusαT (α)

w = H (α)
w . So (16) simplifies to

M(z,u) = ∑
w∈A∗
α∈A

uP(β)P(w)
Dw(z)

H(α)
w (z)

1−uH(α)
w (z)

. (18)

In order to computeH(α)
w (z), we writeMw = H (α)

w + H (β)
w , whereH (β)

w is the subset of words fromMw

that start withβ (i.e., H (β)
w = Mw∩ (βA∗)). (Note that every word ofMw begins with eitherα or β,

because the empty wordε /∈ Mw.) The following useful lemma is the last necessary ingredient to obtain
an explicit formula forM(z,u) from (18).
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Lemma 3.1 Let H (α)
w denote the subset of words fromMw that start withα. Then

H(α)
w (z) =

Dwα(z)− (1−z)
Dw(z)

. (19)

Proof We use the concepts and notation from? and? throughout. In particular, we define

Uw = {v | wvcontains exactly one occurrence ofw (located at the left end)} (20)

and we recall from (12) and (17) above that

Rw = {v | v contains exactly one occurrence ofw, located at the right end}
Mw = {v | wvcontains exactly two occurrences ofw, located at the left and right ends} (21)

The following notation is similar but slightly adapted for our proof.

U(α)
w = {v | v starts withα, andwvhas exactly 1 occurrence ofwα and no occurrences ofwβ} . (22)

We note that the set of words with no occurrences ofwβ is exactlyA∗ \Rwβ(Mwβ)∗Uwβ, which has
generating function

1
1−z

−
Rwβ(z)Uwβ(z)
1−Mwβ(z)

. (23)

Now we describe the set of words with no occurrences ofwβ in a different way. The set of words with

no occurrences ofwβ and at least one occurrence ofwα is exactlyRw(H (α)
w )∗U(α)

w , which has generating

function Rw(z)U (α)
w (z)/(1−H(α)

w (z)). The set of words with no occurrences ofwβ and no occurrences
of wα is exactlyRw +(A∗ \Rw(Mw)∗U). (Note that the set of such words that end inw is exactlyRw;
on the other hand, the set of such words that do not end inw is exactlyA∗ \Rw(Mw)∗U.) So the set of
words with no occurrences ofwα and no occurrences ofwβ has generating functionRw(z)+1/(1−z)−
Rw(z)Uw(z)/(1−Mw(z)). So the set of words with no occurrences ofwβ has generating function

Rw(z)U (α)
w (z)

1−H(α)
w (z)

+Rw(z)+
1

1−z
− Rw(z)Uw(z)

1−Mw(z)
. (24)

Combining (23) and (24), it follows that

1
1−z

−
Rwβ(z)Uwβ(z)
1−Mwβ(z)

=
Rw(z)U (α)

w (z)

1−H(α)
w (z)

+Rw(z)+
1

1−z
− Rw(z)Uw(z)

1−Mw(z)
. (25)

Now we find the generating function forU(α)
w . For each wordv∈ U(α)

w , eitherwv has exactly one or two

occurrences ofw. The subset ofU(α)
w of the first type is exactlyV(α)

w := Uw∩ (αA∗), i.e., the subset of

words fromUw that start withα. The subset ofU(α)
w of the second type is exactlyH (α)

w . We observe that

V (α)
w ·A = (H (α)

w +V (α)
w )\{α} (26)
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(see?), soV(α)
w (z) = (H(α)

w (z)−P(α)z)/(z−1). SinceU(α)
w = V (α)

w +H (α)
w , it follows that

U (α)
w (z) =

H(α)
w (z)−P(α)z

z−1
+H(α)

w (z) =
zH(α)

w (z)−P(α)z
z−1

. (27)

Recalling equation (25), we see that

1
1−z

−
Rwβ(z)Uwβ(z)
1−Mwβ(z)

=
Rw(z)(zH(α)

w (z)−P(α)z)

(1−H(α)
w (z))(z−1)

+Rw(z)+
1

1−z
− Rw(z)Uw(z)

1−Mw(z)
. (28)

Simplifying, and usingUw(z) = (1−Mw(z))/(1−z) andUwβ(z) = (1−Mwβ(z))/(1−z) (see?), it follows
that

Rwβ(z)
Rw(z)

=
zP(β)

1−H(α)
w (z)

. (29)

Solving forH(α)
w (z) and then usingRw(z) = zmP(w)/Dw(z) andRwβ(z) = zm+1P(w)P(β)/Dwβ(z) (see?),

it follows that

H(α)
w (z) =

Dw(z)−Dwβ(z)
Dw(z)

. (30)

NoteDw(z)−Dwβ(z) = (1−z)Sw(z)+zmP(w)− (1−z)Swβ(z)−zm+1P(w)P(β) = (1−z)(Swα(z)−1)+
zm+1P(w)P(α) = Dwα(z)− (1−z). Thus, (30) completes the proof of the lemma.

