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Abstract

Most real world combinatorial optimization problems
are affected by noise in the input data. Search algo-
rithms to identify “good” solutions with low costs be-
have like the dynamics of large disordered particle sys-
tems, e.g., random networks or spin glasses. Such solu-
tions to noise perturbed optimization problems are char-
acterized by Gibbs distributions when the optimization
algorithm searches for typical solutions by stochastically
minimizing costs. The free energy that determines the
normalization of the Gibbs distribution balances cost
minimization relative to entropy maximization.

The problem to analytically compute the free en-
ergy of disordered systems has been known as a no-
toriously difficult mathematical challenge for at least
half a century (Talagrand, 2003). We provide rigorous,
matching upper and lower bounds on the free energy for
two disordered combinatorial optimization problems of
random graph instances, the sparse Minimum Bisection
Problem (sMBP) and Lawler’s Quadratic Assignment
Problem (LQAP). These two problems exhibit phase
transitions that are equivalent to the statistical behavior
of Derrida’s Random Energy Model (REM). Both op-
timization problems can be characterized as parameter
rich since individual solutions depend on more parame-
ters than the logarithm of the solution space cardinality
would suggest for e.g. a coordinate representation.

1 Noisy Combinatorial Optimization

Combinatorial optimization arises in many real world
settings and these problems are often notoriously dif-
ficult to solve due to data dependent noise in the pa-
rameters. Apart from algorithmic questions — like ef-
ficient (stochastic) search for solutions with provable
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guarantees — more theoretical challenges, such as gen-
eralization of solutions and their typicality relate to the
analytical computation of various macroscopic proper-
ties (Frenk et al., 1985) like the free energy and these
problems remain largely open. Especially, the free en-
ergy of the corresponding Gibbs distribution is one of
those most important macroscopic parameters that of-
ten arises in the context of combinatorial optimization.
For example, Vannimenus and Mézard (1984) explored
the free energy properties of the traveling salesman
problem. In this paper we compute the free energy for
two optimization problems – sparse Minimum Bisection
(sMBP) and Lawler’s Quadratic Assignment (LQAP).

Both, sMBP and LQAP belong to a class of opti-
mization problems that can be formulated as follows:
Let n be an integer (e.g., number of vertices in a graph,
size of a matrix, number of keys in a digital tree, etc.),
and Sn a set of objects (e.g., a set of vertices, elements
of a matrix, keys, etc). The data X denote a set of
random variables that enter into the definition of an in-
stance (e.g., weights of edges in a weighted graph). One
often is interested in asymptotic behavior of the optimal
values Rmax or Rmin defined as

Rmax = max
c∈Cn

{ ∑
i∈Sn(c)

wi(X)
}
,(1.1)

Rmin = min
c∈Cn

{ ∑
i∈Sn(c)

wi(X)
}
,(1.2)

where Cn is a set of all feasible solutions, Sn(c) is a set of
objects from Sn belonging to the c-th feasible solution
(e.g., set of edges belonging to a spanning tree), and
wi(X) is the weight assigned to the i-th object.

In this paper the cost function and the optimization
task are defined as follows:

R(c,X) =
∑

i∈Sn(c)

wi(X) and(1.3)

copt(X) = arg min
c∈Cn

R(c,X).

We also denote the cardinality of the feasible set as
m (i.e., m := |Cn|) and the cardinality of Sn(c) as
N for all c ∈ Cn (i.e., N := |Sn(c)|). Here, we
focus on optimization problems in which logm = o(N)



holds true (see Szpankowski, 1995). We call these
optimization problems parameter rich since the log
cardinality of the solution space scales sub-linearly with
the number N of objects that belong to a solution c.

We study these optimization problems in the max-
imum entropy framework. Therefore, we consider the
Gibbs distribution over all configurations (i.e., feasi-
ble solutions c). This distribution is parameterized by
β = 1/T which is the inverse computational tempera-
ture T . More precisely, the Gibbs distribution pβ(c|X)
of c ∈ Cn is defined as

(1.4) pβ(c|X) =
1

Z(β,X)
exp(−βR(c,X))

with partition function

(1.5) Z(β,X) =
∑
c∈C

exp(−βR(c,X)) .

