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2 Mark Daniel Ward and Wojciech Szpankowski

1 Introduction

When transmitting data, the goal sburce coding (data compressiois)to represent the source with

a minimum of symbols. On the other hand, the goatleénnel coding (error correctionis to repre-

sent the source with a minimum of error probability in decoding. These goals are obviously in conflict.
Traditionally, additional symbols are transmitted when performing error correction.

In ?, an algorithm for joint data compression and error correction is presented; the compression per-
formance is not degraded because the algorithm requires no extra symbols for error correction. In this
scheme, a Reed-Solomon error-correcting code is embedded into the Lempel-Ziv '77 data compression
algorithm (see?). Lonardi and Szpankowski utilize the fact that the LZ'77 adaptive data compression
algorithm is unable to remove all redundancy from the source. Our goal here is to precisely determine the
number of redundant bits that are available to be utilized in the aforementioned scheme.

We recall the basic operation of the LZ'77 data compression algorithm. WHasts of the source
have already been compressed, the LZ'77 encoder finds the longest prefix of the uncompressed data that
also appears in the database (namely, the compressed portion of the data). The encoder performs the
compression by storing a pointer into the database (and also the length of this prefix, as well as the next
character of the source). Often, this longest prefix appears more than once in the database. Each of the
database entries aegually eligiblefor use by the encoder; thuany of the analogous pointeisto the
database is suitable. In practice, the choice of pointer among these candidates has no significance. On the
other hand, by judiciously selecting the pointer, some error correction can be performed. For instance, if
two pointers are available, the encoder could easily perform a parity check by choosing the first pointer for
“0” and the second pointer for “1”. Lonardi and Szpankowski's scheme for performing error correction is
very elaborate. We refer the reader to their paper for more details.

We letM,, denote thexumber of pointers into the databastenn bits have already been compressed
(as described above). Throughout this paper, we are primarily interested in precisely determining the
asymptotics ofM,,. A thorough analysis oM, yields a characterization of the degree to which error
correction can be performed in the scheme discussed above. We nagt®thd, | bits are available to
be used for correcting errors.

Tries, especially suffix trees, provide a natural way to stddyWe work here with strings of characters
drawn independently from the binary alphab&t= {0,1}. We letp denote the probability of “0” and
g = 1— p denotes the probability of “1”; without loss of generality, we assumedghkatp throughout the
discussion.

We first recall the definition of a binary trie built over a $ébf n strings. The construction is recursive.

If || = 0, then the trie is empty. |f)'| = 1, then tri¢?") is a single node. Finally, if)’| > 1, theny  is
partitioned into two subset9p and93, such that a string is ifg if its first symbol is 0, and a string is in

7 ifits first symbol is 1. Then tri€)p) and tri€97) are each constructed in the same way, except that the
splitting of sets at thé&th step is based on theh symbol of the string. This completes the definition of a
binary trie.

Now we briefly recall the construction of a binary suffix tree built over a sthng X;X2X3.... The
wordX() = XX, 1%, 2. .. is theith suffix of X, which begins at thith position ofX. Then a binary suffix
tree is precisely a binary trie built over the firssuffixes ofX, namelyX(M, X@ . x(™,

In a suffix tree My, is exactly the number of leaves in the subtree rooted at the branching point of the
(n+ 1)st insertion (cf. Figure 1). The strings in a suffix tree are highly dependent on each other, which
apparently makes a precise analysidvpfquite difficult; therefore, we also consider the analogous (but
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Fig. 1: FindingM}, in a trie.

simpler) situation in a trie built oveindependenstrings; namely, we studil!, which is the number
of leaves in the subtree rooted at the branching point ofthe1)st insertion in a trie built oven+ 1
independenbinary strings. For instance, in Figutewe haven = 4 andM), = 2 because there are two
leaves (namely§; andS,) in the subtree rooted at the branching point of the 5th insertion.

We are primarily concerned with comparing the distributioivf (a parameter of suffix trees) to the
distribution ofM|, (a parameter of tries built over independent strings). Our approach to the proof begins
with the observation that a variety of parameters have the same asymptotic behavior regardless of whether
they correspond to suffix trees or to tries built over independent strings. This was obsePvaadrhen
made precise if?, where the typical depth in a suffix tree is proven to be asymptotically the same as the
typical depth in a trie built over independent strings when the underlying source is i.i.d. An extension of
such results to an underlying Markovian model is presentéd in

The limiting distribution of several trie parameters is giver?iand?. More results about trie param-
eters are found i?. The variance of the external path in a symmetric trie is give®n ifhe depth of a
digital trie with an underlying Markovian dependency is analyze@.itMany results about a variety of
tree structures are collected?nAverage-case studies of several parameters of suffix trees are foind in
and?.

We briefly summarize the methodology of our proof. Our goal is to compare the distributidn(tiie
multiplicity matching parameter of a suffix tree) to the distributionvjf (the MMP of a trie built over
independent strings). Our proof that these two parameters have the same asymptotic distribution consists
of several steps. We first derive bivariate generating function#/foandM,, denoted a$(z u) and
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M'(z u), respectively. We noted above that a suffix tree is built over the sutkkesX(® ... X" of a
stringX. These suffixes are highly dependent on each other. Therefore, in deriving the bivariate generating
functionM(z u), an interesting obstacle arises: We need to determine the degree to which a stiffexrof
overlap with itself. Fortunately, the autocorrelation polynonfiglz) of a wordw measures the amount

of overlap of a wordwv with itself. The autocorrelation polynomial was introduce®iand was utilized
extensively in? and?. The autocorrelation polynomial is defined as

W= P2k (1)

keP(w)

wherem = |w| and whereP(w) denotes the set of positiokf w satisfyingws ... Wk = Wm—k+1. . - W,

that is,w's prefix of lengthk is equal tow's suffix of lengthk. Using the autocorrelation polynomial,

we can overcome the difficulties inherent in the fact that suffixes of a Woosterlap with each other.

