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Abstract

Binary trees come in two varieties: plane trees, often
simply called binary trees, and non-plane trees, in
which the order of subtrees does not matter. Non-
plane trees find many applications; for example in
modeling epidemics, in studying phylogenetic trees, and
as models in data compression. While binary trees have
been studied very extensively, non-plane trees still pose
some challenges. Moreover, in most analyses a uniform
probabilistic model is assumed; that is, a tree is selected
uniformly from among all trees. Such a model limits
significantly applications of the analysis. In this paper
we study by analytic techniques non-plane trees in a
non-uniform model. In our model, we grow the tree on
n leaves by selecting randomly a leaf and appending two
children to it. We can show that this is equivalent to
an alternative model, also used to analyze the average-
case performance of binary search trees, that is more
easily amenable to study by recurrences and generating
functions. Here, one of the most important questions
is the number of symmetries in such trees (i.e., the
number of internal nodes with two isomorphic subtrees),
or the sizes of such symmetric subtrees. We first
present a functional-differential equation characterizing
tree symmetries, and then analyze it. In this conference
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paper we focus on the expected number of symmetries,
the size of symmetric subtrees, and the tree entropy.
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1 Introduction

Binary trees come in two flavors: plane-oriented trees
and non-plane or Otter trees. A plane tree, that we
shall call just a binary tree, is defined as a rooted tree in
which two subtrees of the same parent node are ordered
between themselves and represented from left to right;
that is, they have a distinguished embedding in the
plane. A non-plane tree, also called unordered tree or
an Otter tree, is just a rooted tree in the graph theoretic
sense, so that there is no order between subtrees.

Non-plane trees are harder to analyze and less at-
tention in literature has been devoted to these kind
of trees. Nevertheless, non-plane trees find many im-
portant applications from data compression to biology.
For example, in a phylogenetic tree describing n species
there are n leaves representing extant species and n− 1

internal nodes. By design there is no specific order be-
tween the two children of a binary node.

In combinatorics both trees have been studied [5,
11] but only in a uniform probability model in which
trees are selected uniformly from a collection of all
distinct trees. However, such a model is often too simple
to capture nuances of various applications. Therefore in
this paper we study non-plane (and the corresponding
plane) trees under a non-uniform model that we describe
below.

There are two equivalent models that are useful in
applications such as data compression [9]. Let T be
the set of all binary rooted plane trees having finitely
many vertices and, for each positive integer n, let Tn
be the subset of T consisting of all trees with exactly n
leaves. Similarly, let S and Sn be the set of all binary



rooted non-plane trees with finitely many vertices and
exactly n leaves, respectively. In the first model to
grow a tree built on n leaves we pick up randomly
a leaf v, and then append two children to it, say vL

and vR. Our second model (also known as the binary
search tree model), is ubiquitous in the computer science
literature, arising for example in the context of binary
search trees formed by inserting a random permutation
of [n − 1] into a binary search tree [1, 6]. Under this
model we generate a random tree Tn as follows: at first,
t is equal to the unique tree in T1 and we associate
a number n with its single vertex. Then, in each
recursive step, let v1, v2, . . . , vk be the leaves of t, and
let integers n1, n2, . . . , nk be the values assigned to these
leaves, respectively. For each leaf vi with value ni > 1,
randomly select integer si from the set {1, . . . , ni − 1}
with probability 1

ni−1 (independently of all other such
leaves), and then grow two edges from vi with left edge
terminating at a leaf of the extended tree with value si
and right edge terminating at a leaf of the extended tree
with value ni−si. The extended tree is the result of the
current recursive step. Clearly, the recursion terminates
with a binary tree having exactly n leaves, in which each
leaf has assigned value 1; this tree is Tn. In [9, 13]
it was proved that both models are probabilistically
equivalent.

In data compression and other applications symme-
tries of plane and non-plane trees are of interest. In par-
ticular, for compression one needs to know the number
of internal nodes that have two isomorphic subtrees, the
size of such isomorphic trees, and the entropy of trees.
In this conference paper we set the stage to analyze
these quantities for non-plane (and the corresponding
plane) trees. We derive a functional-differential equa-
tion for the bivariate generating function from which
we compute the average number of nodes with two iso-
morphic subtrees as well as the entropy of non-plane
trees (see also the recent paper [9]).