2

Using the lemma above, we finally observe a form ofM(z,u) that we summarize below.

Theorem 3.1 Let M(z,u) := ∑∞
n=1 ∑∞

k=1P(Mn = k)ukzn denote the bivariate generating function for Mn,
the multiplicity matching parameter of a suffix tree built over the first n+1 suffixes X(1), . . . ,X(n+1) of a
string X. Then

M(z,u) = ∑
w∈A∗
α∈A

uP(β)P(w)
Dw(z)

Dwα(z)− (1−z)
Dw(z)−u(Dwα(z)− (1−z))

(31)

for |u| < 1 and |z| < 1. Here Dw(z) = (1− z)Sw(z) + zmP(w), and Sw(z) denotes the autocorrelation
polynomial for w, defined in (1).

3.3 On the Autocorrelation Polynomial
Throughout the rest of our analysis we assume that, without loss of generality,p≥ q. Note thatp≤√

p<
1, so there existsρ > 1 such thatρ√p < 1 (and thusρp < 1 too). Finally, defineδ =

√
p. We establish a

few lemmas about the autocorrelation polynomial that will be important for our analysis. Recall that the
autocorrelation polynomial isSw(z) = ∑k∈P (w) P(wm

k+1)z
m−k, whereP (w) denotes the set of positionsk of

w satisfyingw1 . . .wk = wm−k+1 . . .wm, that is,w’s prefix of lengthk is equal tow’s suffix of lengthk.
The autocorrelation polynomialSw(z) has aP(wm

k+1)z
m−k term if and only ifw has an overlap with

itself of lengthk. Since each wordw overlaps with itself trivially, then every autocorrelation polynomial
has a constant term (i.e.,zm−m = z0 = 1 term). With high probability, however,w has very few large
nontrivial overlaps with itself. Therefore, with high probability, all nontrivial overlaps ofw with itself are
small; such overlaps correspond to high-degree terms ofSw(z). Therefore, whenw is a randomly chosen



Analysis of the Multiplicity Matching Parameter in Suffix Trees 11

long word, thenSw(z) is very close to 1 with very high probability. The first lemma makes this notion
mathematically precise.

Lemma 3.2 If θ = (1− pρ)−1 > 1, then

∑
w∈Ak

[[|Sw(ρ)−1| ≤ (ρδ)kθ]]P(w)≥ 1−δkθ (32)

where[[A]] = 1 if A holds, and[[A]] = 0 otherwise.

Proof Our proof is the one given in?. Note thatSw(z)− 1 has a term of degreei ≤ j if and only if
m− i ∈ P (w) with 1 ≤ i ≤ j. Therefore, for each suchi and eachw1 . . .wi , there isexactly one word
wi+1 . . .wk such thatSw(z)−1 has a term of degreei. Therefore, for fixedj andk,

∑
w∈Ak

[[Sw(z)−1 has a term of degree≤ j]]P(w)

≤ ∑
1≤i≤ j

∑
w1,...,wi∈A i

P(w1 . . .wi) ∑
wi+1,...,wk∈Ak−i

[[Sw(z)−1 has a term of degreei]]P(wi+1 . . .wk)

≤ ∑
1≤i≤ j

∑
w1,...,wi∈A i

P(w1 . . .wi)pk−i = ∑
1≤i≤ j

pk−i ≤ pk− j

1− p
(33)

We usej = bk/2c. Thus∑w∈Ak[[all terms ofSw(z)−1 have degree> bk/2c]]P(w)≥ 1−δkθ.
Note that, if all terms ofSw(z)−1 have degree> bk/2c, then

|Sw(ρ)−1| ≤ ∑
i>bk/2c

(ρp)i =
(ρp)bk/2c+1

1−ρp
≤ (ρp)k/2

1−ρp
≤ ρkpk/2

1−ρp
= (ρδ)kθ . (34)

This completes the proof of the lemma. 2

Using this lemma, we can quickly obtain another result that is similar but slightly stronger.
First consider wordsw such that|Sw(ρ)−1| ≤ (ρδ)kθ. Write Sw(z) = ∑k−1

i=0 aizi andSwα(z) = ∑k
i=0bizi .

