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Abstract

We consider PATRICIA tries on n random binary
strings generated by a memoryless source with param-
eter p ≥ 1

2 . For both the symmetric (p = 1/2) and
asymmetric cases, we analyze asymptotics of the ex-
pected value of the external profile at level k = k(n),
defined to be the number of leaves at level k. We study
three natural ranges of k with respect to n. For k
bounded, the mean profile decays exponentially with
respect to n. For k growing logarithmically with n,
the parameter exhibits polynomial growth in n, with
some periodic fluctuations. Finally, for k = Θ(n), we
see super-exponential decay, again with periodic fluc-
tuations. Our derivations rely on analytic techniques,
including Mellin transforms, analytic depoissonization,
and the saddle point method. To cover wider ranges of
k and n and provide more intuitive insights, we also use
methods of applied mathematics, including asymptotic
matching and linearization.

Key Words: Digital trees, PATRICIA trie, tree pro-
files, analytic combinatorics, analysis of algorithms, re-
currences, generating functions, poissonization, Mellin
transform, saddle point method, matched asymptotics,
linearization.

1 Introduction

A digital tree is a fundamental data structure on words
in which the storage and retrieval of a word is based
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11-1-0184 and H98230-11-1-0141, and in addition NSF Grants
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on its digits. Digital trees enjoy many important ap-
plications, including data compression and distributed
hashing [12, 16]. There are several variations of digital
trees, two of the most important being tries and digi-
tal search trees. Various parameters of random digital
trees have been defined and studied extensively, includ-
ing height, size, and fill-up level [14, 2]. Many of these
can be rephrased in terms of external and internal pro-
files. The external profile of a digital tree on n strings
at level k, denoted by Bn,k, is the number of leaves at
distance k from the root. Study of profiles is motivated
by the fact that distributional information about them
implies information about many other parameters.

This paper completes the project of analyzing
the expected external profile of digital trees under a
Bernoulli source model; tries and digital search trees
profiles were fully treated in [3, 13]. We are concerned
here with a variant of tries called PATRICIA tries,
which address an inefficiency in standard tries [11]. In
particular, in a standard trie, if many strings share long
prefixes, the result is a tree having many non-branching
paths, which is a waste of space. In a PATRICIA trie,
non-branching paths are compressed ; that is, a non-
branching path corresponding to symbols x1 . . . xm is
replaced by a single node whose parent edge is labeled
with the string x1 . . . xm (see Figure 1 for an illustra-
tion).

As the first important step toward a full character-
ization of PATRICIA tries, here we study the expected
external profile E[Bn,k] = µn,k of PATRICIA tries built
from n strings generated by a memoryless source with
probability of a “1” equal to p ≥ 1/2 and probability of
a “0” equal to q := 1− p. The external profile is of par-
ticular mathematical interest in the case of PATRICIA
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Figure 1: A PATRICIA trie on n = 5 strings (s1 =
0010 . . . , s2 = 0011 . . . , s3 = 01 . . . , s4 = 10 . . . ,
s5 = 11 . . . ). Note the path compression involved in
the representation of s1 and s2. The external profile is
given by B5,0 = B5,1 = 0, B5,2 = 3, B5,3 = 2.

tries, because it satisfies an unusual recurrence:

µn,k = (pn+qn)µn,k+

n−1∑
j=1

(
n

j

)
pjqn−j(µj,k−1+µn−j,k−1)

with appropriate initial conditions. The multiplica-
tive factor and the incompleteness of the binomial sum
are complications that do not arise in the analyses of
tries and digital search trees (see [15]). This recur-
rence we solve asymptotically for various ranges of k
and n. For k growing logarithmically with n, we solve
it analytically by considering the Poisson transform,
G̃k(z) := e−z

∑
n≥0 µn,k

zn

n! , of µn,k. We shall find an
expression for the Mellin transform G∗k(s), compute the
inverse Mellin integral via the saddle point method, and
apply analytic depoissonization to recover the asymp-
totics of µn,k.