There are a few scattered results for non-plane trees
in a uniform model [2, 5, 11]. The non-plane trees
in the binary search tree-like model were studied by
analytic tools in [1, 6] in a different context, and by
a different method in [9]. In this work we use analytic
combinatorics to initiate systematic studies of non-plane
trees.

2 Main Results

Let S be the set of all binary rooted non-plane trees
having finitely many vertices. Such trees are often called
Otter trees. Let Sn be the subset of S consisting of all
trees with exactly n leaves. We also denote by T the
set of all binary rooted plane trees having finitely many
vertices. Let Tn be the subset of T consisting of all trees
with exactly n leaves. For any s ∈ S and t ∈ T let t ∼ s
mean that the plane tree t is isomorphic to the non-plane
tree s. Furthermore, we define [s] = {t ∈ T : t ∼ s} as a
collection of all plane trees t having the same non-plane
tree s.

In this paper we denote by |t| the number of leaves
of a tree t. The probability of a tree t ∈ Tn in our
non-uniform model is [9]

P (Tn = t) =
∏
v∈to

(∆(v)− 1)−1 ,

where to is the set of internal nodes of t and ∆(v) is
the number of leaves of a tree rooted at v.1 These
probabilities satisfies the following recurrence

P (Tn = t) =
1

n− 1
P (T∆(t1) = t1)P (T∆(t2) = t2) ,

where t1, t2 are the two subtrees of tree t whose roots
are the two children of the root of t. The recursion
starts with the unique tree t1 from T1, when we have
P (T1 = t1) = 1. It should be noted that this recursion
resembles a recurrence for binary search trees which was
studied in [1, 6].

For any t1, t2 ∈ Tn such that t1 ∼ s and t2 ∼ s it
holds that P (Tn = t1) = P (Tn = t2). By definition, s
corresponds to |[s]| isomorphic plane trees, so for any
t ∈ [s] it holds that

(2.1) P (Sn = s) = |[s]| · P (Tn = t), t ∈ [s].

In other words, we put

P (Sn = s) =
∑
t∼s

P (Tn = t) .

Furthermore,

P (Tn = t|Sn = s) =
1

|[s]|
.(2.2)

Let sym(t) be the the number of non-leaf (internal)
nodes v of tree t such that the two subtrees stemming

1We use Tn to denote a random variable representing a random
tree in Tn; however, we often abuse notation and write Tn for both
the set of trees and the random variable.



from v are isomorphic. Observe that |S1| = |S2| =

|S3| = 1, and that |S4| = 2. If t ∈ S1, then clearly
sym(t) = 0. If t ∈ S2 or t ∈ S3 then sym(t) = 1. Notice
that (see [2]) if t1 and t2 are the two subtrees of a tree
t whose roots are the two children of the root of t, then

sym(t) =

{
sym(t1) + sym(t2) + 1 if t1 = t2

sym(t1) + sym(t2) if t1 6= t2.

Observe also that

sym(s) = sym(t) ∀t t ∈ [s].

Furthermore, and more interestingly

(2.3) |[s]| = 2n−1−sym(s).

Indeed, we can form a new tree by rotating both
subtrees of a plane tree at every internal node that is
not symmetric, that is, for those nodes whose subtrees
are not isomorphic.

Our goal is to evaluate the average E[sym(Sn)]

for non-plane trees. We shall accomplish it through
generating function approach.

We first derive a differential equation for the follow-
ing bivariate generating function

F (u, z) =
∑
t∈T

P (T = t)usym(t)z|t|

=

∞∑
n=1

∑
t∈Tn

P (Tn = t)usym(t)z|t| .

Define also

B(u, z)

=
∑
t∈T

P 2(T = t)usym(t)z|t|−1
∑
t∈T

p2(t)usym(t)z|t|−1

where we write p(t) = P (T = t) to simplify our
notation.

