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Abstract
Agnostic PAC learning is a theoretical framework to derive distribution-free guarantees. Learn-
ing algorithms often rely on loss functions other than the natural 0-1 loss to gain computational
efficiency. Particularly, learning with least absolute regression (L1 distance) and least square re-
gression (L2 distance) are of interest. The L1-based approaches are proved to be agnostic PAC
learners for a variety of important concept classes such as juntas, and half-spaces. On the other
hand, L2-based approaches are preferable because of computational efficiency — with complex-
ity linear in the number of samples. However, for such approaches, PAC guarantees have been
proved only under distributional assumptions such as realizability (Popt = 0) and uniform input
distribution. The question whether L2 approaches are agnostic PAC learners has been open up to
now.

In this paper, we prove that agnostic PAC learning of k-juntas is possible using L2 polynomial
regression; hence addressing this question for k-juntas. Moreover, we propose a generalization of
Linial et al. (1993)’s low-degree algorithm for learning with arbitrary (non-product) distributions.
We prove that this algorithm is also an agnostic PAC learner for k-juntas. We establish our results
by developing a framework using Hilbert spaces as a proxy to analyze PAC learning problems for
non-product distributions. Using a joint Hilbert space incorporating the stochastic relation between
the true label and the predictor, we demonstrate a fundamental connection between agnostic PAC
learning with 0-1 loss and the least square error in polynomial regressions.
Keywords: Agnostic PAC, L2 Polynomial Regression, Juntas, Boolean Fourier Expansion

1. Introduction

To gain computational efficiency or analytic tractability, many conventional learning methods such
as support-vector machine (SVM) rely on intermediate loss functions other than the natural 0 − 1
loss. Absolute difference (L1 distance) is an example. It is known that polynomial regression under
L1 distance leads to agnostic probably approximately correct (PAC) learners (Kalai et al., 2008) for
various hypothesis classes such as k-juntas, polynomial-approximated predictors, and half-spaces.
However, computing L1 distance is an intensive task computationally.

Square loss (L2 distance) on the other hand is an alternative with computational complexity
linear in the size of the data. This has been an incentive to use learning algorithms such as the
low-degree algorithm (Linial et al., 1993) and LS-SVM (Suykens and Vandewalle, 1999). From the
learning theoretic perspective, PAC learning using L2-based approaches has been studied for the
aforementioned concept classes and with distributional assumptions (Linial et al., 1993; Kalai et al.,
2008; Jackson, 2006). For instance, under the realizability assumption, where zero generalization
0-1 loss is possible (Popt = 0), the L2-polynomial regression is a PAC learner. In addition to the

1



realizability assumption, under the uniform input distribution, the low-degree algorithm is also a
PAC learner (Mossel et al., 2004, 2003; Blais et al., 2010). Under the distribution-free (agnostic)
setting, PAC bounds of the form c(Popt) with c ≥ 2, and as high as c = 8, have been proved so
far for various concept classes (Kalai et al., 2005; Kearns et al., 1994; Jackson, 2006). Therefore,
agnostic PAC learnability of L2-based approaches is still unknown.

This paper resolves this problem for learning k-juntas, i.e., functions over d inputs whose output
depends on at most k < d variables. Notably, we prove that agnostic PAC learning is achievable
using L2-polynomial regression for k-juntas. Moreover, we present a Fourier-based algorithm that
generalizes the well-known low-degree algorithm to arbitrary distributions on binary inputs (non-
uniform and no product). We show that this algorithm is also an agnostic PAC learner w.r.t to
k-juntas. Learning/testing juntas has been studied extensively in the literature (Kalai et al., 2005;
Klivans et al., 2009; Birnbaum and Shwartz, 2012; Diakonikolas et al., 2019). Learning juntas are
motivated by the feature selection problem in machine learning (Guyon and Elisseeff, 2003; Heidari
et al., 2021b).

1.1 Summary of the Contributions

Learning k-juntas with least square regression: The focus of this paper is PAC learning of k-
junta class using L2-regression and with the usual 0-1 loss. The training set in this model contains
n samples {(x(i), y(i))}ni=1 with binary label y(i) ∈ {−1, 1}. The objective of the L2-polynomial
regression is to minimize the empirical square loss between the target label y and a polynomial p(x)
of degree up to k. Given such a polynomial, a predictor g is created by simply taking the sign of
this polynomial as g(x) = sign[p(x)].

The first main result of this paper is that this approach agnostically PAC learns k-juntas. More
precisely, with probability at least (1−δ), the generalization loss of the predictor g is within a small
deviation of the optimal loss among all k-juntas, i.e., P{Y ̸= g(X)} ≤ Popt+ ϵ, with Popt being the
optimal loss in k-junta class. We further obtain bounds on the sample complexity of this approach.
More formally, we present the following theorem.

Theorem 1 The L2-polynomial regression with degree limit of k ≤ d agnostically PAC learns k-
juntas with sample complexity less thanO(k2

k

ϵ2
log d

δϵ2
) and running time linear in n and polynomial

in d.

Learning with Fourier algorithm: The low-degree algorithm is an efficient algorithm for binary
samples with uniform distribution over {−1, 1}d. It relies on the Fourier expansion for Boolean
functions (Wolf, 2008). With this approach, one can perform L2 polynomial regression more effi-
ciently by estimating an appropriate set of Fourier coefficients. This technique leverages a Parseval-
type identity connecting the square loss to the estimation of the Fourier coefficients.