The peculiarities of the original recurrence are
reflected in the form of the recurrence on G̃k(z):

G̃k(z) = G̃k−1(pz) + G̃k−1(qz) + f̃k(z),

where f̃k(z) is a function of G̃k(cz) with a compli-
cated Mellin transform (see (3.7)), so that this func-

tional equation cannot be solved explicitly. The pri-
mary difficulty in applying methods used for tries and
digital search trees is the presence of the products
G̃k(cz)e−(1−c)z for c = p, q in the definition of f̃k(z);
this is not easily dealt with via standard Mellin func-
tional identities, so f∗k (s) is implicitly given in terms of
values of µn,j . A similar difficulty arises in a solution
to a problem posed by Knuth [6] and in the analysis of
an asymmetric leader election algorithm [9]. Our prob-
lem has the additional complication that the recurrence
(2.1) involves two variables. One of our main technical
contributions is to tame the complexity of this recur-
rence, in particular showing that the Mellin transform
G∗k(s) of G̃k(z) is expressible as the product of an en-
tire function and the Euler gamma function Γ(s+1) [1],
such that some of the poles introduced by the Γ func-
tion are canceled by zeros of the entire function. We
are thus able to show, via analytic techniques, that the
expected profile in this range is of polynomial growth,
with bounded oscillations.

For the same range (k = O(log n)), we also give
a more intuitive, though less mathematically precise,
derivation via other methods. In particular, we apply
an approximation similar in spirit to the saddle point
method, directly to the recurrence (2.1).

As previously mentioned, we also solve the recur-
rence for several other ranges of k, in both the sym-
metric and asymmetric cases. This we do via methods
of applied mathematics, including matched asymptotics
and linearization. By these techniques, we show that for
k bounded by a constant, the expected profile decays ex-
ponentially with n; for k growing logarithmically with
n, it grows polynomially, with periodic fluctuations; and
for k = Θ(n), it decays super-exponentially, again with
periodic fluctuations.

The plan of the paper is as follows. In Section 2,
we introduce some notation, give a precise formulation
of the problem, present the main results in detail, and
compare with results for other digital trees. In Section
3, we sketch the proofs of the main results.

2 Main Results

Here we give some notation that is used in the rest of
the paper, present in detail the basic setup, and then
give our main theorems and some of the intuition behind
their proofs. We then discuss consequences and compare
with similar results for other digital tree models.

2.1 Setup Throughout, the function T (s) is given by

T (s) = p−s + q−s.



For any x, the fractional part of x, denoted by {x}, is
given by

{x} = x− bxc,
the function α(L) is given by

α(L) = αL = {log1/p L},

and the constant ∆ is given by

∆ = log(p/q) ≥ 0.

All asymptotic notation is defined with n → ∞ unless
explicitly indicated otherwise. Define Bn,k to be the
random number of external nodes at level k of a
PATRICIA trie over n independently generated strings,
each an infinite sequence of i.i.d. Bernoulli random
variables with probability p of taking the value “1” and
q = 1 − p of taking the value “0”, with p ≥ q. The
fundamental recurrence for µn,k = E[Bn,k] is
(2.1)

µn,k = (pn+qn)µn,k+

n−1∑
j=1

(
n

j

)
pjqn−j(µj,k−1+µn−j,k−1)

for n ≥ 2 and k ≥ 1. This recurrence arises from
conditioning on the number of strings starting with “0”.
If 1 ≤ j ≤ n − 1 strings start with “0”, then the
expected external profile is a sum of contributions from
the left subtree (a PATRICIA trie built on j strings)
and from the right subtree (a PATRICIA trie built on
n − j strings). If, on the other hand, all strings start
with the same symbol (which happens with probability
pn + qn), then the path compression property applies,
and the contribution is µn,k.

The initial conditions are as follows:

µ0,k = 0

for all k,

µn,0 = δ[n = 1], µ1,k = δ[k = 0],

and
µn,k = 0

for k ≥ n. The last condition, which, in the case
of PATRICIA tries, arises from the path compression
property, arises also in digital search tree profiles but
not in those of standard tries.