Observe that eitherbi = 0 orbi = ai . The following lemma follows immediately:

Lemma 3.3 If θ = (1− pρ)−1 +1 andα ∈ A , then

∑
w∈Ak

[[max{|Sw(ρ)−1|, |Swα(ρ)−1|} ≤ (ρδ)kθ]]P(w)≥ 1−δkθ . (35)

Also, the autocorrelation polynomial is never too small. In fact

Lemma 3.4 Define c= 1−ρ√p> 0. Then there exists an integer K≥ 1 such that, for|w| ≥K and|z| ≤ ρ
and|u| ≤ δ−1,

|Sw(z)−uSwα(z)+u| ≥ c . (36)

Proof The proof consists of considering several cases. The only condition forK is (1+ δ−1) (pρ)K/2

1−pρ ≤
c/2. The analysis is not difficult; all details are presented in?. 2
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3.4 Analytic Continuation

Our goal in this section is to prove the following:

Theorem 3.2 The generating function M(z,u) can be analytically continued for|u| ≤ δ−1 and|z|< 1.

The proof requires several lemmas and observations. We always assume|u| ≤ δ−1.

Lemma 3.5 If 0 < r < 1, then there exists C> 0 and an integer K1 (both depending on r) such that

|Dw(z)−u(Dwα(z)− (1−z))| ≥C (37)

for |w| ≥ K1 and|z| ≤ r (and, as before,|u| ≤ δ−1).

Proof Consider theK andc defined in Lemma3.4, which tells us that, for all|w| ≥ K, we have

|Sw(z)−uSwα(z)+u| ≥ c (38)

for |z| ≤ ρ. So, for|w| ≥ K, we have|Dw(z)−u(Dwα(z)− (1−z))| ≥ (1− r)c− rmpm(1−δ−1rp). Note
thatrmpm(1−δ−1rp)→ 0 asm→ ∞. Therefore, replacingK by a largerK1 if necessary, we can without
loss of generality assume thatrmpm(1−δ−1rp)≤ (1− r)c/2. So we defineC = (1− r)c/2, and the result
follows immediately. 2

Now we can strengthen the previous lemma by dropping the “K1”, i.e., by not requiringw to be a long
word:

Lemma 3.6 If 0 < r < 1, then there exists C> 0 (depending on r) such that

|Dw(z)−u(Dwα(z)− (1−z))| ≥C (39)

for |z| ≤ r (and, as before,|u| ≤ δ−1).

Proof Consider theK1 defined in Lemma3.5. Let C0 denote the “C” from Lemma 3.5. There are
only finitely manyw’s with |w| < K1, sayw1, . . . ,wi . For each suchw j (with 1≤ j ≤ i), we note that
Dw j (z)−u(Dw j α(z)− (1− z)) 6= 0 for |z| ≤ r and |u| ≤ δ−1, so there existsCj > 0 such that|Dw j (z)−
u(Dw j α(z)− (1−z))| ≥Cj for all |z| ≤ r and|u| ≤ δ−1. Finally, we defineC = min{C0,C1, . . . ,Ci}. 2

Finally, we prove Theorem3.2.

Proof Consider|z| ≤ r < 1. We proved in Lemma3.6 there existsC > 0 depending onr such that, for
all |u| ≤ δ−1, we have 1

|Dw(z)−u(Dwα(z)−(1−z))| ≤
1
C . Settingu = 0, we also have 1

|Dw(z)| ≤
1
C . Thus

|M(z,u)| ≤ P(β)δ−1

C2 ∑
α∈A

∑
w∈A∗

P(w)|Dwα(z)− (1−z)| . (40)