In this paper, we present a more general version of the low-degree algorithm incorporating
arbitrary probability distributions on the Boolean cube. We refer to this approach as the Fourier
algorithm. For that, we employ a distribution-dependent Fourier expansion by applying a Gram-
Schmidt orthogonalization to find an orthonormal basis for Boolean functions. We then show that
this algorithm also agnostically PAC learns the k-junta class.

Theorem 2 Given k < d, the Fourier algorithm agnostically PAC-learns k-juntas with sample
complexity O( ck2

k

ϵ2
log dk

δ ) and with and running time linear in n and polynomial in d.
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Table 1 compares our approach with well-known PAC learning algorithms. To the best of our
knowledge, our algorithms improve both the sample and computational complexities when com-
pared to previously known PAC-learning algorithms. In particular, we improve the loss of the
low-degree algorithm (Linial et al., 1993) from 2Popt to Popt, which has a comparable computa-
tional complexity. As compared to Kalai et al. (2008)’s approach using L1-polynomial regression,
we obtain a lower sample complexity and significantly lower computational complexity (especially
for large data sets). These algorithms are explained in Section 1.2.

Our Approach for Deriving PAC Bounds: We develop a framework using Hilbert spaces as a
proxy to derive our PAC learning bounds. We consider a joint Hilbert space for functions on the
feature-label set X ×Y , incorporating the sample-label relation and the underlying joint distribution
D. In this perspective, the true labeling is viewed as the function (x, y) 7→ y and predictors are
mappings of the form (x, y) 7→ g(x). The inner product in this space is distribution-dependent
and is expressed as ⟨f, h⟩D = ED[f(X, Y )g(X, Y )] for any pair of functions f, g. To analyze the
empirical loss, we consider a similar Hilbert space but with the empirical distribution instead of D.
This technique enables bridging the PAC learning model with elegant theories on vector (Hilbert)
spaces. Particularly, we make a connection between the 0-1 loss and amenable quantities such as
1-norm and 2-norm (see Lemma 1 and 2 in Section 3). A notable feature of this approach is that the
expressions are quite compact and insightful.

Learning other hypothesis classes: In addition to k-juntas, we study learning with another re-
lated hypothesis class called polynomial-approximated functions. Given a positive integer k and
ϵ > 0, it consists of Boolean-valued functions approximated by a degree k polynomial with square
error up to ϵ2. It is known that with L2 polynomial regression, one obtains error up to 8Popt. Fur-
ther, this PAC bound can be reduced to 2Popt using a nondeterministic rounding proposed in (Blum
et al., 1994; Jackson, 2006), instead of taking the sign. As a by-product of our Hilbert-space analy-
sis, we show in Section 4, that the bound 2Popt is still achievable even with deterministic rounding
with the sign function. We show that in a distribution-free setting the Fourier algorithm and the
L2-polynomial regression learn this class with error 2Popt. Hence, we extend the result of (Jackson,
2006) to non-uniform and non-product distributions.

1.2 Related Works

Learning k-juntas: There have been a large body of works on learning and testing of juntas
(Mossel et al., 2004; Bshouty and Costa, 2016; Liu et al., 2019; Arpe and Mossel, 2008; Fischer
et al., 2004; Servedio et al., 2015; De et al., 2019; Vempala and Xiao, 2011; Chen et al., 2021;
Iyer et al., 2021). Juntas has been of significant interest in learning theory as they are connected
to other fundamental problems such as learning with feature selection (Guyon and Elisseeff, 2003),
DNF formulas, and decision trees (Mossel et al., 2004). Particularly, learning with feature selection
can be expressed as learning k-juntas (with k out of d features). Additionally, every k-junta is
implemented by a decision tree or DNF formula of size 2k and conversely, any size-k decision tree
is also a k-junta, and any k-term DNF is ϵ-approximated by a k log(kϵ )-junta. Hence, obtaining
efficient algorithms for these problems is closely related to learning juntas (Mossel et al., 2004).
PAC learning with respect to k-juntas has been studied using various approaches. We briefly review
the approaches for learning these concept classes below and summarize in Table 1.
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Table 1: Comparison of the approaches for PAC-learning of k-juntas.

Approach Sample Cmpx. Comput. Cmpx. PAC bounds

ERM O(k2
k

ϵ2
log d

δ ) O(ndk22
k
) Popt + ϵ

L1-Poly. Reg.
(Kalai et al., 2008)

O(dΘ(k)/ϵ) O(n2d(3+ω)3k) Popt + ϵ

Low-degree
(uniform dist.)
(Linial et al., 1993)

O(2k log dk

δ ) O(nkdk)

• 8Popt + ϵ (Linial et al., 1993)
• 2Popt+ϵ (randomized rounding)
(Jackson, 2006)
• 1

4 + Popt(1− Popt) + ϵ
(Kearns et al., 1994)
• Popt + ϵ, [This work]

Generalized Fourier
[This work]

O( ck2
k

ϵ2
log dk

δ ) O(nk(2d)k) Popt + ϵ

L2-Poly. Reg. O(k2
k

ϵ2
log d

ϵ2δ
) O(ndΘ(k))

• 2Popt+ϵ (randomized rounding)
(Jackson, 2006)
• Popt + ϵ, [This work]

Naive Empirical Risk Minimization (ERM): This is the usual exhaustive search over all pre-
dictors to minimize the empirical loss. For k-juntas, ERM is an agnostic PAC learning algorithm
with sample complexity O(k2

k

ϵ2
log d

δ ) and computational complexity O(ndk22
k
) (Shalev-Shwartz

and Ben-David, 2014). With the computational complexity of doubly exponential with respect to k,
ERM is prohibitive even for small values of k.