It is quite revealing to study optimization problems in
the maximum entropy framework through the Gibbs
distribution. For high temperature when β → 0, this
distribution selects all configurations uniformly. On the
other hand, when β → ∞ the Gibbs distribution con-
centrates on the set of optimal solutions with costsRmin.
Intermediate values of β define an appropriate resolu-
tion of the solution space such that the fluctuations in
the input are not overfitted by the optimization algo-
rithm.

The partition function Z(β,X) can also be used
to characterize some thermodynamic limits such as
entropy and free energy rates defined in (1.6) below
(see Talagrand (2003)). In this paper, we focus on
the free energy rates for high temperature when β →
0. This high computational temperature limit is most
interesting when the instances of optimization problems
are affected by strong fluctuations that only support
estimation of low cost resolution results.

The free energy is related to EX [logZ(β,X)] while
the free energy rate is the normalized version of the free
energy. Usually, one defines the free energy rate as

(1.6) F(β) = lim
n→∞

EX [logZ(β,X)]

log |Cn|
.

However, such a limit may not exist or it may be
trivial. The latter refers to the case where either
logm = log |Cn| or N = |Sn| dominates, that is,
logm 6= Θ(N). In Vannimenus and Mézard (1984) the
case logm � O(N) was analyzed, while here we focus
on a class of optimization problems with logm = o(N)
or logm � N (e.g., the quadratic assignment problem
Frenk et al. (1985); Szpankowski (1995) in which N =
n2 and m = n!). For this class of optimization
problems, Szpankowski (1995) proved that any solution
is asymptotically optimal with high probability, and we

provide here another interpretation of these results.
It is known that discontinuities of the free energy

indicate abrupt changes in the accessibility of solutions
and they are closely related to the complexity of the
problems (Auffinger and Chen, 2014). We also note
that such abrupt changes of macroscopic properties, also
known as phase transitions, are characteristic features
of various large systems (e.g.  Luczak, 1994) and have
been generating uninterrupted interest for a long time.

In a parallel field of statistical physics, an interest
in large disordered particle systems also aims at finding
laws for behavior of macroscopic thermodynamic prop-
erties – e.g., the free energy. Many interesting models of
such large systems were introduced relatively early, e.g.
the Sherrington-Kirkpatrick (SK) spin glass model (see
Sherrington and Kirkpatrick, 1975). It took, however,
some time and effort to develop rigorous techniques for
solving them. For example, Derrida (1981) introduced a
very simple, but exactly solvable model called the ran-
dom energy model (REM) as the limit of the SK p-spin
models family. Later, Aizenman et al. (1987) published
an exact solution in the high-temperature phase for the
SK model. The question of the exact free energy behav-
ior triggered a new wave of recent research (Bovier et al.,
2002; Talagrand, 2003). During the last half century a
diverse set of heuristic tools originating in the context
of statistical physics was developed, such as the replica
method (Parisi, 2009), the cavity method (Mézard and
Parisi, 2003) and mean field approximation schemes
with belief propagation algorithms.

The main contribution of the paper consists in
a mathematically rigorous asymptotic analysis of the
free energy for the Sparse Minimum Bisection Problem
(sMBP) and for the Lawler Quadratic Assignment prob-
lem (LQAP) in the random graph setting. Both prob-
lems have small, but yet non-vanishing correlations, be-
tween the cost levels of solutions, which render bounding
a difficult mathematical problem (Bovier et al., 2002).
We discover phase transitions for sMBP and LQAP,
which are equivalent to the discontinuities of REM and
high-temperature SK (Derrida, 1981; Aizenman et al.,
1987). Our results are expected (see Auffinger and
Chen, 2014) to foster understanding some fundamen-
tal algorithmic complexity properties of these and other
optimization problems.

The rest of this paper is organized as follows: In
Section 2, we describe our optimization problems in
some details. Then we state our main results, namely
Theorem 2.2 and Theorem 2.3. Proofs of the main
results, constituting the main contribution of the paper,
can be found in Sections 3 and 4 (see also (Buhmann
et al., 2014)). Details of the proofs can be found in a
forthcoming journal version of this research.