Now we use Lemma3.3. Considerw andα with max{|Sw(ρ)−1|, |Swα(ρ)−1|} ≤ (ρδ)mθ. It follows
immediately that

|Dwα(z)− (1−z)|= |(1−z)(Swα(z)−1)+zm+1P(w)P(α)| ≤ (1+ r)(ρδ)mθ+ rm+1pmp= O(sm) , (41)
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wheres= max{ρδ, rp}. Now consider the otherw’s andα’s. We have

|Dwα(z)− (1−z)|= |(1−z)(Swα(z)−1)+zm+1P(w)P(α)| ≤ (1+ r)pρ
1− pρ

+ rm+1pmp≤ (1+ r)pρ
1− pρ

+1 ,

(42)
so we defineC1 = (1+r)pρ

1−pρ +1 to be a value which only depends onr (recall thatr is fixed here). Thus

|M(z,u)| ≤ P(β)δ−1

C2 ∑
α∈A

∑
m≥0

∑
w∈Am

|P(w)(Dwα(z)− (1−z))|

≤ P(β)δ−1

C2 ∑
α∈A

∑
m≥0

|(1−δmθ)O(sm)+δmθC1| ≤
P(β)δ−1

C2 ∑
α∈A

∑
m≥0

O(sm) = O(1) (43)

and this completes the proof of the theorem. 2

3.5 Singularity Analysis
We first determine (for|u| ≤ δ−1) the zeroes ofDw(z)−u(Dwα(z)− (1−z)) and (in particular) the zeroes
of Dw(z).

Lemma 3.7 There exists an integer K2 ≥ 1 such that, for u fixed (with|u| ≤ δ−1) and |w| ≥ K2, there is
exactly one root of Dw(z)−u(Dwα(z)− (1−z)) in the closed disk{z | |z| ≤ ρ}.

Proof Let K andc be defined as in Lemma3.4. Without loss of generality (replacingK by a largerK2,
if necessary), we can also assume that 2(pρ)K2 < c(ρ−1) andK2 ≥ K1 (whereK1 is defined in Lemma
3.5). Also, we can chooseK2 large enough (for use later) such that∃c2 > 0 with

ρ(1− pK2(1+δ−1p))−1 > c2 and thus ρ(1− pK2)−1 > c2 . (44)

We recall 0< pρδ−1 < 1, and thus 0< 1− pρδ−1 < 1. Since|u|< δ−1 and|z| ≤ ρ, then for|w| ≥ K2 we
have|P(w)zm(1−uzP(α))| ≤ (pρ)m(1+δ−1ρp)≤ 2(pρ)m < c(ρ−1)≤ |(Sw(z)−uSwα(z)+u)(ρ−1)|.
Therefore, forzon the circle{z | |z|= ρ}, we have|P(w)zm(1−uzP(α))|< |(Sw(z)−uSwα(z)+u)(z−1)|.
Equivalently,

|(Dw(z)−u(Dwα(z)− (1−z)))− ((Sw(z)−uSwα(z)+u)(z−1))|< |(Sw(z)−uSwα(z)+u)(z−1)| .
(45)

Therefore, by Rouch́e’s Theorem,Dw(z)− u(Dwα(z)− (1− z)) and (Sw(z)− uSwα(z) + u)(z− 1) have
the same number of zeroes inside the disk{z | |z| ≤ ρ}. Since|Sw(z)− uSwα(z) + u| ≥ c inside this
disk, we conclude that(Sw(z)− uSwα(z) + u)(z− 1) has exactly one root in the disk. It follows that
Dw(z)−u(Dwα(z)− (1−z)) also has exactly one root in the disk. 2

Whenu= 0, this lemma implies (for|w| ≥K2) thatDw(z) has exactly one root in the disk{z | |z| ≤ ρ}. Let
Aw denote this root, and letBw = D′

w(Aw). Also letCw(u) denote the root ofDw(z)−u(Dwα(z)− (1−z))
in the closed disk{z | |z| ≤ ρ}. Finally, we define

Ew(u) :=
(

d
dz

(Dw(z)−u(Dwα(z)− (1−z)))
)∣∣∣∣

z=Cw

= D′
w(Cw)−u(D′

wα(Cw)+1) . (46)

We have precisely determined the singularities ofM(z,u). Next, we make a comparison ofM(z,u) to
MI (z,u), in order to show thatMn andMI

n have asymptotically similar behaviors.
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3.6 Comparing Suffix Trees to Tries
Now we define

Q(z,u) = M(z,u)−MI (z,u) . (47)

Using the notation from (11) and (31), if we write

MI
w,α(z,u) =

uP(β)P(w)
1−z(1−P(w))

zP(w)P(α)
1−z(1+uP(w)P(α)−P(w))

Mw,α(z,u) =
uP(β)P(w)