Learning with L1 Regression. Kalai et al. (2008) introduced polynomial regression as an ap-
proach for PAC learning with the 0 − 1 loss function. They showed that L1-Polynomial regres-
sion agnostically PAC learns with respect to (k, ϵ)-concentrated hypothesis class which includes
k-juntas. The main idea behind this approach is first to find a degree-k polynomial minimizing the
absolute loss. Then a predictor is obtained by taking the sign of this polynomial. Adopting this
algorithm to k-juntas requires a sample complexity O(dΘ(k)/ϵ). With a linear programming imple-
mentation, the computational complexity of this algorithm is O(n2d(3+ω)3k), where ω < 2.4 is the
matrix-multiplication exponent. A more efficient implementation is SVM with degree-k polynomial
kernel and without any regularization (Kalai et al., 2008). However, this implementation PAC learns
in the non-agnostic setting, that is when the target labeling function itself belongs to the hypothesis
class (Blais et al., 2010).

Learning with L2 Polynomial Regression. This approach is similar to its L1 counterpart with
absolute error replaced by the square loss. PAC learning using this approach has been studied in
(Kalai et al., 2008; Jackson, 2006). In the agnostic setting, It is shown that this approach is a
weak learner with error 8Popt. One can show that, instead of taking the sign, with the use of a
nondeterministic rounding proposed in (Blum et al., 1994; Jackson, 2006), the PAC bound can be
reduced to 2Popt. Using our Hilbert-space analysis, we show that for k-juntas Popt is obtained.
For other classes, in Section 4, we show that the bound 2Popt is achievable even with deterministic
rounding. Fast implementations of L2 regression with complexity linear in the number of samples
has been studied (Drineas et al., 2006, 2010).
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Low-degree Algorithms Linial et al. (1993) investigated PAC learning from an alternative per-
spective and introduced the well-known “Low-Degree Algorithm”. They provide theoretical guar-
antees under the uniform and known distribution on {−1, 1}d of the examples. As Kalai et al.
(2008) showed, under the uniform distribution, the low-degree algorithm agnostically learns the
(k, ϵ)-concentrated hypothesis classes as well with an error up to 8Popt + ϵ. Again the factor 8 can
be reduced to 2 if nondeterministic rounding is allowed. Moreover, Kearns et al. (1994) proved the
PAC bound of (14 + Popt(1− Popt)) under the uniform distribution. The low-degree is based on the
Fourier expansion on the Boolean cube. Although computationally efficient, this algorithm has lim-
ited practical applications due to its distributional restrictions — uniform (and known) distribution
is unrealistic in many applications. Furst et al. (1991) relaxed such a distributional restriction by
adopting a low-degree algorithm for learning AC0 functions under the product probability distribu-
tions.

Fourier Expansion: The Fourier expansion has been used to analyze Boolean functions (Wolf,
2008; O’Donnell, 2014) with a wide range of applications, namely computational learning (Linial
et al., 1993; Mossel et al., 2004), noise sensitivity (O’Donnell, 2014; Kalai, 2005; Li and Médard,
2018; Heidari et al., 2019), approximation (Blais et al., 2010), and other information-theoretic sce-
narios (Courtade and Kumar, 2014; Weinberger and Shayevitz, 2017, 2018). Such works mainly
consider Boolean functions with the uniform distribution on the inputs. In this paper, we extend
the applications of Fourier estimation to stochastic mappings on the Boolean cube with arbitrary
distributions.

2. Problem Formulation and Main Results

We start with the usual formulation of agnostic PAC learning model (Valiant, 1984; Kearns et al.,
1994). The focus of this paper is on binary classification with the 0-1 loss function. Therefore,
each samples consists of a feature vector x ∈ X of length d with a binary label y ∈ {−1, 1}.
Typically, we consider binary features X = {−1, 1}d. Available is a set of n labeled samples Sn =
{(x(i), y(i))}ni=1 generated independent and identically distributed (i.i.d.) from an unknown but
fixed probability distribution D on X × {−1, 1}. The expected (generalization) loss of a predictor
g : X → {−1, 1}, is given by PD

{
Y ̸= g(X)

}
.

Agnostic PAC: As a benchmark, a hypothesis class, denoted byH, is a set of potential predictors
h : X → {−1, 1}. In agnostic PAC, we seek a learning algorithm that given the training set Sn,
outputs a predictor g : X → {−1, 1} whose expected loss is close to that of the best predictor in
H. More precisely, an algorithm agnostically PAC learns H, if, for any ϵ, δ ∈ (0, 1), and given
n > n(ϵ, δ) training samples drawn from any distribution D, it outputs with probability (1 − δ) a
predictor g whose expected loss is bounded by

PD
{
Y ̸= g(X)

}
≤ Popt + ϵ,

where Popt is the minimum expected loss among all predictors inH.

k-junta class: The main hypothesis classes considered in this paper are called k-juntas. A k-junta
is a function h : X → {−1, 1} with d input variables whose output depends on at most k out of d
inputs.
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Notation: For compactness, we present a few notations. For any natural number d, the set {1,
2, · · · , d} is denoted by [d]. For a pair of functions f, g on X , the notation f ≡ g means that
f(x) = g(x) for all x ∈ X .