The exponential generating function for µn,k, de-
fined to be

(2.2) Gk(z) =
∑
n≥0

µn,k
zn

n!
,

is then seen to satisfy the recurrence (for k ≥ 1)

(2.3) Gk(z) = e−qzGk−1(pz) + e−pzGk−1(qz) + fk(z),

with initial conditionG0(z) = z and where fk(z) is given
by

fk(z) = (Gk(pz)−Gk−1(pz)) + (Gk(qz)−Gk−1(qz)).

2.2 Asymmetric Case In this section, we present
results for the asymmetric case (p > q), starting with
the range k = Θ(log n), for which we first give a result
derived by analytic techniques. A sketch of the proof
can be found in the last section.

Theorem 2.1. (Average profile for k = α log n)
Let ε > 0 be independent of n and k, and let

α ∈
(

1
log(1/q) + ε, 1

log(1/p) − ε
)

. Then for k = α log n,

E[Bn,k] = H(ρ(α), logp/q(p
kn))(2.4)

· n
−ρ(α)T (ρ(α))k√

2πκ∗(ρ(α))k

(
1 +O(k−1/2)

)
,

where

ρ(α) = − 1

log(p/q)
log

(
α log(1/q)− 1

1− α log(1/p)

)
,

κ∗(ρ) =
p−ρq−ρ(log(p/q))2

T (ρ)2
,

and H(ρ, x) is a non-zero periodic function with period
1 given by

H(ρ, x) =
∑
j∈Z

A(ρ+ itj)Γ(ρ+ 1 + itj)e
−2jπix,

where tj = 2πj/∆, and

A(s) = 1 +

∞∑
j=1

T (s)−j
∞∑
n=j

T (−n)(µn,j − µn,j−1)
φn(s)

n!
,

(2.5)

where φn(s) =
∏n−1
j=1 (s+ j) for n > 1 and φn(s) = 1 for

n ≤ 1.

We remark that the average profile given by the
theorem can be written as

E[Bn,k] = nβ(α)K(α, n),

where
β(α) = −ρ(α) + α log T (ρ(α))

and K(α, n) is a slowly varying function with respect to
n. This form will match the result of Theorem 2.2.

The next theorem presents results obtained via the
method of matched asymptotics and other ideas from
applied mathematics. The idea of asymptotic matching



is the following: suppose that we have two asymptotic
expansions of µn,k, each valid on some part of the
domain of the problem (e.g., k = O(1) and k = log2 n+ξ
in the symmetric case). If the domains of validity of the
two expansions overlap, then the two should match in
the intersection, which yields the matching condition to
which we refer in the proofs. This condition allows us
to determine constants and other information about our
expansions. If, on the other hand, the two expansions do
not match, then this implies that an intermediate scale,
between the two under consideration, must be sought
for a complete solution to the problem.

We include this derivation for two reasons: by this
method we are able to cover a wider range of behaviors
of k with respect to n, with the disadvantage of having
to make some mild assumptions on the asymptotic form
of µn,k (for example, the form

µn,k ∼ nβ(α)H(α, n)

assumed in the k = α log n range is precisely an
assumption that µn,k is of regular variation, in the sense
of [5]). Furthermore, among the ranges analyzed is the
one dealt with in Theorem 2.1; we present this new
derivation as a more intuitive alternative, wherein we
start with an application of a saddle point-like method
directly to the recurrence (2.1).

Theorem 2.2. (Average profile for all ranges)
Let p > q and recall that ∆ = log(p/q).

(i) For k = O(1),

E[Bn,k] ∼ nqk(1− qk)n−1.

(ii) For k = α log n with α ∈
(

1
log(1/q) ,

1
log(1/p)

)
,

E[Bn,k] ∼ nβ(α)H(α, n),

where

β(α) =
1

∆

[
log

(
−(α log q + 1)

1 + α log p

)
+α log p · log

(
α∆

α log p+ 1

)
−α log q · log

(
α∆

−(α log q + 1)

)]
and H(α, n) is a slowly varying function with re-
spect to n. This coincides with (2.4) of Theo-
rem 2.1.