2 Main Results

In this paper we focus on the Sparse Minimum Bisec-
tion Problem and Lawler’s Quadratic Assignment Prob-
lem that are formally defined below. Although these
two combinatorial optimization problems are specific,
many of our results hold for a large class of optimiza-
tion problems provided that logm = o(N). In the
rest of the paper we will utilize the temperature rescal-
ing β = β̂

√
logm/N that was theoretically justified

in (Buhmann et al., 2014).

Sparse minimum bisection problem (sparse
MBP). Consider a complete, undirected, weighted
graph G = (V,E,X) of n vertices, where n is an even
number. The input data instance X is represented by
(random) weights (Wi)i∈E of the graph edges.

A sparse bisection is a pair of disjoint subsets
of the vertices c = (U1, U2): U1 t U2 ( V , whose
size is |U1| = |U2| ≡ d. We shall call the problem
sparse if d grows faster than log n (which we denote
as log n � d) and slower than n2/7/

√
log n (which we

write d � n2/7/
√

log n). Now Sn = E and Cn is the
set of all sparse bisections of graph G, while Sn(c) is
the set of all edges connecting U1 and U2. The cost of
a bisection c is the sum of the weights of all cut edges
R(c) =

∑
i∈Sn(c)Wi.

Thus, |Cn| = m =
(
n
d

)(
n−d
d

)
, N = d2 and for

sparse MBP, the following holds true (we omit here 1/2
constant for the sake of brevity):

logm = log

(
n

d

)(
n− d
d

)
= log

n!

(d!)2(n− 2d)!

∼ 2d log n = o(N).(2.7)

In summary, the problem falls into the class logm =
o(N) provided log n� d, as we assume.

Lawler quadratic assignment problem (Lawler
QAP). Lawler (1963) introduced a generalization of
the classical quadratic assignment problem (see Beck-
man and Koopmans, 1957), where the distance and
weight matrices are replaced by one large array. Namely,
the input data instance X is represented by a 4-
dimensional n × n × n × n-matrix Q with i.i.d. val-
ues. The solution space Cn is the set of the n-element
permutations Sn.

The cost function is R(π,Q) =
∑n
i,j=1Qi,j,π(i),π(j)

for π ∈ Sn. In our notation, N = |Sn(π)| = n2 and
m = |Cn| = n!, and thus

(2.8) logm = log n! ∼ n log n = o(N)

is fulfilled, i.e. the problem falls into the class logm =
o(N).

We are now in the position to present our main re-
sults. We start with spelling out common assumptions.

Common Theorem Setting (CTS). Consider a
class of combinatorial optimization problems in which
the cardinality of feasible solutions set m and the size
N of a feasible solution are related as logm = o(N).
Assume that weights Wi are identically (not neces-
sarily independently) distributed with mean µ and
variance σ2 and that the moment generating func-
tion of negative centered weights (−W i) is finite,
i.e. G(t) ≡ E[exp(−tW i)] < ∞ exists for some t > 0.
Further assume that within a given solution, the weights
are mutually independent, i.e.

(2.9) ∀c ∈ Cn, the set {Wi | i ∈ Sn(c)}
is a set of mutually independent variables. Define a
scaling β = β̂

√
logm/N , where β̂ is a constant.

In order to present a full picture, we first cite a fairly
tight upper bound on the free energy (for the proof, see
Buhmann et al., 2014, Theorem 1).

Theorem 2.1. (Buhmann et al., 2014) Under the
Common Theorem Setting, the following upper bound
holds:
(2.10)

lim
n→∞

E[logZ] + β̂µ
√
N logm

logm
≤

{
1 + β̂2σ2

2 , β̂ <
√
2
σ ,

β̂σ
√

2, β̂ ≥
√
2
σ

provided logm = o(N).