2.1 PAC Learning with L2-Polynomial Regression

We employ a PAC learning algorithm using L2-polynomial regression. Given a training set, the
objective of the polynomial regression is to minimize the empirical square loss over all polynomials
of degree up to k. This process can be implemented by stochastic gradient descent or by solving
a linear system of equations. We describe how this polynomial regression can be used for PAC
learning. Let p̂ be the output of the polynomial regression. The idea is to shift the polynomial p̂ by
a threshold θ and take its sign. This process is demonstrated as Algorithm 1.

Algorithm 1: PAC Learning with L2-Polynomial Regression
Input: Training samples Sn = {(x(i), y(i))}ni=1, depth parameter k.

1 Find a polynomial p̂ of degree up to k that minimizes 1
n

∑
i

(
y(i)− p(x(i))

)2.
2 Find θ ∈ [−1, 1] such that the empirical error of sign[p̂(x)− θ] is minimized.
3 return ĝ ≡ sign[p̂− θ].

Next, we use the L2-polynomial regression algorithm for learning with respect to k juntas. The
idea is to fix J and run Algorithm 1 on the training set with inputs only from J . Then we repeat
this experiment for all k-element subsets J and find the best one. With this approach, we establish
the following theorem.

Theorem 1 The L2-polynomial regression as in Algorithm 1, with a degree limit of k ≤ d, ag-
nostically PAC learns k-juntas . More precisely, given δ ∈ [0, 1], with probability (1 − δ) the
generalization loss of this algorithm does not exceed the following

Popt +O
(√(2k + k log d)

n
log

n

(2k + k log d)

)
+

√
1

2n
log

1

δ
,

where n is the number of samples.

By simplifying the above expression, we get a sample complexity bound of n(δ, ϵ) = O(k2
k

ϵ2
log d

ϵ2δ
).

2.2 Fourier-Based Learning Algorithm

We present another variant of L2 polynomial regression, known as the low-degree (Fourier) algo-
rithm (Linial et al., 1993). The low-degree algorithm was originally designed for uniform distri-
bution on the Boolean cube. Later it was generalized to non-uniform but product distributions on
{−1, 1}d (Furst et al., 1991). In this paper, we further generalize this algorithm for non-product
distributions.

The main idea behind the low-degree algorithm is to estimate the polynomial p∗ that minimizes
the square loss under the true distribution. This method is based on the Fourier expansion on the
Boolean cube (O’Donnell, 2014; Wolf, 2008) and is summarized in the following.
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Algorithm 2: Generalized Fourier
Input: Training samples {(x(i), y(i))}ni=1, depth parameter k.
Output: Predictor ĝ

1 Run FourierOrth, as in Procedure 1, to obtain the empirical basis ψ̂S ,S ⊆ [d] with
|S| ≤ k.

2 Function FourierPredict({ψ̂S}, k):
3 Compute the empirical Fourier coefficients as aS = 1

n

∑n
i=1 y(i)ψ̂S(x(i)).

4 Construct the function Π̂Y as Π̂Y (x) =
∆ ∑

S⊆J aS ψ̂S(x).

5 return ĝ ≡ sign[Π̂Ĵ
Y ].

Fourier expansion on the Boolean cube: Consider the vector space of all functions f : {−1,
1}d → R with the inner product ⟨f, g⟩ = ED[f(X)g(X)], where D is the underlying distribution.
It is known that when D is uniform, the monomials form an orthonormal basis. Such monomials
are defined as χS(x) =

∏
j∈S xj ,x ∈ {−1, 1}d, for all input subsets S ⊆ [d]. For a general D, the

monomials are not necessarily orthogonal. In that case, one needs to find a different basis denoted
as ψS ,S ⊆ [d]. Having this basis, any bounded function in this spaces is decomposed as

f(x) =
∑
S⊆[d]

fS ψS(x),

where fS’s are called the Fourier coefficients and calculated as fS =∆ ⟨f, ψS⟩.
The main challenge in this approach is to find the orthonormal basis for an arbitrary distribution

D. For that, we adopt a Gram-Schmidt process to make the monomials χS orthogonal (Heidari
et al., 2021a). The orthognolaziation process is described as in the following.

Orthogonalization: Fix the following ordering for subsets of [d]:

∅, {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}, · · · , {1, 2, ..., d}. (1)

We apply the Gram-Schmidt process on χSj with the above ordering. The first element of the basis
is trivially given by ψ∅ ≡ 1. The jth basis function corresponding to Sj is obtained from the
following operation:

ψ̃Sj ≡ χSj −
j−1∑
ℓ=1

⟨ψSℓ
, χSj ⟩D ψSℓ

, ψSj ≡


ψ̃Sj

∥ψ̃Sj
∥2,D

if ∥ψ̃Sj∥2,D > 0,

0 otherwise.
(2)

where ∥ψ̃Sj∥2,D =
√
⟨ψ̃Sj , ψ̃Sj ⟩D. As a result of this process, we obtain an orthonormal basis.