In the next section we prove the following lemma
characterizing F (u, z).

Lemma 2.1. Let f(u, z) = F (u,z)
z . Then it satisfies the

following Riccati differential equation

(2.4)
∂f(u, z)

∂z
= f(u, z)2 + (u− 1)B(u2, z2).

Furthermore after the substitution

f(u, z) = −
∂g(u,z)

∂z

g(u, z)

equation (2.4) becomes

(2.5)
∂2g(u, z)

∂2z
+ (u− 1)B(u2, z2)g(u, z) = 0

which is a second order linear equation assuming B(u, z)

is known.

Remark (i) We should point out differences between
our non-uniform model and uniform model. For the
uniform model, following Bóna and Flajolet [2] the
bivariate generating function

F̃ (u, z) =
∑
s∈S

usym(s)z|s|

satisfies the following functional equation

F̃ (u, z) = z +
1

2
F̃ (u, z)2 + (u− 1

2
)F̃ (u2, z2).

(ii) Furthermore, we observe that (2.4) could be viewed
as a functional-differential equation. Indeed, let us
introduce a special Hadamard product of two generating
functions A(u, z), B(u, z) defined by

A(u, z) =
∑
t∈T

cA(t)ur(t)zs(t),

B(u, z) =
∑
t∈T

cB(t)ur(t)zs(t),

where r(t) and s(t) map combinatorial objects t ∈ T to
the non-negative integers. We then define a Hadamard
product A(u, z)�B(u, z) by

A(u, z)�B(u, z) =
∑
t∈T

cA(t)cB(t)ur(t)zs(t).

We contrast this with the standard bivariate Hadamard
product, defined by

A(u, z)�B(u, z) =

∞∑
n,m=0

 ∑
t : r(t)=m,s(t)=n

cA(t)


 ∑

t : r(t)=m,s(t)=n

cB(t)

umzn.

Note that A(u, z)�B(u, z) is in general not equal to
A(u, z)�B(u, z), unless r(t) and s(t) uniquely determine
t. With this definition in mind we can rewrite (2.4) as

∂

∂z
fz(u, z) = f(u, z)2 + (u− 1)(f(u2, z2)�f(u2, z2))

(2.6)



which is a functional-differential equation. �

Our first goal is to understand probabilistic behav-
ior of sym(Sn) = sym(Tn). In this preliminary confer-
ence paper we focus on the average E[sym(Sn)]. We
start with a definition

E(z) =

∞∑
n=1

E[sym(Sn)]zn−1.

Using Lemma 2.1 in the next section we show that it
satisfies the following ODE

(2.7) E ′(z) =
2E(z)

z(1− z)
+B(z2)

with E(0) = 0. Here we define

B(z) =
∑
t∈T

p2(t)z|t|−1

=

∞∑
n=1

zn−1
∑

tn∈Tn

p2(tn)

=

∞∑
n=1

bnz
n−1

where bn = [zn−1]B(z) =
∑

tn∈Tn p
2(tn) for n ≥ 1. It is

easy to compute bn for a few small values of n, namely
(2.8)

b1 = b2 = 1, b3 =
1

2
, b4 =

2

9
, b5 =

13

144
, b6 =

7

200
.

Actually, to compute precisely bn for all values of n
we need a better approach. Define C(z) = zB(z) and
notice that

bn = [zn]C(z) = [zn−1]B(z).

We will derive a differential equation for C(z), from
which a recurrence for bn will follow. It is easy to notice
that C(z) satisfies the following

C(z) = z +
∑

u,v∈T

1

(|v|+ |u| − 1)2
p2(u)p2(v)z|u|+|v|.

Furthermore,

B′(z) =
∑

u,v∈T

1

(|v|+ |u| − 1)
p2(u)p2(v)z|u|+|v|−2

and
C2(z) =

∑
u,v∈T

p(u)p(v)z|u|+|v|.

Combining all of these, we arrive at the following
differential equation

(2.9) C(z)− zC ′(z) + z2C ′′(z) = C2(z).