Interestingly, the above theorem indicates that
there exists a phase transition of the upper bound of the
free energy (compare to Talagrand, 2003; Mézard and
Montanari, 2009). We must stress, however, that the
above bound is not tight in general. Consider the (non-
sparse) MBP with d = n/2 vertices. Under the same
general assumptions for the weights, it can be shown
that a tighter bound holds for β̂ ≤ 1√

log 2σ
(see our full

paper Buhmann et al. (2017))

(2.11) lim
n→∞

E[logZ] + β̂µ
√
N logm

logm
≤ 1 +

β̂2σ2

4
,

which shows that the bound in Theorem 2.1 is not tight.
We proceed now to present our results. For some

combinatorial optimization problems, the asymptotical
upper bound of Theorem 2.1 turns out to be tight.
Below are two main results that give the matching lower
bound for the sparse MBP and Lawler QAP. We should
point out that for the sparse MBP we developed a novel
approach to prove the matching lower bound, since the
techniques proposed in (Talagrand, 2003, Chapter 1)
seem not to work in our setting.

Theorem 2.2. Consider sparse MBP (complying with
the Common Theorem Setting), whose edge weights have



mean µ and variance σ2. Then the following holds:
(2.12)

lim
n→∞

E[logZ] + β̂µ
√
N logm

logm
=

{
1 + β̂2σ2

2 , β̂ <
√
2
σ ,

β̂σ
√

2, β̂ ≥
√
2
σ

provided log n� d� n2/7/
√

log n.

For the Lawler QAP, we adapt the proof technique
proposed by Talagrand (2003) and present a sketch of
proof in Section 4.

Theorem 2.3. Consider Lawler QAP (complying with
the Common Theorem Setting), whose matrix entries
have mean µ and variance σ2. Then the following holds:

(2.13)

lim
n→∞

E[logZ] + β̂µ
√
N logm

logm
=

{
1 + β̂2σ2

2 , β̂ <
√
2
σ ,

β̂σ
√

2, β̂ ≥
√
2
σ .

that matches the upper bound of Theorem 2.1.

The reader should notice that the free energy of
sMBP (2.12) and of LQAP (2.13) exhibit a phase
transition that is asymptotically equivalent to that of
Derrida’s Random Energy Model (REM) (Derrida, 1981,
Sect. V). We like to emphasize that both sMBP and
LQAP introduce weak correlation between costs of pairs
of solutions, while REM defines a mathematically less
challenging setting without correlations between costs.

3 Proof of Theorem 2.2

In this section we present the proof of the matching
lower bound for Sparse MBP. The proof technique that
we propose here is novel to the best of our knowledge,
however, see (Magner et al., 2016) for the first use of
it.

The proof is broken into several lemmas. Let us
start with defining a r.v. D as an elementwise over-
lap (i.e. number of shared edges) between two solutions,
where the solutions are sampled uniformly at random.
We will refer to this uniform distribution of solution
pairs as D. A minor difficulty with identifying non-
overlapping solutions consists in differentiating it be-
tween edge-non-overlapping and vertex-non-overlapping
pairs of solutions.

Lemma 3.1. The following holds

(3.14)
#{vertex-non-ovrlp}

m2
= 1−Θ(d2/n).

Proof. Observe that

#{vertex-non-ovrlp}
m2

=

(
n
d

)(
n−d
d

)(
n−2d
d

)(
n−3d
d

)(
n
d

)2(n−d
d

)2
=

(
n−2d
d

)(
n−3d
d

)(
n
d

)(
n−d
d

) .(3.15)

We now do the expansion via Stirling’s approximation,
for any integer 0 ≤ ν < n/d:(

n− νd
d

)
≤ (n− νd)d

d!

=
nd(1− νd/n)d

d!
∼ nd(1− νd2/n)

d!
.(3.16)

Similarly,(
n− νd
d

)
≥ (n− (ν + 1)d)d

d!

=
nd(1− (ν + 1)d/n)d

d!
∼ nd(1− (ν + 1)d2/n)

d!
.(3.17)

Applying these bounds we find

#{vertex-non-ovrlp}
m2

≤ (1− 2d2/n)(1− 3d2/n)

(1− d2/n)(1− 2d2/n)

∼ 1− 2d2/n(3.18)

and

#{vertex-non-ovrlp}
m2

≥ (1− 3d2/n)(1− 4d2/n)

(1− d2/n)

∼ 1− 6d2/n.(3.19)

This completes the proof. �

Lemma 3.2. The following holds:

(3.20) PD(D = 0) ∼ #{vertex-non-ovrlp}
m2

Proof.