By utilizing Sy(z), we are able to obtain a succinct way of describing the bivariate generating function
M(z u). Fortunately, the autocorrelation polynomial is well-understood. Note that the autocorrelation
polynomial Sy(z) has aP(vv'Q"H)zm‘k term if and only ifw has an overlap with itself of length Al
wordsw overlap with themselves trivially, so all autocorrelation polynomials have a constant term (i.e.,
Z™™ =722 = 1 term). On the other hand, with high probabilityhas very few large nontrivial overlaps
with itself. Therefore, with high probability, all nontrivial overlapswivith itself are small; such overlaps
correspond to high-degree termsyf(z).

In order to compar&l(z u) andM' (z u), we utilize complex analysis. Specifically, we take advantage
of Cauchy’s theorem, which allows us to analyze the poles of the generating furidtiang andM' (z,u)
in order to obtain precise information about the distributionMgfandM,. During this residue analysis,
it is necessary that the generating functionNgy is analytically continued from the unit disk to a larger
disk.

Our ultimate conclusion is that the distribution of the multiplicity matching paranidieis asymp-
totically the same in suffix trees and independent tries, ig.and M), have asymptotically the same
distribution.

The asymptotics for the distribution and factorial moments/gfwere given in?. Specifically,M},
asymptotically follows the logarithmic series distribution (plus some fluctuations whefirin is ra-
tional). Since we prove here thit, and M/, have asymptotically the same distribution, then as a con-
sequence, we see thisl, also asymptotically follows the logarithmic series distribution. One striking
property of this distribution is the high concentration around the mean. We see[Mgdtis asymptoti-
cally % (whereh denotes the entropy of the source) and Mgads highly concentrated around this average
value; this property oM, is very desirable for the error correction scheme describ&d in

This paper is a concise version of the first author’s Ph.D. thesi€.see

2 Main Results

We consider the strink = X1 X2Xs3..., where theX’s are i.i.d. random variables ofl := {0,1} with

P(X = 0) = pandP(X; = 1) = g. (Without loss of generality, we assume throughout the discussion that
q < p.) LetX() denote thdth suffix of X. In other wordsX() = XX, 1X,2.... Consider thdongest
prefixw of X("1) such thaiX() also hasw as a prefix, for somewith 1 <i < n. ThenM, is defined as

the number oX()’s (with 1 < i < n) that havew as a prefix. So

Mn=#{1<i<n|X" =XX_1X.2... haswas a prefi¥. 2)
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An alternate definition oM, is available viasuffix trees First, consider a suffix tree built from the first
n+ 1 suffixes ofX. Next, consider thénsertion pointof the (n+ 1)st suffix. ThenM,, is exactly the
number of leave# the subtree rooted at the branching point of the- 1)st insertion. For instance,
suppose that thén+ 1)st suffix starts withw for somew € 2* and € 4. Then, examining the first
suffixes, if there are exactlysuffixes that begin withva (wherea = 1—f, i.e.,{a,B} = {0,1}), and the
othern— k suffixes do not begin witkv, we conclude thatl,, = k.

Unfortunately, the strings in a suffix tree are highly dependent on each other; thus, a precise analysis
of My, is quite difficult. On the other hand, the asymptotic behavioMjf an analogous parameter
of tries built over independent strings, is well-understood. Specifidallyasymptotically follows the
logarithmic series distribution (plus some fluctuations whegylim g is rational). In?, a precise analysis
of M|, is given via the analysis of independent tries, using recurrence relations, analytical poissonization
and depoissonization, the Mellin transform, and complex analysis.

To defineM/,, we consider the situation described above, but we build a trie franl independent
strings fromA4*. So we consider independeXti)’s; specifically, we definé(i) = X1 (i)X2(i)X3(i). .,
where{X;(i) | i,]j € N} is a collection of i.i.d. random variables. We ietdenote thdongestprefix of
X(n+1) such thaiX (i) also hasv as a prefix, for somewith 1 <i < n. ThenM, is defined as the number
of X(i)'s (with 1 <i < n) that havew as a prefix. So

ML =#{1<i<n|X(i)=Xy(i)X(i)Xa(i)... hasw as a prefi} . (3)

To defineM), viatries, first consider a trie built from the+ 1 independent strings fror*. Next, consider
theinsertion pointof the (n+ 1)st string. TherMj, is exactly thenumber of leavem the subtree rooted at
the branching point of thén+ 1)st insertion. As above, suppose that the- 1)st string starts withwp.
Then, examining the first strings, if there are exactlystrings that begin withva (againa = 1— ), and
the othem — k strings do not begin withv, we conclude that), = k.

Since we know fron® thatM), follows the logarithmic series distribution plus some fluctuations, then
it suffices to prove thatl, has a similar asymptotic distribution. To accomplish this goal, we compare the
distribution ofM,, in suffix trees to the distribution dﬂﬁ, in independent tries.

Briefly, our proof technique is the following: We IBt(z,u) = ¥ 1<k n<w P(Mn = k)ukzZ" andM' (z,u) =
Y 1<kn<e P(M! = k)u*Z" denote the bivariate generating functions Kty andM|,, respectively. To study
these generating functions, we considerwdefined above. Specifically, fdvi(z u), we recall from
(2) that if w denotes the longest prefix oD = X, 1X.,12Xn13... that appears as a prefix of any
X =X X 11X42..., thenM, enumerates the number of such occurrences dhis approach tM(z,u)
allows us to sum over aWt € 2* instead of summing oveen € N. Similarly, for M' (z u), we utilize @)
to see that ifw denotes the longest prefix in+ 1) = X;(n+ 1)Xa(n+ 1)X3(n+1)... that appears as a
prefix of anyXy (i)X2(i)X3(i) . . ., thenM, is precisely the number of such occurrencewoTherefore, to
determineM' (z u), we can sum over alw € 4* instead of summing over the integdrandn.