By standard tools we can extract from the above a
recurrence for bn = [zn]C(z). Indeed, for n ≥ 2 we
have

(2.10) bn =
1

(n− 1)2

n−1∑
j=1

bjbn−j

with b1 = 1. In passing we should point out that
asymptotic growth of bn satisfying the above recurrence
can be found in [3]. We come back to this issue later in
this paper.

Remark. We can write (2.7) as a functional-differential
equation using a different special Hadamard product
defined as follows. For generating functions

A(z) =
∑
t∈T

cA(t)zs(t), B(z) =
∑
t∈T

cB(t)zs(t),

we define A(z)�B(z) by

A(z)�B(z) =
∑
t∈T

cA(t)cB(t)zs(t).

Define now

A(z) =
∑
t∈T

p(t)2z|t|−1.

Then

(A(z)�A(z))

∣∣∣∣
z2

=
∑
t∈T

p(t)2z2(|t|−1)

=

[
(f(1, z)�f(1, z))

∣∣∣∣
(u2,z2)

]
,

and (2.7) becomes

E ′(z) =
2E(z)

(1− z)
+ (A(z2)�A(z2)),

which is functional-differential equation. �

In the next section we solve the ODE (2.7) leading
to our second main result.

Theorem 2.1. Consider a binary plane tree and its
corresponding non-plane tree. The expected number of



internal nodes with two isomorphic subtrees is

E[sym(Sn)]

(2.11)

= n

b(n+1)/2c∑
`=1

b`
(2`− 1)`(2`+ 1)

+ (−1)n+1bb(n+1)/2c

≈ n(̇0.3725± 10−4)

where, we recall, b` =
∑

t`
p2(t`).

Remark. Observe that we can use just computed
E[sym(Sn)] to evaluate certain compression algorithms
on non-plane (and plane) trees. Indeed, for every
internal node with two isomorphic subtrees we can
replace the second identical subtree with a pointer to
the first subtrees. We need about n(̇0.3725± 10−4) bits
to accomplish it. On the other hand, if we do this, we
can save some storage on the replaced subtree. How
much? Let us, as a preliminary assessment, compute
the total size, size(Sn), of the saved isomorphic subtrees.
Similar computations as above lead to

E[size(Sn)] = n

b(n+1)/2c∑
k=1

bk
(2k − 1)(2k + 1)

≈ n · 0.4190.

This result can also be recovered from [6]. �

Finally we deal with the entropy of the non-plane
tree H(Sn) and its rate h(s) = limn→∞H(Sn)/n.
Observe that H(Sn) = H(Tn) − H(Tn|Sn). In [8, 9]
it was proved that

(2.12) H(Tn) = log2(n− 1) + 2n

n−1∑
k=2

log2(k − 1)

k(k + 1)
.

Remark. We know that (see also [8])

2

n∑
k=2

log2(k − 1)

k(k + 1)
≈ 1.736

for large n (we took n = 106). The above series
converges slowly at the rate O(log n/n). Therefore one
would prefer a more explicit formula for large n. We
approximate the sum using the Euler-Maclaurin formula

[14] by the integral

n−2∑
k=1

log k

(k + 1)(k + 2)
∼
∫ n−2

1

log(x)

(x+ 1)(x+ 2)
dx

= −Li2
(

1− n

2

)
+ Li2(2− n) + log

(
2− 2

n

)
log(n− 2)

+ Li2
(
−1

2

)
+
π2

12

where
Li2(x) =

∫ x

1

log t

1− t
dt

is the dilogarithmic integral. For large x the following
holds [7]

Li2(x) = −1

2
log2 x− π2

6
+O(log x/x).

In fact, to get a better approximation of the sum we
need two extra terms in the Euler-Maclaurin formula
which leads to the following approximation

n−2∑
k=1

log k

(k + 1)(k + 2)

≈ Li2(3/2) +
1

12
π2 +

1

2
log2(2)− 1

72
+

23

12960

= 0.868 . . .

which matches the first three digits of the sum. �

To complete our analysis we now evaluate
H(Tn|Sn). From (2.3) we conclude

H(Tn|Sn)

= −
∑

t∈Tn,s∈Sn

P (Tn = t, Sn = s) logP (Tn = t|Sn = s)

=
∑
s∈Sn

P (Sn = s) log |[s]|

=
∑
t∈Tn

P (Tn = t)(n− 1− sym(t))

= n− 1− E[sym(Sn)] = n− 1− E[sym(Tn)]

Thus from Theorem 2.1 we derive our third main
result (see also [9]).