Therefore, we can write the Fourier decomposition of the optimal polynomial p∗. For that, we have
the following statement which is a consequence of the Parseval’s identity connecting the square loss
to the Fourier coefficients. The proof is given in Appendix A.

Proposition 3 Let ψS ,S ⊆ [d] be a orthonormal basis form from the process in (2). Then, the
optimal degree k polynomial p∗ achieving the least-square error admits the following Fourier de-
composition

p∗ ≡
∑

S⊆[d]:|S|≤k

⟨Y, ψS⟩ ψS .
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We note that the ordering of the subsets in (1) is important to obtain the above statement. As a result,
the main idea behind the Fourier algorithm is to estimate p∗ by estimating the Fourier coefficients
associated with the true labeling, that is ⟨Y, ψS⟩ for all S with |S| ≤ k. This algorithm is presented
in Algorithm 2.

In practice when the distribution D is unknown, we apply the orthogonalization process on the
empirical distribution D̂ derived using the training samples. This process can be implemented using
recursive formulas as described in Procedure 1. Once the orthogonal basis is obtained, the Fourier
algorithm computes the empirical estimate of ⟨Y, ψS⟩D. In the following theorem, we provide PAC
bound when using this approach for learning k-juntas.

Theorem 2 The Fourier algorithm algorithm agnostically learns k juntas with generalization error
less than

Popt +O
(√ 2kck

(k − 1)!n
log

dk

(k − 1)!δ

)
,

with probability at least (1−δ), where n is the number of samples and ck =
∆ maxS⊆[d],|S|≤k∥ψS∥2∞.

Procedure 1: FourierOrth
Input: Samples {x(i)}ni=1, depth parameter k, threshold ε ∈ (0, 1)

1 Procedure FourierOrth:
2 Generate all subsets Sj ⊆ [d] with size at most k and with the standard ordering as in

(1).
3 Compute the covariance matrix B̂ with elements: b̂j,ℓ ← 1

n

∑n
l=1 x

SjxSℓ .

4 Set Â← B̂.
5 for row j of Â do
6 Update the jth row: Âj,∗ ← Âj,∗ −

∑
ℓ<j âℓ,jÂℓ,∗

7 Compute νj ← b̂j,j −
∑

ℓ<j â
2
ℓ,j

8 if νj ≥ ε then
9 Normalize the jth row: Âj,∗ ← Âj,∗√

νj

10 Set ψSj ≡ 1√
νj
(χSj −

∑
ℓ<j âℓ,j ψSℓ

)

11 else
12 Set the jth row of Â zero: Âj,∗ ← 0
13 Set ψSj ≡ 0

14 return all ψSj ’s.

3. Theoretical Analysis

The main results of this paper rely on a fundamental connection between square loss and the 0-1 loss
presented as Lemma 1 and 2 in Section 3.2. In this section, we present this connection and describe
the steps in proving Theorem 1 and 2. We start with presenting the Hilbert space framework.
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3.1 A Hilbert Space Representation

We define a joint Hilbert space for functions on X × {−1, 1} incorporating the joint sample-label
relation and the underlying joint distribution. Let D be a joint probability distribution on the input-
output set X × {−1, 1}. For analytic tractability assume that the marginal Dx of D has finite
moments. Consider a Hilbert space of all real-valued functions f : X × {−1, 1} 7→ R for which
ED[f(X, Y )2] is finite. The inner product between two members f, g is defined as ⟨f, g⟩D =∆

ED[f(X, Y )g(X, Y )]1. The usual 1-norm and 2-norm of a function f are defined as ∥f∥1,D =∆

ED[|f(X, Y )|] and ∥f∥2,D =∆
√

ED[f(X, Y )2], respectively.
We use this formulation to study our PAC learning problem. In this view, the true labeling is the

mapping (x, y) 7→ y for all x ∈ X and y ∈ {−1, 1}. Therefore, it is not difficult to check that the
generalization loss of a predictor g can be written in terms of the inner products as

PD
{
Y ̸= g(X)

}
=

1

2
− 1

2
⟨Y, g⟩D =

1

4
∥Y − g∥22,D, (3)

where, with slight abuse of notation, Y and g are understood as the mappings (x, y) 7→ y and
(x, y) 7→ g(x), respectively.

The empirical variant of the above formulation is easily derived by replacing D with the empir-
ical distribution D̂ that is uniform on the training set and zero outside of it. Therefore, the empirical
loss of g immediately equals to

PD̂
{
Y ̸= g(X)

}
=

1

2
− 1

2
⟨Y, g⟩D̂ =

1

4
∥Y − g∥2

2,D̂
.

In what follows, we use this formulation to derive bounds on the expected and empirical loss
and prove the main theorems.

3.2 Main Technical Results

We start with characterizing the minimum loss in the class of k-juntas.
Characterizing Popt: Let J be a subset of [d] with k elements. Consider all polynomials of degree
up to k on the coordinates of J as the input variables. The polynomial that minimizes the square
loss is defined as the projection of Y onto the subset J . This polynomial is formally defined as

ΠJ
Y =∆ argmin

p∈Pk

∥Y − p(XJ )∥2,D (4)

where Pk is the set of polynomials of degree at most k. With this definition, in the following lemma,
we characterize the minimum generalization loss obtained by the k-juntas.