We note that th&X()’s are highly dependent on each other. In fact,3f j, thenX() = XX ;1 Xi12. ..
is a substring oK () = XjXj+1Xj+2.... This apparently makes the derivation of the bivariate generating
functionM(z,u) quite difficult. We overcome this hurdle by succinctly describing the degree to which a
suffix of X can overlap with itself. We accomplish this by utilizing the autocorrelation polynoBgia)
of a wordw, which measures the amount of overlap of a wardith itself. As mentioned above, the
autocorrelation polynomial is defined as

W)= 3 PW,)Z"k (4)

keP(w)
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where?(w) denotes the set of positiokf w satisfyingws ... Wx = Wip_k+1 - - - Wm, that is,w's prefix of
lengthk is equal tow's suffix of lengthk. Via the autocorrelation polynomial, we are able to surmount
the difficulties inherent in the overlapping suffixes. Thus, uSp@), we obtain a succinct description of
the bivariate generating functiovi(z,u). The autocorrelation polynomial is well-understood; we utilize
several results abo®,(z) from ? and?. In particular, when comparinyl(z,u) and M'(zu), it is
extremely useful to note that the autocorrelation polynoiigk) is close to 1 with high probability (for
|w] large).

In order to obtain information about the difference of the two BGFQ&su) = M(z,u) — M'(z u),
we utilize residue analysis. We make a comparison of the pol&(nfu) andM' (z u) using Cauchy’s
theorem (integrating with respectap As a result, we prove th&,(u) :=[2"]Q(z u) = O(n™¢) uniformly
for Ju| < p~1/2 asn — . Then we use another application of Cauchy’s theorem (integrating with respect
to u). Specifically, we extract the coefficieRtM,, = k) — P(M), = k) = [u“2"]Q(z u) in order to prove our
main result.

Theorem 2.1 There exist > 0 and b> 1 such that
P(Mn = k) — P(Mp, = k) = O(n"*b %) )

for large n.

Therefore, the distributions &fl, andM), are asymptotically the same. We conclude tatalso asymp-
totically follows the logarithmic series distribution (plus some fluctuations whef limq is rational).

Theorem 2.2 There exist > 0 andg; > 0 (for each je N) depending on p such that the jth factorial
moment of M is

. . iy i o
eln)1] = 1 (1) AP PAP 4 y0g, o)+ o) ©
wherey; is a periodic function with mean 0 and small modulusnip/Inq is rational, and otherwise
yj(x) — 0 as x— . Also h= —plogp — glogq denotes the entropy of the source. The probability
generating function of Mis

~gIn(1—pu)+pIn(1—qu)
h

for |u| < p~¥/2 wherey(-, u) is a periodic function with mean 0 and small modulus b/ Inq is rational,
and otherwisey; (u, x) — 0 (uniformly for|u| < p~1/2) as x— . More precisely,

E[uMn] =

+y(logy /pn,u) +O(n~#) )

plg+d'p MR (z) (plg+ ol p) ()]

j —£
jh * j'(p~&*lIinp+qg-#%+tling) w+0om™) ®)

Mn] _ -
E[u™n] j;

kez\{0}
wheninp/Ing=r/t for some 1t € Z, we have g= 2krti/In p. Therefore, as p- c, we conclude that
Mp, follows the logarithmic series distribution plus some fluctuatiofsif/ Inq=r /t is rational, i.e.,
joPardp ¢ @R (@) (Pla+olp)(@)
o T2 (P ETinp+qaing

If Inp/Inq is irrational, then M, asymptotically follows the logarithmic series distribution, without fluc-
tuations.

J +O(ne). )

P(Mn -
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Note that the average value bf, is asymptotically%, and alsoM, is highly concentrated around the
mean; this property dfl, is very desirable for the error correction scheme describ&d in

3 Proofs

We first derive the bivariate generating functions¥ty andM,, denoted a#l(z u) andM' (z, u), respec-
tively. Then we prove a few useful lemmas concerning the autocorrelation polynomial. Next, we prove
thatM(z u) can be analytically continued from the unit disk to a larger disk. Afterwards, we determine
the poles oM (z u) andM' (z u). We writeQ(z,u) = M(z,u) — M'(z u); we use Cauchy’s theorem to that
Qn(u) := [2"]Q(z,u) — 0 uniformly foru < p~/2 asn — . Then we apply Cauchy’s theorem again to
prove thatP(Mp = k) — P(M}, = k) = [uk2"]Q(z,u) = O(n~¢b~k) for somee > 0 andb > 1.

We conclude that the distribution of the multiplicity matching paramileis asymptotically the same
in suffix trees as in tries built over independent strings, My,,and M/, have asymptotically the same
distribution. ThereforeM, also follows the logarithmic series distribution plus some fluctuations.

3.1 BGF for the Multiplicity Matching Parameter of Independent Tries

First we obtain the bivariate generating function fdf, which is the multiplicity matching parame-
ter for a trie built over thendependenstringsX(1),...,X(n+1), whereX(i) = Xy (i)X2(i)X3(i) ... and
{X;(i) |i,]j € N} is a collection of i.i.d. random variables WiB(X; (i) = 0) = pandP(X;(i) =1) = q=
1— p. We letw denote thdongest prefixof both X(n+ 1) and at least one other stringyi) for some
1 <i<n. We write B to denote the |w| 4 1)st character oK(n+1). WhenM], = k, we conclude that
exactlyk stringsX(i) havewa as a prefix, and the othar— k stringsX(i) do not havev as a prefix at all.
Thus the generating function fot!, is exactly

P PRSP PR
aea

(k> (P(wa))¥(1— P(w))" k2" . (10)

After simplifying, it follows immediately that

< WPRPW) P(W)P(a)
M@= 3 T a1 Pw) T 2T T PWP(a) P

11)

Our reasoning abow¥' (z,u) can be applied when we derive generating functibfz, u) for My, in the
next section, but the situation will be more complicated, because the occurrenceambverlap.