Theorem 2.2. The entropy rate h(s) =

limn→∞H(Sn)/n of the non-plane trees is

h(s) = h(t)− h(t|s) ≈ 1.109 . . .



where

h(t|s) = 1−
∞∑
k=1

bk
(2k − 1)k(2k + 1)

,

h(t) = 2

∞∑
k=1

log2(k)

(k + 1)(k + 2)

with bn =
∑

tn∈Tn p
2(tn).

Remark 4. The entropy h(s) is related to the Rényi
entropy h1(t) of order 1 of non-plane trees. We define
h1(t) as follows, if it exists:
(2.13)

h1(t) = lim
n→∞

− logE[p(Tn)]

n
= lim

n→∞

− log
∑

tn∈Tn p
2(tn)

n
.

From the above we conclude that for large n

bn =
∑

tn∈Tn

p2(tn) ∼ exp(−nh1(t)).

But appealing to (2.9)-(2.10) and applying the method
discussed in [3] we observe that

bn = ρn
(

6n− 22

5
+O(n−5)

)

where ρ = 0.3183843834378459 . . . . Thus h1(t) =

− log(ρ). �

3 Analysis and Proofs

In this section we prove our main results.

3.1 Proof of Lemma 2.1 Observe that

F (u, z) =

∞∑
n=1

∑
t∈Tn

P (Tn = t)usym(t)z|t|

= z +
∑
n≥2

∑
t∈Tn

P (Tn = t)usym(t)z|t| .

Recall that we write p(t) = P (T = t). Since every
tree t ∈ Tn for n ≥ 2 can be divided into two trees, we

have

F (u, z) = z+∑
s,t∈T

1

|s|+ |t| − 1
p(s)p(t)usym(s)+sym(t)+[|s=t|] · z|s|+|t|

= z +
∑
s,t∈T

1

|s|+ |t| − 1
p(s)p(t)usym(s)+sym(t) · z|s|+|t|

−
∑
t∈T

1

2|t| − 1
p2(t)u2sym(t) · z2|t|

+
∑
t∈T

1

2|t| − 1
p2(t)u2sym(t)+1 · z2|t|

= z +
∑
s,t∈T

1

|s|+ |t| − 1
p(s)p(t)usym(s)+sym(t) · z|s|+|t|

+(u− 1)
∑
t∈T

1

2|t| − 1
p2(t)u2sym(t) · z2|t| .

Notice that, from the original definition of F (u, z),

F (u, z)2 =
∑
s,t∈T

p(s)p(t)usym(s)+sym(t)z|s|+|t| ;

therefore,

z

∫ z

0

F (u,w)2

w2
dw

=
∑
s,t∈T

1

|s|+ |t| − 1
p(s)p(t)usym(s)+sym(t) · z|s|+|t|.

Recall that

B(u, z) =
∑
t∈T

p2(t)usym(t)z|t|−1.

Notice that

z

∫ z

0

B(u2, w2)dw =
∑
t∈T

1

2|t| − 1
p2(t)u2sym(t) · z2|t| .

Hence

F (u, z)

= z + z

∫ z

0

F (u,w)2

w2
dw + (u− 1)z

∫ z

0

B(u2, w2)dw.

Let f(u, z) = F (u,z)
z . From the last equation we get

∂f(u, z)

∂z
= f(u, z)2 + (u− 1)B(u2, z2).

This proves Lemma 2.1. �



3.2 Average Symmetry: Proof of Theorem 2.1
We now compute E[sym(Tn)] = E[sym(Sn)] using gen-
erating function

φn(u) = [zn]F (u, z) = [zn−1]f(u, z)

defined above. We observe that

E[sym(Tn)] =
dφn(u)

du

∣∣∣∣
u=1

.