(iii) For k = n− `, with ` = O(1),

E[Bn,k] ∼ C∗(p)D∗(p)n! · pk
2/2+k/2qk ·Ψ(n− k),

where

C∗(p) =

∞∏
j=2

(1− pj − qj)−1,

D∗(p) =

∞∏
j=2

(
1 +

(
q

p

)j−2
)
,

and

Ψ(`) =
1

2πi

∮
ez

z`

∞∏
j=0

(
1− e−qpjz

qpjz

)
dz,

where the integral is taken around any counter-
clockwise contour encircling the origin.

For ` = n − k → ∞, Ψ(`) is asymptotically
equivalent to

Ψ(`) ∼ 1

(`− 1)!
`

log q
log p−

1
2 exp

[
− log2 `

2 log(1/p)

]
Ψ̂(`),

where Ψ̂(`) is the following bounded, periodic function
(with α` = {log1/p `}):

Ψ̂(`) = qα`p−α
2
`/2−α`/2

(
1− e−qp−α`

qp−α`

)

·
∞∏
J=1

(1− e−qpJ−α` )(1− e−qp−J−α` )
qpJ−α`

.

We comment that the analysis of the three scales
here still leaves gaps in the asymptotics (that is, we
have not covered all possible ranges). It is still neces-
sary to consider cases where α = k

logn ≈
1

log(1/p) and

α ≈ 1
log(1/q) , since the expansion in (iii) cannot asymp-

totically match that in (ii) (or that in Theorem 2.1).
Some preliminary results suggest that the appropriate
transition scale is n, k → ∞ with k − log1/p n = O(1),
and we will discuss it in depth in the full paper. Sim-
ilarly, another expansion is needed for α ≈ 1

log(1/q) ,

which would connect the results in (i) and (ii).

2.3 Symmetric Case We now present results for the
case p = q = 1/2.

For k = O(1), it should be noted that the derived
expression is different from the analogous one for the
asymmetric case. In particular, the ratio of the two,
when p and q are set to 1/2, tends toward some constant
not equal to 1. This occurs in the derivation as follows:
for arbitrary p ≥ 1/2 and q ≤ p, the asymptotic formula
for µn,k features two terms, the second of which is of
lower order than the first when p > q and of the same



order when p = q. The following example illustrates
this phenomenon: consider k = 1. We can show that

µn,1 =
n(pqn−1 + qpn−1)

1− pn − qn
.

In both the symmetric and asymmetric cases,

1− pn − qn ∼ 1,

so we can ignore the denominator. In the asymmetric
case,

pqn−1 = o(qpn−1),

so that
µn,1 ∼ nqpn−1.

In contrast, when p = q = 1/2,

pqn−1 = qpn−1 = 2−n;

that is, the two terms are of the same order, so that they
both contribute to the leading term. Thus, we have

µn,1 ∼ 2n2−n = n21−n,

which differs from nqpn−1 by a factor of 2. This
phenomenon is the reason for the difference between the
formulas in (i) of Theorem 2.2 and Theorem 2.3.

For the logarithmic range, we are able to glean
more information than in the asymmetric case, because
µn,k turns out to be asymptotically close to a product
of n and a function that is periodic in log2 n, and
we can then use matching conditions as ξ → −∞
to determine some information about the function’s
Fourier coefficients. The same phenomenon is not
apparent in the asymmetric case as given in Theorem
2.2.

Finally, for the k = n − `, ` = O(1) range, we see
nearly the same behavior for both the symmetric and
asymmetric cases, and the derivation is essentially the
same.

Theorem 2.3. (Average profile, symmetric case)
Let p = q = 1/2.

(i) For k = O(1) as n→∞,

E[Bn,k] ∼
(

2k − 1

2k

)n−1

n.

(ii) For k = log2 n+ ξ with ξ = O(1),

E[Bn,k] ∼ n

C(ξ) +

∞∑
j=−∞,j 6=0

Cj(ξ)e
2πij log2 n

 ,
where

C(ξ) ∼ exp(−2−ξ), ξ → −∞

and, for all j 6= 0, Cj(ξ) = o(C(ξ)) as ξ → −∞.