3.2 BGF for the Multiplicity Matching Parameter of Suffix Trees

Now we obtain the bivariate generating function kdy, which is the multiplicity matching parameter for

a suffix tree built over the firsi+ 1 suffixes XV, ..., X("1) of a stringX (i.e., X" = XX 1X;2...). The
bivariate generating function for the muItipIicity matchmg parameter is much more difficult to derive in
the dependent (suffix tree) case than in the independent (trie) case, because the siffatesdapendent

on each other. We lat denote thdongest prefi>of both X ("1 and at least onX (") for some 1< i < n.

We write 3 to denote thé|w| + 1)st character oX ("*V; whenM, = k, we conclude that exactkysuffixes

X havewa as a prefix, and the other— k stringsX () do not havew as a prefix at all. Thus, we are
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interested in finding strings with exactkyoccurrences ofva, ended on the right by an occurrencends,

with no other occurrences @f at all. This set of words is exactly the Ianguaﬁﬂa('r\,&a)a)kfl‘fv&“)ﬁ,
where

{v| v contains exactly one occurrencevaflocated at the right erjd
'TMEO‘) = {v|wav contains exactly two occurrenceswaflocated at the left and right englg(12)

So, the generating function f,, is

M(z,u):% 5SS P(sa)zSHlu(

=1 wea*
k 1\nc/}leEﬂ SERw te'TM(,a

1
S PBZITEMIL (13)

vefl‘\,\(,“)

P(ta)z”lu)
)

After simplifying the geometric sum, this yields

_ R P@)zh(2
M(zu) = Wezﬂ* uP(p) ™ 1 pa)zut (z)

aeAa

(14)

We note thaRy(z)/Z" = P(w)/Dw(2) (?), whereDy(2) = (1— 2)Sw(2) +Z"P(w) and whereS,(z) de-
notes the autocorrelation polynomial far Recall thatS,(z) measures the degree to which a werd
overlaps with itself, and specifically

W= 3 P2k (15)

keP(w)

where?(w) denotes the set of positiokf w satisfyingws . .. Wk = Wn_k+1 - - - Wm, that is,w's prefix of
lengthk is equal tow’s suffix of lengthk; also,m = |w|. Returning to {4), it follows that

uPB)PW) P(a)zW" (2)

M(zu) = . (16)
wER Dw(?d)  1-P(o)zuTy(2)
ae
In order to derive an explicit form d¥l(z u), we still need to findl'\,(v“)(z). If we define
My = {v]|wvcontains exactly two occurrenceswaflocated at the left and right enfls (17)

then we observe thatt’I\,Sa) is exactly the subset of words 84, that begin witha; We use%ﬁ“) to denote
this subset (i.e 7" = My, N (0.4%)), and thus ™ = 767, So (1L6) simplifies to

_ < WPEIPW)_ HE()
M(27U>—WEZQ* Dw(@ 1-uHW(2)

aea

(18)

In order to computéi\,(vu)(z), we write My, = %\(,“) + %\(,B), where%&ﬁ) is the subset of words from,,

that start withp (i.e., }QB) = My N (BA*)). (Note that every word of\t,, begins with either or 3,
because the empty woedZ M,,.) The following useful lemma is the last necessary ingredient to obtain
an explicit formula foiM(z u) from (18).



Analysis of the Multiplicity Matching Parameter in Suffix Trees 9
Lemma 3.1 Let %&O‘) denote the subset of words frakf, that start witha. Then

_ DWG(Z) — (l—Z)

Hi (2 Du) (19)
Proof We use the concepts and notation fr@rand? throughout. In particular, we define
Uy = {v| wvcontains exactly one occurrenceveflocated at the left end (20)
and we recall from12) and (L7) above that
Kw = {v]vcontains exactly one occurrencevaf located at the right erjd
My = {v|wvcontains exactly two occurrenceswaflocated at the left and right enfls (21)

The following notation is similar but slightly adapted for our proof.
‘u\g\,“) = {v| v starts witha, andwv has exactly 1 occurrence afx and no occurrences @3} . (22)
We note that the set of words with no occurrencesvBfis exactly 2" \ Ryg(Mup)* Uyg, Which has

generating function
U
1 RWB(Z) WB(Z) (23)

1-z 1-My(2

Now we describe the set of words with no occurrencewf®in a different way. The set of words with

no occurrences off3 and at least one occurrencevad is exactlyﬂ(w(%\(,u))* \S\,“>, which has generating

function RN(z)U\fv“>(z)/(1— H\,(v“)(z)). The set of words with no occurrenceswp and no occurrences
of wa is exactly Ry + (A" \ Rw(Mw)*U). (Note that the set of such words that endniiis exactly Ry;
on the other hand, the set of such words that do not emdinexactly 2* \ Rw(Mw)*U.) So the set of
words with no occurrences @fo and no occurrences @ff has generating functioRy(z) +1/(1—2z) —
Rw(2)Uw(2)/(1—Mw(2)). So the set of words with no occurrencesn has generating function

Ru(@Ui" (2) 1 Ru(2Ua(?)
A R T T T M) (24)