Moreover, we have that taking the coefficient (actually
an integral) commutes with taking the derivative with
respect to u:

d[zn−1]f(u, z)

du
= [zn−1]fu(u, z).

Thus, taking the derivative with respect to u in (2.4)
gives (using (2.6))

fz,u(u, z)(3.14)

= 2f(u, z)fu(u, z)

+ (u− 1)
∂

∂u

[
(f(u, z)�f(u, z))

∣∣∣∣
(u2,z2)

]

+

[
(f(u, z)�f(u, z))

∣∣∣∣
(u2,z2)

]
,

and setting u = 1 results in

fz,u(1, z) = 2f(1, z)fu(1, z)

+

[
(f(1, z)�f(1, z))

∣∣∣∣
(u2,z2)

]
.

Now, we use the fact that φn(1) = 1 for n ≥ 1 implies

f(1, z) =
1

(1− z)
.

We also recall the definition of the almost-OGF of
E[sym(Tn)]:

E(z) =

∞∑
n=1

E[sym(Tn)]zn−1

and note that

fu(1, z) =
∑
n=1

E[sym(Tn)]zn−1 = E(z).

With the notation as in the Remark above Theorem 2.1
we find

E ′(z) =
2E(z)

(1− z)
+ (A(z)�A(z))

∣∣∣∣
z2

=
2E(z)

z(1− z)
+B(z2),

(3.15)

with E(0) = 0, as needed.
We now solve (3.15). It is easy to see that

E(z) =
1

(1− z)2

(∫ z

0

B(x2)(1− x)2dx+ C

)
.

But E(0) = 0 implies C = 0. Thus

E[sym(Tn)] = [zn−1]E(z)

= [zn−1]
1

(1− z)2

∫ z

0

B(x2)(1− x)2dx.

We first observe, after some algebra, that

1

(1− z)2

∫ z

0

B(x2)(1− x)2dx

= z +

∞∑
n=1

(
bn + bn+1

2n+ 1
z2n+1 − bn

n
z2n

)
.

Define

(3.16) ck =


0 k = 0,

1 k = 1,

− b`
` k = 2`, ` ≥ 1,

b`+b`+1

2`+1 k = 2`+ 1, ` ≥ 1.

Then

E[sym(Tn)] = [zn−1]
1

(1− z)2

∞∑
k=0

ckz
k =

n∑
k=0

ck(n− k).

But it is easy to see that

n∑
k=0

kck = 1 +

bn/2c∑
`=1

(b`+1 − b`)

= 1− b1 + bbn/2c+1 = (−1)n+1bb(n+1)/2c.

This leads to the final formula

(3.17) E[sym(Tn)] = n
n∑

k=1

ck + (−1)n+1bb(n+1)/2c.

We can further simply this expression by computing∑
k ck. Some algebra is needed to show that∑

k

ck

= 1− 2

3
b1+

b(n+1)/2c−1∑
`=2

b`

(
1

2`− 1
− 1

`
+

1

2`+ 1

)
+ bb(n+1)/2c

(
I(n ≤ 2`+ 1)

2`− 1
+
I(n ≤ 2`+ 1)

`

)
.



The last term is O(1/n), because bb(n+1)/2c = O(1) and
the indicators ensure that the only nonzero contribu-
tions of this term happen when ` ≥ (n − 1)/2, so that
` = Ω(n) and there are only O(1) such terms. We thus
get the following formula:

∑
k

ck =
1

3
+

b(n+1)/2c−1∑
`=2

b`
(2`− 1)`(2`+ 1)

+O(n−1)

(3.18)

=

b(n+1)/2c−1∑
`=1

b`
(2`− 1)`(2`+ 1)

+O(n−1).(3.19)

In summary, we have

E[sym(Tn)] = n

b(n+1)/2c∑
`=1

b`
(2`− 1)`(2`+ 1)

+O(1)

(3.20)

+ (−1)n+1bb(n+1)/2c := nh(t|s) +O(1),(3.21)

where, we recall, b` =
∑

t`
p2(t`). This proves Theo-

rem 2.1.
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