(iii) For k = n− ` with ` = O(1),

µn,k ∼ C∗n!2−k
2/2−k/2k̄`,

where

C∗ =

∞∏
j=1

1

1− 2−j

and

k̄` =
1

2πi

∮
1

z`

∞∏
j=1

[
2j

z
(ez2

−j
− 1)

]
dz,

where the integral is taken over a contour encir-
cling the origin.

For ` → ∞, the expression for k̄` asymptotically
simplifies to

k̄` ∼
`3/2

`!
2α`(α`+1)/2

(
1− e−2α`

2α`

)
exp

(
− log2 `

2 log 2

)
·
∞∏
j=1

(1− e−2α`+j )(1− e−2α`−j )

2α`−j
.

As in the same range in the asymmetric case, factors
involving α` yield oscillations that are periodic in log2 `.

We now briefly discuss some of the qualitative
phenomena seen in the preceding results. For small k, in
both the symmetric and asymmetric cases, the expected
external profile exhibits roughly exponential decay in n.
For the logarithmic ranges, we see polynomial growth,
and it is clear in the symmetric case that there are
fluctuations with period 1 in log2 n. The analysis
leading to Theorem 2.2 does not show it, but similar
fluctuations arise in the asymmetric case, as revealed
by the analytic derivation. Finally, for k close to n, we
see superexponential decay with an oscillating factor in
both cases. In addition, we find in the asymmetric case
that there are gaps between the first and second and the
second and third ranges.

2.4 Comparison with Other Types of Digital
Trees Here we compare the phenomena seen in our
analysis with those observed in the analyses of other
types of digital trees.

We start by comparing with tries. Analytically,
they are somewhat similar, but with important differ-
ences. The saddle points of the integrand of the Mellin
inversion are the same in both cases: the real-valued
saddle point ρ is the same, and there are infinitely
many regularly spaced saddle points on the imaginary
line corresponding to ρ. This shared phenomenon is
what gives rise to the oscillations in both cases in the



range of polynomial growth (discussed in more detail
below). The singularities of G∗k(s), on the other hand,
are different in the two cases. For regular tries, we
see poles at s = −2,−3, . . . , in contrast to the PA-
TRICIA situation, where we see only poles at the in-
tegers less than or equal to −k. As a consequence, for
α ∈ ( 1

log(1/q) + ε, 1
log(1/p) − ε) for any constant ε > 0, we

see no effect of the poles on the asymptotics for PATRI-
CIA tries, because the contour along which we compute
the inverse Mellin transform has a real part which is
contained in some bounded interval, while the poles of
the integrand tend to −∞ as k grows large. This is
not the case for standard tries and results in more com-
pact trees; for example, the height of the trie grows like
(2/H2) log n (H2 is the second Rényi’s entropy) while
for DST and PATRICIA the growth is 1/ log(p−1) log n
(see [10]).

Qualitatively, in the asymmetric case, tries and
PATRICIA tries are quite similar in the ranges that
we have examined. In the small k range, we find
that the two are asymptotically equivalent. For k
in the logarithmic range, expected external profiles
of both tries and PATRICIA tries exhibit polynomial
growth with oscillations. Furthermore, the polynomials
have the same order. Thus, the difference lies in the
subpolynomial multiplicative factors. Finally, for k =
Θ(n), expected profiles for both decay to 0, but the
decay for PATRICIA tries is faster. Indeed, letting

µ
[T ]
n,k denote the expected external profile at level k for

a standard trie on n strings,

µ
[T ]
n,k

µn,k
∼ 2pqn2(p2 + q2)k−1

nk(n− k)1/2+log q/ log ppk2/2+k/2qk

· 1

exp
[
− log2(n−k)

2 log(1/p)

]
O(1)

∼ eΘ(n2),

which, for k = Θ(n), tends to ∞ because of the k2

in the exponent of p in the denominator. Provided
n− k = `→∞, oscillations appear in PATRICIA tries
but are absent in standard tries.