Lemma 1 Let Popt be the minimum expected 0-1 loss under any distribution D and among all the
k-juntas for a fixed k ≤ d. Then, the following equality holds

Popt =
1

2
− 1

2
max

J⊆[d], |J |=k
∥ΠJ

Y ∥1,D. (5)

1. The zero function in this space is a function that maps all (x, y) ∈ X ×{−1, 1} to 0 except a zero-probability subset.
Therefore, a pair of functions f, g in this space are equal if f − g is the zero function.
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Proof Fix a k-element subset J ⊆ [d] and let g : X 7→ {−1, 1} be a k-junta that depends on the
coordinates of J . From (3) its generalization loss can be written as P

{
Y ̸= g(X)

}
= 1

2−
1
2⟨Y, g⟩D.

Next, consider the collection of all bounded real-valued functions whose output depends only on
the coordinate J . It is not difficult to check that this collection forms a subspace inside the original
Hilbert space. Therefore, g belongs to this subspace. Further, as ΠJ

Y minimizes the L2-distance
with Y , it is the projection of Y onto this space. This implies that inner product ⟨Y, g⟩D equals to
⟨ΠJ

Y , g⟩D. Hence, the generalization loss of g satisfies the following

P
{
Y ̸= g(X)

}
=

1

2
− 1

2
⟨ΠJ

Y , g⟩D ≥
1

2
− 1

2
⟨|ΠJ

Y |, |g|⟩D

≥ 1

2
− 1

2
∥ΠJ

Y ∥1,D,

where the last inequality follows as |g(x)| = 1. Therefore, maximizing over all k-element subsets
J gives the bound

Popt ≥
1

2
− 1

2
max

J :|J |=k
∥ΠJ

Y ∥1,D.

Hence, we established a lower-bound on Popt. Next, we show that this bound is achievable. For that
construct a k-junta as g = sign[ΠJ

Y ] where J is a k-element subset of [d]. Then, from the above
argument, the generalization error of such g equals

P
{
Y ̸= sign[ΠJ

Y ]
}
=

1

2
− 1

2
⟨ΠJ

Y , sign[Π
J
Y ]⟩D

=
1

2
− 1

2
∥ΠJ

Y ∥1,D,

where the last equality follows due to the identity ⟨h, sign[h]⟩ = ∥h∥1 for any function h. Therefore,
optimizing over J gives

Popt ≤
1

2
− 1

2
max

J :|J |≤k
∥ΠJ

Y ∥1,D.

As a result,we established an upper-bound that matches with the lower-bound and the completes the
proof.

Connection to Square Loss : The main ingredient in the proof of the main results (Theorem 1 and
2) is the following lemma connecting the square error to the 0− 1 loss in learning k-juntas.

Lemma 2 Let D be any joint probability distribution on X × {−1, 1}. Given a subset J ⊆ [d], let
hJ denote an arbitrary bounded real-valued function on X that depends only on the coordinates of
J . Then,

P
{
Y ̸= sign[hJ (X)]

}
≤ 1

2

(
1− ∥ΠJ

Y ∥1,D + U
(
∥ΠJ

Y − hJ ∥2,D
))
,

where ΠJ
Y is as in (4) and U is a polynomial defined as U(x) = x3 + 3

2x
2 + 5

4x.

The proof of the lemma is given in Appendix B.
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3.3 PAC learnability of L2 Polynomial Regression

Having the above lemmas, we are ready to prove Theorem 1 on agnostic PAC learnability of k-juntas
using L2 polynomial regression.
Proof of Theorem 1. For any J , let p̂J be the output of the polynomial regression, that is
p̂J = argminp∈Pk

∥Y − pJ ∥2,D̂, where D̂ is the empirical distribution. Note that the selected

predictor is of the form sign[p̂J ]. As a result, from Lemma 2 with D replaced with D̂, the empirical
loss of sign[p̂J ] is bounded as

PD̂
{
Y ̸= sign[p̂J (X)]

}
≤ 1

2
− 1

2
∥p̂J ∥1,D̂,

where the U(·) term in Lemma 2 is zero, as p̂J = ΠJ
Y when D is replaced with D̂. Next, we

minimize both sides over all k-element subsets J . From Lemma 1, with D replaced by D̂, the
right-hand side of the above inequality minimized over J is the minimum empirical loss P̂opt. This
implies that

min
J :|J |=k

PD̂
{
Y ̸= sign[p̂J (X)]

}
= P̂opt.

Hence, we proved that the minimum empirical loss is achieved using the L2 polynomial regression.
Naturally, the next step is to extend this result to the generalization loss. This part follows from the
standard arguments in VC theory ( See Corollary 3.19 in (Mohri et al., 2018)) and the fact that the
VC dimension of the k-junta class is less than 2k + O(k log d). Particularly, given δ ∈ (0, 1), with
probability (1− δ), the generalization loss is less than

Popt +O
(√(2k + k log d)

n
log

n

(2k + k log d)

)
+

√
1

2n
log

1

δ
,

where n is the number of the samples. With this inequality, the theorem is proved.