PD(D = 0) =
1

m2

(
#{vertex-non-ovrlp}(3.21)

+ #{edge-non-ovrlp | vertex-ovrlp}
)
.

Since the following set inclusion holds:

{edge-non-ovrlp|vertex-ovrlp} ⊆ {vertex-ovrlp},
we can conclude that

#{edge-non-ovrlp | vertex-ovrlp}
m2

≤ {vertex-ovrlp}
m2

=
m2 − {vertex-non-ovrlp}

m2

= 1− 1 + Θ(d2/n) = o(1)(3.22)

where the last equation comes from Lemma 3.1 and the



convergence follows from the initial sparsity assumption
log n� d� n2/7/

√
log n. Hence, we arrive at

PD(D = 0)

#{vertex-non-ovrlp}/m2

= 1 +
#{edge-non-ovrlp | vertex-ovrlp}/m2

#{vertex-non-ovrlp}/m2

= 1 +
o(1)

1 + o(1)
= 1 + o(1),(3.23)

which proves the lemma. �

These two lemmas allow us to estimate the expected
value of D, as follows.

Lemma 3.3. We have

(3.24) EDD = O(d4/n).

Proof. To compute EDD, we observe

EDD = 0 · PD(D = 0) +

N∑
k=1

k · PD(D = k)

≤ N
N∑
k=1

PD(D = k)

= d2 · PD(D 6= 0) = d2
(
1− PD(D = 0)

)
∼ Θ(d4/n),(3.25)

where the last asymptotic equivalence follows from
Lemmas 3.1 and 3.2. The less-than-equal sign turns
Θ into O. The lemma is proven. �

Now we are in the position to prove Theorem 2.2.

Proof. Let us now introduce an event A for some ε we
choose later:

(3.26) A := {Z ≥ εEZ}.
This implies, by Chebychev inequality,

1− P(A) ≤ P
(
|Z − EZ| ≥ (1− ε)EZ

)
≤ VarZ

(1− ε)2(EZ)2
.(3.27)

From (Buhmann et al., 2014, Lemma 1), we have the
following equation:

(3.28) VarZ = (EZ)2
(
ED
(G(2β)

G2(β)

)D
− 1
)
,

which, in turn, yields asymptotically (see Buhmann
et al. (2014)):

(3.29) VarZ ∼ (EZ)2
(
σ2β2EDD

)
.

Thus the term (3.27) can be further rewritten:

1− P(A) ≤ VarZ

(1− ε)2(EZ)2
∼ σ2β2EDD

(1− ε)2

= O
(
β2EDD
(1− ε)2

)
= O

(
d4 logm

n(1− ε)2N

)
= O

(
d3 log n

n(1− ε)2

)
,(3.30)

where we used above Lemma 3.3 for EDD asymptotics.
We now proceed to compute E logZ along the way
of (Magner et al., 2016):

E logZ = E[logZ | A] · P(A) + E[logZ1(A)]

≥ (logEZ + log ε)P(A) + E[logZ1(A)].(3.31)

Now remember from (Buhmann et al., 2014,
Eq. (12)) that logEZ can be written as

(3.32) logEZ = −βNµ+ logm+
1

2
Nβ2σ2 + o(β2).

Let the above expression be denoted as L(β,N,m, σ) for
the sake of brevity. So, using (3.30), we rewrite (3.31):

E logZ ≥
(
L(β,N,m, σ) + log ε

)
·
(

1−O
(
d3 log n

n(1− ε)2

))
+ E[logZ1(A)]

= L(β,N,m, σ) + log ε

−
(
L(β,N,m, σ) + log ε

)
· O
(
d3 log n

n(1− ε)2

)
+ E[logZ1(A)].(3.33)

Thus,

E logZ + βNµ

logm
≥ 1 +

β̂2σ2

2
+

log ε

logm

−
(
L(β,N,m, σ) + log ε

)
· O
(

d3 log n

n logm(1− ε)2

)
+

E[logZ1(A)]

logm
.(3.34)

Now we introduce the below assumption (3.35),
which will prove to be true later:

(3.35)
d3 log n

n(1− ε)2
→ 0 (n→∞).