Interestingly, in the symmetric case, standard tries
and PATRICIA tries differ qualitatively: standard tries
do not exhibit oscillations, to leading order, in the
range of polynomial growth or in the range k = Θ(n).
Meanwhile, our Theorem 2.3 shows that oscillations
around k = log2 n and k = Θ(n) do appear in
PATRICIA tries.

Now we turn to digital search trees (DSTs), with
which we compare in the logarithmic range in the
asymmetric case. Analytically, PATRICIA tries are
closer to DSTs than to standard tries. A vertical

line of equally spaced saddle points also arises in the
analysis of DSTs, and the location of the real-valued
saddle point agrees with that in tries and PATRICIA
tries, so that, again, oscillations arise in the region of
polynomial growth. A difference arises in the location
of singularities: in DSTs, there are no poles, owing to a
phenomenon similar to one observed in our analysis: in
both cases, G∗k(s) is shown to be asymptotically equal
to a product of a Γ function and an entire function with
zeros at certain negative integers. In the case of DSTs,
all negative integer poles are canceled in this way.

As with tries both standard and PATRICIA, DSTs
exhibit polynomial growth in the k = α log n range,
and an oscillating factor again arises due to the shared
saddle point phenomenon. The polynomial order is the
same as in the other two models.

In the symmetric case in the range k = log2 n + ξ,
when ξ →∞, DST expected profiles exhibit periodic os-
cillations akin to those observed in PATRICIA profiles,
but not, as mentioned earlier, in tries. The oscillations
for ξ fixed that arise in PATRICIA tries are not seen in
DSTs.

3 Proof Sketches

We now sketch the proofs of Theorems 2.1, 2.2, and
2.3. Since the most interesting phenomena arise when
k = Θ(log n) and, to a lesser extent, k = Θ(n), we
discuss the corresponding derivations in greater detail
than we do for k = O(1).

3.1 Proof of Theorem 2.1 Our starting point is the
Poisson transform G̃k(z) = e−zGk(z), which satisfies
the recurrence

G̃k(z) = G̃k−1(pz) + G̃k−1(qz) + f̃k(z),(3.6)

where

f̃k(z) = [G̃k(pz)− G̃k−1(pz)]e−qz(3.7)

+ [G̃k(qz)− G̃k−1(qz)]e−pz,

with initial condition G̃0(z) = ze−z. We then apply the
Mellin transform ∫ ∞

0

zs−1G̃k(z) dz

to G̃k(z) to get a recurrence for G∗k(s). The initial
condition derived from the path compression property
implies that

G̃k(z) = O(zk+1)

as z → 0, and, by a standard argument by induction
on increasing domains (see [7]), we show that, for any
ε > 0,

G̃k(z) = O(z1+ε)



as z → ∞ in a cone containing the positive real axis,
so that G∗k(s) is analytic at least in the strip <(s) ∈
(−k− 1,−1). The transformed function is seen to be of
the form

G∗k(s) = Ak(s)T (s)kΓ(s+ 1),

where Ak(s) and T (s)k are entire functions, with Ak(s)
implicitly defined in terms of various values of µn,j :

Ak(s) = 1 +

k∑
j=1

T (s)−j
∞∑
n=j

T (−n)(µn,j −µn,j−1)
φn(s)

n!
.

The function Ak(s) has the interesting property that,
for r ∈ {1, 2, . . . , k}, Ak(−r) = 0, so that the poles in-
troduced by the Γ function at those points are canceled.
The fact that Ak(−r) = 0 for r ∈ {2, . . . , k} follows
immediately from the previously established fact that
G∗k(s) is analytic at these points, that T (s) is never 0,
and that Γ(s + 1) has poles at these points. The proof
that Ak(−1) = 0 for all k ≥ 1 is by induction, rely-
ing on the crucial property of φn(s) that its zeros are
precisely −1,−2, . . . ,−(n− 1): the base case, k = 1, is
handled easily by applying the initial conditions. For
the inductive step, we write

Ak(−1) = Ak−1(−1)

+ T (−1)−k
∞∑
n=k

T (−n)(µn,k − µn,k−1)
φn(−1)

n!
.