3.4 PAC learning using the Fourier algorithm

In this part, we use the lemmas in the previous section to prove Theorem 2. Recall that Π̂J is the
Fourier polynomial constructed at Algorithm 2 for any coordinate subset J .
Proof of Theorem 2. From Lemma 2, we have that

P
{
Y ̸= sign[Π̂J ]

}
≤ 1

2
(1− ∥ΠJ

Y ∥1,D) +
1

2
U(∥ΠJ

Y − Π̂J ∥2,D).

Next, we bound the second term in the right-hand side. For that, we present the following lemma
which is proved in Appendix C.

Lemma 3 (Accuracy of the Fourier Estimations) Given δ ∈ (0, 1), with probability at least (1−
δ), the following inequalities hold

∥ΠJ
Y − Π̂J

Y ∥2,D ≤ O
(√ 2kck

(k − 1)!n
log

dk

(k − 1)!δ

)
, (6)

for all k-element subsets J , where ck is as in Theorem 2 and n is the number of samples.
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Therefore, with ϵ′n being the right-hand side of (6) we have that

P
{
Y ̸= sign[Π̂J

Y ]
}
≤ 1

2
(1− ∥Π̂J

Y ∥1,D) +
1

2
U(ϵ′n)

(a)
=

1

2
(1− ∥ΠJ

Y ∥1,D) +
1

2

(
∥ΠJ

Y ∥1,D − ∥Π̂
J
Y ∥1,D

)
+

1

2
U(ϵ′n)

(b)

≤ 1

2
(1− ∥ΠJ

Y ∥1,D) +
ϵ′n
2

+
1

2
U(ϵ′n), (7)

where in (a) we add and subtract ∥ΠJ
Y ∥1,D and in (b) we use the following chain of inequalities

| ∥ΠJ
Y ∥1,D − ∥Π̂

J
Y ∥1,D| ≤ ∥Π

J
Y − Π̂J

Y ∥1,D ≤ ∥Π
J
Y − Π̂J

Y ∥2,D ≤ ϵ
′
n,

where the first inequality follows from the triangle inequality; the second is due to Jensen Inequality
implying that E[|Z|] ≤

√
E[Z2]; and the third follows from the definition of ϵ′n.

Next, we minimize both sides of (7) over all k-elements coordinatesJ . LetJ ∗ be the minimizer
of the left-hand side. Hence, from Lemma 1, we obtain that

P
{
Y ̸= sign[Π̂J ∗

Y ]
}
≤ Popt +

ϵ′n
2

+
1

2
U(ϵ′n) ≤ Popt +

19

8
ϵ′n,

where the last inequality is because U(x) ≤ 15
4 x for x ∈ [0, 1].

Recall that Π̂Ĵ
Y is the polynomial on Ĵ coordinates that is selected at Algorithm 2. Therefore, it

remains to show that the loss on the left hand-side does not change significantly whenJ ∗ is replaced
with Ĵ . As Ĵ is the k-element coordinate that minimizes the empirical loss, we have that

PD̂
{
Y ̸= sign[Π̂Ĵ

Y ]
}
≤ PD̂

{
Y ̸= sign[Π̂J ∗

Y ]
}

≤ PD
{
Y ̸= sign[Π̂J ∗

Y ]
}
+O

(√k

n
log

2

δ

)
,

where the last inequality holds with probability (1 − δ) that follows from McDiarmid’s inequality
and the fact that there are at most 2k Boolean functions on coordinate J ∗. Hence, we proved that

PD̂
{
Y ̸= sign[Π̂Ĵ

Y ]
}
≤ Popt +

19

8
ϵ′n +O

(√k

n
log

2

δ

)
.

The rest of the argument follows from VC theory for replacing D̂ with D in the left-hand side .
Hence, the proof is complete by replacing the ϵ′n with the right-hand side of (6).

4. Learning Other Hypothesis Classes

In this section, we study learning of more general concept classes using the L2-based approaches.

4.1 Polynomially Approximated Class

An important concept class is the set of predictors that are approximated by fixed-degree polyno-
mials as studied in (Kalai et al., 2008). We adopt Algorithm 1 for learning with respect to these
classes. We start with the following formulation:
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(ϵ, k)-approximated concept class: Given ϵ ∈ [0, 1], k ∈ N and any probability distribution DX

on X , a concept class C of functions c : X 7→ {−1, 1} is (ϵ, k)-approximated if

sup
c∈C

inf
p∈Pk

E
[(
c(X)− p(X)

)2] ≤ ϵ2,
where Pk is the set of all polynomials of degree up to k.

As a byproduct of our analysis, we prove in Appendix D that the L2 based algorithms (without
the randomized rounding of (Jackson, 2006)) learn the approximated concept class with error up to
2Popt + ϵ.

Theorem 4 Given ϵ > 0 and k ∈ N, the degree k L2 polynomial regression learns any (ϵ, k)-
approximated concept class, with probability greater than (1− δ), and generalization loss up to

2Popt + 3ϵ+O
(√2 dk+1

n
log

en

dk+1

)
+

√
1

2n
log

1

δ

where d is the number of input variables and n is the sample size.

This result is derived using the following lemma proved in Appendix E that eliminates the need
for randomized rounding.