Combining @3) and @4), it follows that

1 Rp@Uu(@  Ra(2U(2) 1 Ru(2Uu(?)
1-z 1-Mg@ 1-HY(y RIS T M #)

Now we find the generating function fdrl\gvu). For each word/ € ‘uv(va), eitherwv has exactly one or two

occurrences ofv. The subset ofa&v") of the first type is exacthSm :=UynN(aa*), i.e., the subset of
words fromU,, that start witha. The subset oﬂ&v“) of the second type is exacma). We observe that

YUY 2= (HY + Y\ {ad (26)
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(see?), soVi® (2) = (K (2) — P(0)2)/(z— 1). SinceTli®) = U + #4®, it follows that

_H@-P@z @, _ 2H (@ Pz

W@ == W' (2) — (@7)
Recalling equation2b), we see that
1 Rg@Us(@  Ru(@)(zH (2~ P(a)2) 1 Ru(2Uu(2)
1-z 1_MWB(Z) o (1_HV(VU)(Z))(Z_1) +RW(Z)+ 1-z 1—MW(Z) ' (28)

Simplifying, and usingJy(z) = (1-Mw(2))/(1—2) andU,g(2) = (1—Myg(2))/(1—-2) (see?), it follows

that Re(d ()
B V4 . Zi
R  1-HY(z) @9

Solving forH\,(\,“)(z) and then usin@Ry(2) = Z"P(w)/Dy(2) andRyg(2) = 2™ P(W)P(B) /Dygs(2) (see?),
it follows that

~ Dw(2) —Dy(2)
B Dw(2) .

NoteDy(2) — Dug(2) = (1~ 2)Sw(2) +Z"P(W) — (1~ 2)Sup(2) — 2" *P(W)P(B) = (1~ 2)(Swa(2) — 1) +
Z™"P(W)P(a) = Dwa(2) — (1—2). Thus, B0) completes the proof of the lemma.

HY (2) (30)

d

Using the lemma above, we finally observe a fornMig, u) that we summarize below.

Theorem 3.1 Let M(z,u) == S%_; Sr_; P(Mn = k)uk2" denote the bivariate generating function fonM
the multiplicity matching parameter of a suffix tree built over the firsthsuffixes XY, ..., X("1) of a

string X. Then ) (
_ < WPEPW  Dw(2-(1-2)
M(Z’ U) B Wgzﬂ* DW(Z> DW(Z) - U(Dwor (Z) - (1_ Z)) (31)

for Jul < 1 and|z] < 1. Here Dy(2) = (1—-2)Sy(2) + Z"P(w), and &(z) denotes the autocorrelation
polynomial for w, defined inlj.

3.3 On the Autocorrelation Polynomial

Throughout the rest of our analysis we assume that, without loss of gengratity, Note thatp < ,/p <
1, so there existg > 1 such thap,/p < 1 (and thupp < 1 too). Finally, definé = ,/p. We establish a
few lemmas about the autocorrelation polynomial that will be important for our analysis. Recall that the
autocorrelation polynomial i8y(2) = ¥ ke pw) P(WE‘H)Z”‘*", where?(w) denotes the set of positiokof
w satisfyingwy ... Wx = W1 - - - Wi, that is,w's prefix of lengthk is equal tow's suffix of lengthk.

The autocorrelation polynomi&@y(z) has aP(w{}]rl)z”“K term if and only ifw has an overlap with
itself of lengthk. Since each worev overlaps with itself trivially, then every autocorrelation polynomial
has a constant term (i.eZ™™ = 2 = 1 term). With high probability, howevew has very few large
nontrivial overlaps with itself. Therefore, with high probability, all nontrivial overlapwafith itself are
small; such overlaps correspond to high-degree ternS @). Therefore, whenv is a randomly chosen
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long word, therSy(z) is very close to 1 with very high probability. The first lemma makes this notion
mathematically precise.

Lemma 3.2 1f 8= (1—pp)~t> 1, then

S [1Sw(p) — 1| < (p3)*B]P(W) > 1— 56 (32)

we gk
where[[A] = 1if A holds, and[A]] = 0 otherwise.

Proof Our proof is the one given iR. Note thatS,(z) — 1 has a term of degreie< j if and only if
m—i € P(w) with 1 <i < j. Therefore, for each sudhand eachw; ...w;, there isexactly one word
Wit1...Wg such thaSy(z) — 1 has a term of degree Therefore, for fixed andk,

z [Sw(2) — 1 has a term of degree j]P(w)

we gk
< z P(wy...w) Z [Swv(2) — 1 has a term of degra@P(wi 1 ... W)
1<T<jwy,... wie Al Wi 1,0 W EAKT
) . k=]
- P
< Pwi...w)p< = pic ™ — (33)
1§IZSJW1,..§W€W 1§Z§J 1- p

We usej = |Kk/2]. Thusy,,. 4« [all terms ofSy(z) — 1 have degree [k/2]]P(w) > 1—3%6.
Note that, if all terms 05,(z) — 1 have degree |k/2], then

(pp) [k/2]+1

| (PR)¥? _ pkpk? K
Svip) —1| < = < < = (pd) 0. 34
ISu(p) — 1] i>§/2j(pp) 1T op “1-pp-1pp P (34)
This completes the proof of the lemma. O

Using this lemma, we can quickly obtain another result that is similar but slightly stronger. _
First consider words/ such thatS,(p) — 1| < (p8)8. Write Sy(2) = TK-3 a7 andSua(2) = X obiZ.
Observe that eithds;, = 0 orb; = a;. The following lemma follows immediately:

Lemma3.31f8=(1-pp)~t+1anda € 4, then

S [max{|Su(p) — 1S (P) — 1} < (pB)B]P(w) > 1 56. (35)

we gk

Also, the autocorrelation polynomial is never too small. In fact

Lemma 3.4 Define c=1—p,/p> 0. Then there exists an integerK1 such that, fortw| > K and|z <p
and|u| <871,
1Su(2) — USwa(2) +U > c. (36)

Proof The proof consists of considering several cases. The only conditidt i1+ 6*1)% <
¢/2. The analysis is not difficult; all details are presented@.in |
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3.4 Analytic Continuation

Our goal in this section is to prove the following:

Theorem 3.2 The generating function [, u) can be analytically continued fgu| < 8! and|z < 1.
The proof requires several lemmas and observations. We always aggume >,

Lemma 3.5 If 0 < r < 1, then there exists & 0 and an integer K (both depending on r) such that
[Dw(2) —U(Dwa(2) = (1-2))[ =C (37)
for |w| > K1 and|z| < r (and, as beforeju| < &1).