Then, by the inductive hypothesis, Ak−1(−1) = 0,

and the sum vanishes because φn(−1) :=
∏n−1
j=1 (−1 +

j) = 0 for n ≥ 2 (see (2.5)). This shows that G∗k(s) is
meromorphically continuable to C, with simple poles at
integers less than or equal to −k − 1.

The next step is to compute the inverse Mellin
transform

G̃k(z) =
1

2πi

∫ c+i∞

c−i∞
G∗k(s)z−s ds,(3.8)

where −k − 1 < c < ∞. We evaluate this integral via
the saddle point method, defining ρ = ρ(α) to be the
real solution to the equation

d

ds
[k log T (s)− s log z] = 0.

Interestingly, the integrand has a unique saddle point on
the real axis and infinitely many regularly spaced saddle
points on the line <(s) = ρ. This leads to a fluctuating
factor in G̃k(z). A fact about ρ should be noted here: as
we vary α from 1

log(1/q) to 1
log(1/p) , ρ goes from −∞ to

∞, which corresponds to the boundaries for the range
we consider.

Finally, we apply analytic depoissonization results
to transfer asymptotics of G̃k(n) as n → ∞ to asymp-
totics of µn,k. Our tool of choice here is induction along
increasing domains [7].

It remains to show that H(ρ, x) is well defined for all
ρ, x ∈ R. That is, if we define Hk(ρ, x) by the formula
for H(ρ, x) with Ak in place of A, then we need to show
that

lim
k→∞

Hk(ρ, x)

exists and is equal to H(ρ, x). To do this, we apply
the Dominated Convergence Theorem. Thus, we need
to show that Ak(s) converges pointwise for all s, and
then that the sum∑

j∈Z
A(sj)Γ(sj + 1)e−2jπix

converges absolutely for all ρ, x (throughout, we define
sj = ρ + itj). That is, we are choosing A(s) as the
dominating function, and we are showing that∫

|A(s)| dµ <∞,

where the integral is with respect to the measure that
puts mass |Γ(sj + 1)| on each point sj and mass 0
everywhere else.

To prove pointwise convergence of Ak(s), we show
absolute convergence of the sum whose mth term is

am = T (s)−m
∞∑
n=m

ηn,m
Γ(n+ s)

Γ(n+ 1)
,

where we define

ηn,m = T (−n)(µn,m − µn,m−1).

We can do this by showing that |am| is upper bounded
by the tail of a convergent geometric series. The idea is
to split the sum into two parts:

T (s)−m
cm∑
n=m

ηn,m
Γ(n+ s)

Γ(s+ 1)

+ T (s)−m
∞∑

n=cm+1

ηn,m
Γ(n+ s)

Γ(s+ 1)

where c is a sufficiently large constant. The asymptotic
formula for µn,m for m close to n happens to hold for
m ≥ Cn, for any constant C, so that, in the first sum,
|µn,m − µn,m−1| ≤ c1e

−c2m2

for sufficiently large m
(here, c1 and c2 are positive constants).

In the second sum, provided c is chosen appropri-
ately, |T (−n)T (s)−m| decays exponentially with respect



to m and n. Combining this with the previous fact
yields pointwise convergence of Ak(s).

Showing that
∫
|A(s)| dµ < ∞ boils down to

examining the behavior of the Γ function on vertical
lines. Each term of the sum is given by

|aj | = |A(sj)Γ(sj + 1)|
≤ |Γ(sj + 1)|

+
∑

m≥1,n≥m

|T (sj)|−m|ηn,m|
∣∣∣∣Γ(n+ sj)

Γ(n+ 1)

∣∣∣∣ .
Now, there exists a constant 0 < C < 1 such that, for
sufficiently large |j| and all constant x ∈ R,∣∣∣∣Γ(x+ sj+sgn(j))

Γ(x+ sj)

∣∣∣∣ ≤ C.
Also, T (sj) = T (sj′) for all j, j′ ∈ Z. Applying these
two facts and the ratio test shows absolute convergence
of the sum, which concludes the proof.