Dw(z)
Dwα(z)− (1−z)

Dw(z)−u(Dwα(z)− (1−z))
(48)

then we have proven that
Q(z,u) = ∑

w∈A∗
α∈A

(Mw,α(z,u)−MI
w,α(z,u)) . (49)

We also defineQn(u) = [zn]Q(z,u). We denote the contribution toQn(u) from a specificw and α as

Q(w,α)
n (u) = [zn](Mw,α(z,u)−MI

w,α(z,u)). Then we observe that

Q(w,α)
n (u) =

1
2πi

I
(Mw,α(z,u)−MI

w,α(z,u))
dz

zn+1 (50)

where the path of integration is a circle about the origin with counterclockwise orientation.
We define

Iw,α(ρ,u) =
1

2πi

Z
|z|=ρ

(Mw,α(z,u)−MI
w,α(z,u))

dz
zn+1 . (51)

By Cauchy’s theorem, we observe that the contribution toQn(u) from a specificw andα is exactly

Q(w,α)
n (u) = Iw,α(ρ,u)− Res

z=Aw

Mw,α(z,u)
zn+1 − Res

z=Cw(u)

Mw,α(z,u)
zn+1

+ Res
z=1/(1−P(w))

MI
w,α(z,u)
zn+1 + Res

z=1/(1+uP(w)P(α)−P(w))

MI
w,α(z,u)
zn+1 . (52)

To simplify this expression, note that

Res
z=Aw

Mw,α(z,u)
zn+1 = −P(β)P(w)

Bw

1

An+1
w

Res
z=Cw(u)

Mw,α(z,u)
zn+1 =

P(β)P(w)
Ew(u)

1
Cw(u)n+1

Res
z=1/(1−P(w))

MI
w,α(z,u)
zn+1 = P(β)P(w)(1−P(w))n

Res
z=1/(1+uP(w)P(α)−P(w))

MI
w,α(z,u)
zn+1 = −P(β)P(w)(1+uP(w)P(α)−P(w))n (53)

It follows from (52) that

Q(w,α)
n (u) = Iw,α(ρ,u)+

P(β)P(w)
Bw

1

An+1
w

− P(β)P(w)
Ew(u)

1
Cw(u)n+1
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+P(β)P(w)(1−P(w))n−P(β)P(w)(1+uP(w)P(α)−P(w))n . (54)

We next determine the contribution of thez = Aw terms ofM(z,u) and thez = 1/(1−P(w)) terms of
MI (z,u) to the differenceQn(u) = [zn](M(z,u)−MI (z,u)).

Lemma 3.8 The “Aw terms” and the “1/(1−P(w)) terms” (for |w| ≥ K2) altogether have only O(n−ε)
contribution to Qn(u), i.e.,

∑
|w|≥K2

α∈A

(
− Res

z=Aw

Mw,α(z,u)
zn+1 + Res

z=1/(1−P(w))

MI
w,α(z,u)
zn+1

)
= O(n−ε) , (55)

for someε > 0.

Proof We define

fw(x) =
1

Ax+1
w Bw

+(1−P(w))x (56)

for x real. So by (53) it suffices to prove that

∑
|w|≥K2

α∈A

P(β)P(w) fw(x) = O(x−ε) . (57)

Note that∑ |w|≥K2
α∈A

P(β)P(w) fw(x) is absolutely convergent for allx. Also f̄w(x) = fw(x)− fw(0)e−x is

exponentially decreasing whenx→+∞ and isO(x) whenx→ 0 (notice that we utilize thefw(0)e−x term
in order to make sure that̄fw(x) = O(x) whenx → 0; this provides a fundamental strip for the Mellin
transform in the next step). Therefore, its Mellin transform̄f ∗w(s) =

R ∞
0 f̄w(x)xs−1 dx is well-defined for

ℜ(s) >−1 (see? and?). We compute

f̄ ∗w(s) = Γ(s)
(

(logAw)−s−1
AwBw

+(− log(1−P(w)))−s−1

)
(58)

whereΓ denotes the Euler gamma function, and we note that

(logAw)−s =
(

P(w)
Sw(1)

)−s

(1+O(P(w)))

(− log(1−P(w)))−s = P(w)−s(1+O(P(w))) (59)

Also

Aw = 1+
1

Sw(1)
P(w)+O(P(w)2)