Proof Consider th&k andc defined in Lemma.4, which tells us that, for alw| > K, we have
|Sw(z) —uSwa(2) +u| >c (38)

for |z < p. So, for|w| > K, we haveDy(z) — U(Dwa(2) — (1—2))| > (1—r)c—rMp™(1— & 1rp). Note
thatr™p™(1— & 1rp) — 0 asm— . Therefore, replacing by a largerK; if necessary, we can without
loss of generality assume thdtp™(1— & 1rp) < (1—r)c/2. So we defin€ = (1—r)c/2, and the result
follows immediately. O

Now we can strengthen the previous lemma by dropping Kaé, ‘i.e., by not requiringw to be a long
word:

Lemma 3.6 If 0 < r < 1, then there exists & 0 (depending on r) such that
[Dw(2) —U(Dwa(2) = (1-2))[ = C 39)
for |2 <r (and, as beforeju| < &71).

Proof Consider theK; defined in Lemma3.5. Let Cy denote the C” from Lemma3.5. There are
only finitely manyw's with |w| < Ky, sayws,...,w;. For each suchv; (with 1 < j <i), we note that
Dw; (2) — U(Dw;a(2) — (1—-2)) # 0 for [ <r and|u < 571, so there exist€; > 0 such thatDy, (2) —
U(Dw;a(2) = (1—-2))| > Cj forall |zl <r and|u| < &1 Finally, we define&C = min{Co,Cy,...,Ci}. O

Finally, we prove Theorerd.2

Proof Considerizl <r < 1. We proved in Lemms 6 there exist > 0 dependlng om such that, for

1 _ l
all ju <6+, we hav\,‘ D7 (Dwu() a2 < Settlngu 0, we also hav%— < =. Thus
P(B)5*
IM(zu)| < (C)Z > > PW)|Dwa(2) - (1-2). (40)
acAqweAq*

Now we use Lemm&.3. Considerw anda with max{|Sy(p) — 1|, |Swa(P) — 1|} < (pd)™8. It follows
immediately that

Dwa(2) — (1~ 2)| = (1~ 2) (S (2) — 1) + 2" PW)P(01)| < (1+1)(p8)M6+ 1™ pMp=O(s™), (41)
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wheres= max{pd,rp}. Now consider the othex’s anda’s. We have

Dua(d) — (1-2)] = (1 2 (Swa(d) — 1) + 2 Pw)P(a) < TP | pmeagmy o (AF1IPP )

1-pp - 1-pp
(42)
so we defin€; = % + 1 to be a value which only depends ofrecall thatr is fixed here). Thus
P(B)d!
Mzl < DB IP(W)(Due(2) ~ (1-2)
aeAm>0weqm
P(B)d! P(B)d> !
< <C)2 3 (-80S + 576Cy < % T 3 0" =0(1) @43)
aeAm>0 aeam>0
and this completes the proof of the theorem. O

3.5 Singularity Analysis

We first determine (fofu| < & 1) the zeroes 0Dy(z) — u(Dwa(2) — (1—2)) and (in particular) the zeroes
of Dy(2).

Lemma 3.7 There exists an integerK> 1 such that, for u fixed (withu| < 1) and|w| > K, there is
exactly one root of Q(z) — u(Dwa(2) — (1—2)) in the closed disKz | |7 < p}.

Proof LetK andc be defined as in Lemm&4. Without loss of generality (replacirlg by a largerky,
if necessary), we can also assume thagp2<2 < c(p — 1) andK, > K (whereKj is defined in Lemma
3.5). Also, we can choosk; large enough (for use later) such thap > 0 with

p(1—p2(1+37tp)—1>c; andthus p(1—-p?)—1>cy. (44)

We recall 0< ppd~1 < 1, and thus 6< 1— ppd~ < 1. Sincelu| < 1 and|z| < p, then for|w| > K, we
have|P(w)Z"(1— uzP(a))| < (pp)™(1+352pp) < 2(pp)™ < c(p— 1) < | (Sul(2) — USwa(2) +U) (p— 1)
Therefore, fozon the circle{z| |z = p}, we havgP(w)zZ™(1—uzP(a))| < |(Sw(2) — USw (2) +u)(z— 1)|.
Equivalently,

|(Bw(2) = U(Dwa(2) = (1-2))) = ((Sw(?) — USwa(2) +U)(z— 1)) < [(Sw(?) - USwa(2) +U)(z— 1) I(- )
45
Therefore, by Roudtis TheoremDy,(z) — Uu(Dwa(2) — (1 —2)) and (Sy(2) — USw(2) + u)(z— 1) have
the same number of zeroes inside the djgk |z < p}. Since|Sy(2) — USw(2) +u| > c inside this
disk, we conclude thatSy(z) — uSw(z) + u)(z— 1) has exactly one root in the disk. It follows that
Dw(2) — u(Dwa(2) — (1—2)) also has exactly one root in the disk. O