With this assumption, we notice

(3.36)
(
L(β,N,m, σ) + log ε

)
· O
(
d3 log n

n(1− ε)2

)
= o(1).



Thus

E logZ + βNµ

logm
& 1 +

β̂2σ2

2

+
log ε

logm
+

E[logZ1(A)]

logm
.(3.37)

We now estimate the term E[logZ1(A)]. For some
solution c, it holds true:

E[logZ1(A)] ≥ E[log e−βR(c)
1(A)]

= E[−βR(c) · 1(A)]

= E[−β(R(c) + ER) · 1(A)]

= E[−βR(c)1(A)]− βER · P(A)

≥ −βE[|R(c)|]− βO(N)(1− P(A))

≥ −βO(
√
N)− βO

(
N

d3 log n

n(1− ε)2

)
,(3.38)

thus, essentially,

E[logZ1(A)]

logm
≥ −βO

(
N

d3 log n

n logm(1− ε)2

)
∼ −O

(
d7/2
√

log n

n(1− ε)2

)
.(3.39)

Consequently, we can rewrite (3.37) as

E logZ + βNµ

logm
& 1 +

β̂2σ2

2

+
log ε

logm
−O

(
d7/2
√

log n

n(1− ε)2

)
.(3.40)

This suggests that d should be d = o(n2/7/
√

log n) to
make the error term negligible.

We will now choose ε in order to produce the
lower bounds, and then check that assumption (3.35)

is fulfilled. For β̂ > β̂∗ :=
√

2/σ we choose

ε = m−(1−β̂σ
√
2+ β̂2σ2

2 ),

which gives

(3.41)
E logZ + βNµ

logm
& β̂σ

√
2− o(1).

For this choice ε = o(1), and

(3.42) O
(
d7/2
√

log n

n(1− ε)2

)
= o(1).

so that (3.35) holds.

For β̂ ≤ β̂∗ :=
√

2/σ we choose ε = 1/2, yielding

(3.43)
E logZ + βNµ

logm
& 1 +

β̂2σ2

2
+ o(1),

since

(3.44)
log ε

logm
= o(1), O

(
d7/2
√

log n

n(1− ε)2

)
= o(1)

and assumption (3.35) holds. This completes the proof
of Theorem 2.2. �

4 Proof of Theorem 2.3

In this section we present a sketch of the proof for the
matching lower bound for the Lawler QAP.

Proof. Theorem 2.1 gives us a general upper bound.
To find the matching lower bound we follow Talagrand
(2003) that we briefly review. Let Y be the cardinality
of the solution subset for which the centered negative
cost function R(c) is large enough, that is,

Y := card{c : R(c) ≥ un} for some un ≥ 0.

It is obvious that

(4.45) E[Y ] = ma, where a := P(R(c) ≥ un).

Let now A define the event: {Y ≤ ma/2}. By Markov
inequality we have

P(A) ≤ P
(
(Y − E[Y ])2 ≥ m2a2/4

)
≤ 4Var[Y ]

m2a2
≤ 4E[Y 2]

m2a2
− 1,(4.46)

and our goal is to prove that E[Y 2]/(ma)2 → 1.

In our setting we define an = P(R(c) ≥ un(β̂))
where

(4.47) un(β̂) =

{
β̂σ2
√
N logm, β̂ < β̂∗

β̂∗σ2
√
N logm, β̂ ≥ β̂∗.

We set as above A = {Y ≤ man/2}, and prove that

P(A) → 0 for β̂∗ <
√

2/σ. Then by Talagrand’s ap-
proach this will lead to a proof of Theorem 2.3. Details
of the proof can be found in our journal version (Buh-
mann et al., 2017), see also (Buhmann et al., 2014).

So from now on we focus on the proof of P(A)→ 0
or equivalently that E[Y 2]/(man)2 → 1. First, note that
if solutions (permutations) π and π′ have k common
points, then they share k2 entries of the 4-dimensional
matrix Q (out of the N = n2 entries appearing in
R(π,X)). Besides, since the solution space Cn (the
set of permutations of size n) is a group, there exists
a permutation π′′ such that π′ = π ◦π′′. Thus, counting
the common points between π and π′ is equivalent to
counting the fixed points of π′′, which is a well-studied
problem.