Bw = −Sw(1)+
(
−2S′w(1)

Sw(1)
+m

)
P(w)+O(P(w)2) (60)

Therefore
1

AwBw
=− 1

Sw(1)
+O(|w|P(w)) (61)



16 Mark Daniel Ward and Wojciech Szpankowski

So f̄ ∗w(s) = Γ(s)
((

− 1
Sw(1) +O(|w|P(w))

)((
P(w)
Sw(1)

)−s
(1+O(P(w)))−1

)
+P(w)−s(1+O(P(w)))−1

)
=

Γ(s)
(

P(w)−s
(
−Sw(1)s−1 +1+O(|w|P(w))

)
+ 1

Sw(1) −1+O(|w|P(w))
)

.

We defineg∗(s) = ∑ |w|≥K2
α∈A

P(β)P(w) f̄ ∗w(s). Then we compute

g∗(s) = ∑
α∈A

P(β) ∑
|w|≥K2

P(w) f̄ ∗w(s) = ∑
α∈A

P(β)Γ(s)
∞

∑
m=K2

(
sup{q−ℜ(s),1}δ

)m
O(1) , (62)

where the last equality is true because 1≥ p−ℜ(s) ≥ q−ℜ(s) when ℜ(s) is negative, and also because
q−ℜ(s) ≥ p−ℜ(s) ≥ 1 whenℜ(s) is positive. We always haveδ < 1. Also, there existsc > 0 such that
q−cδ < 1. Therefore,g∗(s) is analytic inℜ(s)∈ (−1,c). Working in this strip, we chooseε with 0< ε < c.
Then we have

∑
|w|≥K2

α∈A

P(β)P(w) fw(x) =
1

2πi

Z ε+i∞

ε−i∞
g∗(s)x−sds+ ∑

|w|≥K2
α∈A

P(β)P(w) fw(0)e−x . (63)

Majorizing under the integral, we see that the first term isO(x−ε) sinceg∗(s) is analytic in the strip
ℜ(s) ∈ (−1,c) (and−1 < ε < c). Also, the second term isO(e−x). This completes the proof of the
lemma. 2

Now we bound the contribution toQn(u) from theCw(u) terms ofM(z,u) and thez= 1/(1+uP(w)P(α)−
P(w)) terms ofMI (z,u).

Lemma 3.9 The “Cw(u) terms” and the “1/(1+ uP(w)P(α)−P(w)) terms” (for |w| ≥ K2) altogether
have only O(n−ε) contribution to Qn(u), for someε > 0. More precisely,

∑
|w|≥K2

α∈A

(
− Res

z=Cw(u)

Mw,α(z,u)
zn+1 + Res

z=1/(1+uP(w)P(α)−P(w))

MI
w,α(z,u)
zn+1

)
= O(n−ε) . (64)

Proof The proof technique is the same as the one for Lemma3.8above. 2

Next we prove that theIw,α(ρ,u) terms in (54) haveO(n−ε) contribution toQn(u).

Lemma 3.10 The “Iw,α(ρ,u) terms” (for |w| ≥ K2) altogether have only O(n−ε) contribution to Qn(u),
for someε > 0. More precisely,

∑
|w|≥K2

α∈A

Iw,α(ρ,u) = O(n−ε) . (65)

Proof Here we only sketch the proof. A rigorous proof is given in?. Recall that

Iw,α(ρ,u) =
1

2πi

Z
|z|=ρ

uP(β)P(w)
(

1
Dw(z)

Dwα(z)− (1−z)
Dw(z)−u(Dwα(z)− (1−z))

− 1
1−z(1−P(w))

zP(w)P(α)
1−z(1+uP(w)P(α)−P(w))

)
dz

zn+1 . (66)
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By Lemma3.7, K2 was selected to be sufficiently large such that(ρp)m(1−δ−1ρp)≤ (ρ−1)c/2. Thus,
writing C1 = (ρ−1)c/2, we have 1/|Dw(z)−u(Dwα(z)− (1− z))| ≤ 1/C1 and thus 1/|Dw(z)| ≤ 1/C1.
Also 1/|1−z(1−P(w))| ≤ 1/c2 and 1/|1−z(1+uP(w)P(α)−P(w))| ≤ 1/c2 by (44). So we obtain

|Iw,α(ρ,u)|= O(ρ−n)P(w)(Swα(ρ)−1)+O(ρ−n)P(w)O((pρ)m) . (67)