Whenu = 0, this lemma implies (fojw| > K;) thatD,y(z) has exactly one root in the digk | |z] < p}. Let
Ay, denote this root, and I&,, = D},(Ay). Also letCy(u) denote the root oby,(z) — u(Dwa(2) — (1—2))
in the closed diskz | |zl < p}. Finally, we define

Eu(1) = ( 43 (Ould ~uDw (@) - (1-2)))

= Dy(Cw) — U(Djye (Cw) +1) . (46)
z=Cy

We have precisely determined the singularitiedviiz,u). Next, we make a comparison bf(z,u) to
M!'(z,u), in order to show thal,, andM/, have asymptotically similar behaviors.
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3.6 Comparing Suffix Trees to Tries
Now we define

Q(z,u) =M(zu)—M'(zu). (47)
Using the notation from1(1) and @1), if we write
B uP(B)P(w) ZP(w)P(a)
Mg (ZW) = 7= 2(1—P(w)) 1—z(1+ uP(w)P(a) — P(w))
MW,(X (27 U) UP(B) P(W) Dwa (Z) — (1 — Z) (48)

Dw(z) Dw(2) —u(Dwa(2) — (1—2))

then we have proven that
Q(Z’ U) = Z (MW«,G (Za U) - M\ING (Z7 U)) . (49)

weq*
aca

We also defindQn(u) = [2"]Q(z u). We denote the contribution 1Q,(u) from a specificw anda as
Qﬁ,wm (U) = [2"/(Mwa(z, U) — M}, 4 (z,u)). Then we observe that

dz

W, 1
Q) = 5 f (Mua(2U) ~ My (2) 155 (50)

where the path of integration is a circle about the origin with counterclockwise orientation.
We define d
z

(Mwa(z,u) — M\I/v,q (z U))ﬁ . (51)

By Cauchy’s theorem, we observe that the contributio®#tu) from a specifiov anda is exactly

(w,ar) _ _ Mwa(zU) Muwa (2, U)
Qn (U) - IW,G (pv U) ZEEV? Z”‘*‘l Z=RCS(SU) Zn+1
M (zu Ml (zu
+ Res 7‘““(1 ) Res 7""’“(1 )
z=1/(1-P(w)) Z"" z=1/(1+uP(W)P(a)—P(w))  Z'"

IW,(I(pv U) = ﬁ \Z\:p

(52)

To simplify this expression, note that

Mwa (2, P(B)P 1
sy _ _P0R L
(

Muwa(z,U) PBPW 1
w(

R _ =
Z:Cv?(?]) Zn+l E u) Cw(u)rH—l

R M\IN,(} (Za U) _ P P 1 P n
z:]_/(]ES(W)) B (B)P(w)(1—P(w))

e
z=1/(1+uP(W)P(a)—P(w))  Z*1

= —P(B)P(W)(1+uP(w)P(a) — P(w))" (53)

It follows from (52) that

W, P P 1 P P 1
AW = twalpy+ S BERW
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+P(B)P(W)(1—P(w))" — P(B)P(w)(1+ uP(w)P(a) — P(w))". (54)

We next determine the contribution of tlze= A, terms ofM(zu) and thez= 1/(1— P(w)) terms of
M' (z,u) to the differenceQn(u) = [2"](M(z u) — M'(z u)).

Lemma 3.8 The “A,, terms” and the “1/(1— P(w)) terms” (for |w| > K5) altogether have only (%)
contribution to Q(u), i.e.,

Muwa (Za U) M\INQ (Z, U) e
— Res————— Res ———— | =0(n 55
\Wng ( She 2 oyiohw) 20 (™), (55)
aca
for somee > 0.
Proof We define .
W) = g+ (L= PW)" (56)
for x real. So by $3) it suffices to prove that
P(B)P(w) fu(x) = O(X®).. (57)
|w[>Kop

aeAa

Note thaty w3k, P(B)P(w) fw(X) is absolutely convergent for al Also fw(X) = fw(X) — fw(0)e * is
acAa

exponentially decreasing when— -+ and isO(x) whenx — 0 (notice that we utilize thd,(0)e > term

in order to make sure théft,(x) = O(x) whenx — 0; this provides a fundamental strip for the Mellin
transform in the next step). Therefore, its Mellin transfoifits) = [5° fw(x)x> 1 dxis well-defined for
O(s) > —1 (see? and?). We compute

e =i (P =2

wherel” denotes the Euler gamma function, and we note that

+ (—log(1—P(w)))5— 1) (58)

s _ (PW\7
fogn > = (Gfh) (@+ow)
(—log(1—PW))~> = Pw) (1+0(PW))) (59)
Also
Ay = 1+SN11)P<w>+O<P<w>2>
By = —SN(1)+<—ZSNS"2(11))+m> P(W)+O(P(W)2) (60)
Therefore 1 1
= L O(WIP(W)) (61)

ABy  Su(D)
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Sof(9) = (9)(( -~ gz +O(WPW))) (SNL) (1+0(P(W))) ~1) +P(w)$(1+O(P(w))) 1) =
r(s) (Pow) (- sN<1>S-1+1+0<\w\ (w))) + g — 1+ O(WP(w)) ).

We defineg®(s) = 3 wi>k, P(B)P(W) f(s). Then we compute
acAa

0

g(9= 3 PB) 3 PWi9= 3 PBINS 5 (supta9,135) "0(1),  (62)

aeAa [w[>Kz aeAa

where the Iast equality is true because- " > =" when(s) is negative, and also because
g " > p~0 > 1 when[(s) is positive. We always havé < 1. Also, there exists > 0 such that
q- °6 <1. Thereforeg (s) is analytic ind (s) € (—1,¢). Working in this strip, we choosewith 0 < € < c.
Then we have

S PEPWX =55 [ gexdst T PBPW (0. (63
W>Kp E-leo [W=Kp

Majorizing under the integral, we see that the first ternD{x %) sinceg*(s) is analytic in the strip
O(s) € (—1,c) (and—1 < € < ¢). Also, the second term i©(e ). This completes the proof of the
lemma. -

Now we bound the contribution @, (u) from theC,(u) terms ofM(z,u) and thez=1/(1+ uP(w)P(a) —
P(w)) terms ofM' (z u).