3.2 Proof of Theorem 2.2 The analysis for k =
O(1) is the simplest: we first derive asymptotic expres-
sions for k = 1, 2, then use this to guess an asymptotic
form for general k, in terms of some unknown function.
We then determine this function using (2.1).

The range k = α log(n) is more interesting, in terms
of the methods used: we begin with the observation that
the sum in (2.1) is very nearly the expected value of a
function of a binomial random variable with parameters
n and p. Furthermore, because of concentration of the
binomial distribution, one expects that the dominant
contribution to the sum comes from j ≈ np. This
phenomenon has been rigorously studied and exploited
previously in, e.g., [4] and [8]. From this we get a
dramatically simplified recurrence, of the form

µn,k = µnp,k−1 + µnq,k−1 +O(1).

In the next step, after applying the approximation, we
assume the form

µn,k = nβ(α)H(α, n),

with H(α, n) a slowly varying function with respect
to n, and β(α) a function to be determined. The
function β(α) is then determined by substitution into
the simplified recurrence. In particular, we get

nβ(α)H(α, n) = (np)β(fp(α))H(fp(α), np)

+ (nq)β(fq(α))H(fq(α), nq),

where

fc(α) =
α− 1

logn

1 + log c
logn

.

Approximating the exponents using a Taylor expansion
of β around α, then using the slow variation ofH, yields,
for n large, the equation

1 = (pβ(α)−αβ′(α) + qβ(α)−αβ′(α))e−β
′(α).(3.9)

Differentiating both sides of (3.9), followed by some
algebra, yields the Clairaut equation

β(α)− αβ′(α) = ρ(α),(3.10)

where ρ(α) is the real-valued saddle point occurring
in the analytic derivation. This can be solved by
letting β(α) = αγ(α), where γ is to be determined.
Substitution of this expression into (3.10), followed
by integration by parts, yields an expression for γ(α)
that involves an integration constant, which we then
determine by substitution of the derived expression for
β into (3.9). We can prove that it coincides with (2.4) of
Theorem 2.1: simple (but tedious) algebra shows that

β(α) = −ρ(α) + α log T (ρ(α)).

The derivation for k close to n begins along lines
similar to those for k = O(1). That is, we explicitly de-
rive expressions for µn,n−1, µn,n−2, and µn,n−3. Then,
from these, we posit an asymptotic form for general
` = n−k, in terms of an unknown function ξ(`). To find
this unknown function, we use the original recurrence
to derive a recurrence for ξ(`), which is amenable to
solution by generating functions and complex analytic
techniques. From this we get an exact integral represen-
tation for ξ(`) (cf. Ψ(`) in Theorem 2.2), from which
can be derived more explicit asymptotic expressions for
`→∞.

3.3 Proof of Theorem 2.3 The derivations for the
ranges k = O(1) and k = Θ(n) are essentially the same
in this case as in the asymmetric one. Thus, we briefly
describe the derivation for k = log2 n+ ξ.

We start as in the range k = Θ(log n) in the asym-
metric case, applying the saddle point-like approxima-
tion, which gives

µn,k ≈ 2µn/2,k−1.(3.11)

We then assume the asymptotic form

µn,k ∼ nF (ξ, n),

which we then substitute into (3.11). After some
algebra, we find that F satisfies

F (ξ, n) = F
(
ξ,
n

2

)
,



so that F is periodic with period 1 in log2 n. Thus, it
can be written as the Fourier series

F (ξ, n) = C(ξ) +

∞∑
j=−∞,j 6=0

Cj(ξ)e
2πij log2 n.

Matching this with the asymptotic expansion for k =
O(1) then yields explicitly the behavior of C(ξ) as
ξ → −∞, and a rougher estimate of the Cj(ξ). The
behavior of the coefficients as ξ → +∞ can also be
obtained, by matching to the expansion for k = Θ(n)
given in Theorem 2.3.
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