Thus, by Lemma3.3, ∑α∈A ∑|w|=m|Iw,α(ρ,u)| = O(ρ−n)O((ρδ)m). We conclude∑ |w|≥K2
α∈A

|Iw,α(ρ,u)| =

O(ρ−n), and the lemma follows. 2

Finally, we consider the contribution toQn(u) from small words|w|. Basically, we prove that|w| has
a normal distribution with mean1h logn and varianceθ logn, whereh = −plogp− qlogq denotes the
entropy of the source, andθ is a constant. Therefore,|w| ≤ K2 is extremely unlikely, and as a result, the
contribution toQn(u) from wordsw with |w| ≤ K2 is very small.

Lemma 3.11 The terms∑ |w|<K2
α∈A

(Mw,α(z,u)−MI
w,α(z,u)) altogether have only O(n−ε) contribution to

Qn(u).

Proof Let Dn denote the depth of the(n+1)st insertion in a suffix tree, i.e.,Dn < k if and only if

Xn+1 . . .Xn+k 6= Xi+1 . . .Xi+k for all 0≤ i < n (68)

i.e.,Dn = |w| in the notation of Section3.2. Similarly, letDI
n denote the depth of the(n+1)st insertion in

a trie built overn+1 independent strings, i.e.,DI
n < k if and only if

X1(n+1) . . .Xk(n+1) 6= X1(i) . . .Xk(i) for all 1≤ i ≤ n (69)

i.e.,DI
n = |w| in the notation of Section3.1.

Therefore,

[zn] ∑
|w|<K2

α∈A

(Mw,α(z,u)−MI
w,α(z,u)) = ∑

i<K2

n

∑
k=1

(
P(Mn = k & Dn = i)−P(MI

n = k & DI
n = i)

)
uk . (70)

Noting thatP(Mn = k & Dn = i)≤ P(Dn = i) andP(MI
n = k & DI

n = i)≤ P(DI
n = i), it follows that

[zn] ∑
|w|<K2

α∈A

|Mw,α(z,u)−MI
w,α(z,u)| ≤ ∑

i<K2

n

∑
k=1

(
P(Dn = i)+P(DI

n = i)
)
|u|k . (71)

In ?, thetypicaldepthDT
n+1 in a trie built overn+1 independent strings was shown to be asymptotically

normal with mean1
h log(n+1) and varianceθ log(n+1). We observe thatDI

n (defined in (69)) andDT
n+1

have the same distribution; to see this, observe thatP(DI
n < k) = ∑|w|=k P(w)(1−P(w))n = P(DT

n+1 < k).
Therefore,DI

n is also asymptotically normal with mean1h logn and varianceθ logn. In ?, we rigorously
prove thatDI

n andDn have asymptotically the same distribution, namely, a normal distribution with mean
1
h log(n+ 1) and varianceθ log(n+ 1). Therefore, considering (71) (and noting thatK2 is a constant), it
follows that

[zn] ∑
|w|<K2

α∈A

|Mw,α(z,u)−MI
w,α(z,u)|= O(n−ε) . (72)

This completes the proof of the lemma. 2

All contributions to (54) have now been analyzed. We are finally prepared to summarize our results.
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3.7 Summary and Conclusion
Combining the last four lemmas, we see thatQn(u) = O(n−ε) uniformly for |u| ≤ δ−1, whereδ−1 > 1.
For ease of notation, we defineb = δ−1. Finally, we apply Cauchy’s theorem again. We compute

P(Mn = k)−P(MI
n = k) = [ukzn]Q(z,u) = [uk]Qn(u) =

1
2πi

Z
|u|=b

Qn(u)
uk+1 du. (73)

SinceQn(u) = O(n−ε), it follows that

|P(Mn = k)−P(MI
n = k)| ≤ 1

|2πi|
(2πb)

O(n−ε)
bk+1 = O(n−εb−k) . (74)

So Theorem2.1holds. It follows thatMn andMI
n have asymptotically the same distribution, and therefore

Mn andMI
n asymptotically have the same factorial moments. The main result of? gives the asymptotic

distribution and factorial moments ofMI
n. As a result, Theorem2.2 follows immediately. Therefore,

Mn follows the logarithmic series distribution, i.e.,P(Mn = j) = p j q+q j p
jh (plus some small fluctuations if

ln p/ lnq is rational).
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