Lemma 3.9 The “Cy(u) terms” and the “1/(1+ uP(w)P(a) — P(w)) terms” (for |w| > Ky) altogether
have only @n—¢) contribution to Q,(u), for somee > 0. More precisely,

Mw,a (Z U) M\vaa(zv U) _
— Res — "~ Res —— -] =0(n"%). 64
Wk, ( oy B ypwi@-pw) 27 ) (64)
acAa
Proof The proof technique is the same as the one for Ler8r@above. O

Next we prove that th&yq (p, u) terms in §4) haveO(n¢) contribution toQn(u).

Lemma 3.10 The “lyq(p, u) terms” (for |w| > Ky) altogether have only %) contribution to Q(u),
for somee > 0. More precisely,

> lwa(p,u)=0(n"%). (65)

[W[>Kp
ae4a

Proof Here we only sketch the proof. A rigorous proof is giver?irRecall that

1 wa(2) = (1-2)

Dw(2) Dw( ) U(Dwa(2) — (1-2))

. 2(w)P(a) JE
1-21-P(w)) 1—2z(1+ uP(w)P(a) — P(w)) ) 201~

lZ=p

lwa(p,u) = % uP(B)P(W)(
1
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By Lemma3.7, K, was selected to be sufficiently large such i)™ (1— & 1pp) < (p — 1)c/2. Thus,

writing C; = (p — 1)c/2, we have 1|Dy(2) — u(Dwa(2) — (1—2))| < 1/C; and thus 1|Dw(2)| < 1/C;.

Also 1/]1—2z(1—P(w))| < 1/cz and ¥/|1—z(1+ uP(w)P(a) — P(w))| < 1/c; by (44). So we obtain
[wa (P, u)] = O(p™")P(W)(Swa (P) — 1) + O(p")P(W)O((pp)™) - (67)

Thus, by LemmaB.3, Saca ¥jwimmhwa(p,U)] = O(p~")O((pd)™). We concludey w-, [lwa(P,u)| =
aeAa
O(p~"), and the lemma follows. O

Finally, we consider the contribution ©Q,(u) from small words|w|. Basically, we prove thalw| has

a normal distribution with mealﬁ logn and varianceédlogn, whereh = —plogp — qlogq denotes the
entropy of the source, arilis a constant. Therefor@y| < K; is extremely unlikely, and as a result, the
contribution toQn(u) from wordsw with |w| < Ky is very small.

Lemma 3.11 The termsy <k, (Mwa(z U) — M, 4(z,u)) altogether have only %) contribution to
acAa '

Qn(u).

Proof Let D, denote the depth of then+ 1)st insertion in a suffix tree, i.eD, < kif and only if

i.e.,Dp = |w| in the notation of SectioB.2. Similarly, letD}, denote the depth of th@ + 1)st insertion in
a trie built ovem+ 1 independent strings, i.eD}, < k if and only if

Xi(n4+1) ... Xe(n+1) # X (i) ... Xe(i) forall1<i<n (69)
i.e.,D!, = |w| in the notation of SectioB.1
Therefore,
n
2] Y (Mua(zU) = Miyq(z,U) = % Y (P(Mn=k& Dn=1i)—P(Mp=k& Dy =i))u. (70)
Jw| <Ko i<Kok=1

aeAa
Noting thatP(M, =k & D, =1i) < P(Dn = i) andP(M}, = k & D}, = i) < P(D}, = i), it follows that

n

41 IMw,a(Z’U)—Mivﬁa(LU)IS;kzl(P(DnZi)JrP(D'nZi))|U|k~ (71)

[w|<Kp
aca

In?, thetypicaldepthDI+1 in a trie built ovem+ 1 independent strings was shown to be asymptotically
normal with mearﬁ log(n-+ 1) and varianc®log(n+ 1). We observe thaby, (defined in 69)) andD]., ,
have the same distribution; to see this, observeRhBY, < k) = ¥« P(W)(1—P(w))" = P(D]; <k).
Therefore D}, is also asymptotically normal with meeﬂﬂogn and variancélogn. In ?, we rigorously
prove thatD!, andDy, have asymptotically the same distribution, namely, a normal distribution with mean
%Iog(nJr 1) and variancélog(n+ 1). Therefore, considering’() (and noting thaK; is a constant), it
follows that

2] z IMwa(z,U) — M\II\LG(Z7 u)| =0(n"*). (72)
e
This completes the proof of the lemma. O

All contributions to 64) have now been analyzed. We are finally prepared to summarize our results.
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3.7 Summary and Conclusion

Combining the last four lemmas, we see t@atu) = O(n~¢) uniformly for |u| < &%, whered~1 > 1.
For ease of notation, we defibe= & 1. Finally, we apply Cauchy’s theorem again. We compute

1 Qn(u)

P(Mn = k)~ P(My = k) = [Z]Q(zU) = [W]Qn(w) = 55 | | i (73)
SinceQp(u) = O(n~¢), it follows that
P(Mn =)~ P(M, =] < 1o (2r) G = O b . (74)

So Theoren2.1holds. It follows thaM, andM/, have asymptotically the same distribution, and therefore
Mn andM/, asymptotically have the same factorial moments. The main res@ltgdfes the asymptotic
distribution and factorial moments o). As a result, Theorer.2 follows immediately. Therefore,

Mp, follows the logarithmic series distribution, i.€(M, = j) = % (plus some small fluctuations if
Inp/Inqis rational).
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