The number of permutations with k fixed points is
the rencontre number (see e.g., Szpankowski (2001))

(4.48) Dn,k =
n!

k!

n−k∑
j=0

(−1)j

j!
.



Therefore, the number of ordered pairs of permutations
sharing k fixed points is

(4.49) Bn,k = n!Dn,k =
n!2

k!

n−k∑
j=0

(−1)j

j!
.

We now evaluate E[Y 2] defined above. We have

E[Y 2] =
∑

π,π′∈Cn

P
(
R(π,X) ≥ un(β̂)

and R(π′, X) ≥ un(β̂)
)

=

N∑
k=0

Bn,kP
(
On,k + In,k ≥ un(β̂)

and O′n,k + In,k ≥ un(β̂)
)
,(4.50)

where On,k, O
′
n,k ∼ N (0, N − k2), In,k ∼ N (0, k2)

are independent, In,k represents the sum of the entries
shared by the two solutions, and On,k, O

′
n,k the entries

exclusive to one of the two. Above N (0, σ2) means the
normal distribution with mean 0 and variance σ2.

Let us now bound the probability

pn,k(β̂) = P
(
On,k + In,k ≥ un(β̂)

and O′n,k + In,k ≥ un(β̂)
)

(4.51)

that two solutions with k2 shared entries exceed the
threshold un(β̂). This is exactly the probability that
the two coordinates of a multivariate centered normal
vector with covariance matrix

(
n2 k2

k2 n2

)
σ2 exceed un(β̂).

Applying the results of Savage (1962) on multivariate
Gaussian bounds, we get for k < n:

pn,k ≤
σ2

2πun(β̂)2

√
(n2 + k2)3

n2 − k2

× exp

(
− un(β̂)2

(n2 + k2)σ2

)
=

1

2πβ̂2σ2

1

n2 log n!

√
(n2 + k2)3

n2 − k2

× exp

(
−β̂2σ2 n2 log n!

(n2 + k2)σ2

)
.(4.52)

For k = n, we have pn,n = an and we know that

an ∼
nσ

√
2πun(β̂)

exp

(
−un(β̂)2

2n2σ2

)
=

1
√

2π log n!β̂σ
exp

(
− β̂

2σ2

2
log n!

)
.(4.53)

Combining equations (4.49), (4.50), (4.52) and

(4.53) yields

E[Y 2]

m2a2n
. Sn =

n−1∑
k=0

1

k!

(n−k∑
j=0

(−1)j

j!

)
1

n2

√
(n2 + k2)3

n2 − k2

× exp

((
1− n2

n2 + k2

)
β̂2σ2 log n!

)
+

√
2π log n!β̂σ

n!
exp
( β̂2σ2

2
log n!

)
.(4.54)

It is obvious that the term outside of the sum will
tend to 0 as long as β̂ <

√
2/σ. Let us now address the

asymptotics of

Sn =

n−1∑
k=0

1

k!

(n−k∑
j=0

(−1)j

j!

)
1

n2

√
(n2 + k2)3

n2 − k2

× exp

((
1− n2

n2 + k2

)
β̂2σ2 log n!

)
.(4.55)

For that, set k = o
(

n
logn

)
and consider the following

approximations of the above terms. First,

(4.56)

n−k∑
j=0

(−1)j

j!
=

1

e
+O

( 1

(n− k)!

)
.

Second,

(4.57)
1

n2

√
(n2 + k2)3

n2 − k2
= 1 +O

(k2
n2

)
.

Eventually,
(4.58)

e

(
1− n2

n2+k2

)
β̂2σ2 logn! ∼ e

k2

n2 n logn = 1 +O
(k log n

n

)
.

Thus Sn becomes

Sn =

∞∑
k=0

1

k!
· 1

e
·
(

1 +O
(k2
n2

))
·
(
O
(k log n

n

))
= 1 +O

( 1

nε

)
,(4.59)

provided that k = n1−ε

logn .
In summary,

(4.60)
E[Y 2]

m2a2n
→ 1

and

(4.61) P(A) ≤ 4Var[Y ]

m2a2n
=

E[Y 2]−m2a2n
m2a2n

→ 0,

as needed. �
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