Lemma 4 Suppose θ is a random variable with the probability density function fθ(t) = 1− |t|, for
t ∈ [−1, 1]. Then, the following bound holds for any polynomial p

Eθ
[
PD̂

{
Y ̸= sign[p(X)− θ]

}]
≤ 1

2
∥Y − p∥2

2,D̂
.

4.2 Generalized approximated class

Lastly, we finish this paper by extending our results to a more general hypothesis class. Fix a set
of functions e1(x), e2(x), ..., em(x) and let H be a Hilbert space spanned by a these functions. Let
C be a class of functions each of which approximated by elements of H with square error up to ϵ,
i.e., infh∈H∥c − h∥2,D ≤ ϵ for any c ∈ C. As a special case, suppose ei’s are all the functions
of the form e(x) =

∏
j∈[d] x

αj

j where αj’s are non-negative integers adding up to k. Then C is a
(k, ϵ)-approximated class as in Section 4.1.

Theorem 5 Suppose A is any algorithm that given n training instances finds a function ĥ ∈ H so
that the empirical loss ∥Y −h∥2,D̂ is minimized. Then, the predictor sign[ĥ] learns C with expected
generalization error up to

2min
c∈C

P
{
Y ̸= c(X)

}
+ 3ϵ+O

(√VC(C)
n

log
n

VC(C)

)
,

where VC(C) is the VC dimension of C.
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stricted focus of attention. In Gábor Lugosi and Hans Ulrich Simon, editors, Learning Theory,
pages 304–318, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. ISBN 978-3-540-35296-9.

A. T. Kalai, A. R. Klivans, Yishay Mansour, and R. A. Servedio. Agnostically learning halfspaces.
In Proc. 46th Annual IEEE Symp. Foundations of Computer Science (FOCS’05), pages 11–20,
October 2005. doi: 10.1109/SFCS.2005.13.

Adam Tauman Kalai, Adam R. Klivans, Yishay Mansour, and Rocco A. Servedio. Agnostically
learning halfspaces. SIAM Journal on Computing, 37(6):1777–1805, jan 2008. doi: 10.1137/
060649057.

Gil Kalai. Noise sensitivity and chaos in social choice theory. Technical report, Hebrew University,
2005.

Michael J. Kearns, Robert E. Schapire, and Linda M. Sellie. Toward efficient agnostic learning.
Machine Learning, 17(2-3):115–141, 1994. doi: 10.1007/bf00993468.

Adam R Klivans, Philip M Long, and Rocco A Servedio. Learning halfspaces with malicious noise.
Journal of Machine Learning Research, 10(12), 2009.

Jiange Li and Muriel Médard. Boolean functions: Noise stability, non-interactive correlation, and
mutual information. In Proc. IEEE ISIT , 2018.

Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, Fourier transform, and
learnability. J. ACM, 40(3):607–620, 1993.

Zhengyang Liu, Xi Chen, Rocco A. Servedio, Ying Sheng, and Jinyu Xie. Distribution-free junta
testing. ACM Transactions on Algorithms, 15(1):1–23, jan 2019. doi: 10.1145/3264434.

15

https://proceedings.mlr.press/v139/heidari21a.html


Mehryar (New York University) Mohri, Afshin (Google, Inc.) Rostamizadeh, Ameet (University
of California, and Berkeley) Talwalkar. Foundations of Machine Learning. MIT Press Ltd, 2018.
ISBN 0262039400.

Elchanan Mossel, Ryan O’Donnell, and Rocco P Servedio. Learning juntas. In Proc. ACM Symp.
on Theory of Computing, pages 206–212, 2003.

Elchanan Mossel, Ryan O’Donnell, and Rocco A Servedio. Learning functions of k relevant vari-
ables. J. Comput. Syst. Sci, 69(3):421–434, 2004.

Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.

Rocco A. Servedio, Li-Yang Tan, and John Wright. Adaptivity helps for testing juntas. In Proceed-
ings of the 30th Conference on Computational Complexity, CCC ’15, page 264–279, Dagstuhl,
DEU, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 9783939897811.

Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to
Algorithms. Cambridge University Press, New York, NY, USA, 2014. ISBN 1107057132,
9781107057135.

J.A.K. Suykens and J. Vandewalle. Neural Processing Letters, 9(3):293–300, 1999. doi: 10.1023/a:
1018628609742.

L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, nov
1984. doi: 10.1145/1968.1972.

Santosh S. Vempala and Ying Xiao. Structure from local optima: Learning subspace juntas via
higher order pca. August 2011.

Nir Weinberger and Ofer Shayevitz. On the optimal Boolean function for prediction under quadratic
loss. IEEE Trans. Inf. Theory, 63(7):4202–4217, 2017.

Nir Weinberger and Ofer Shayevitz. Self-predicting Boolean functions. In Proc. IEEE ISIT , 2018.

Ronald de Wolf. A Brief Introduction to Fourier Analysis on the Boolean Cube. Number 1 in
Graduate Surveys. Theory of Computing Library, 2008. doi: 10.4086/toc.gs.2008.001. URL
http://www.theoryofcomputing.org/library.html.

16

http://www.theoryofcomputing.org/library.html


Appendix A. Proof of Proposition 3

Any polynomial p of degree upto k can be written in terms of the monomials χS of degree up to
k. From the ordering in (1) and the orthogonalization process, these monomials are themselves
decompose in terms of the basis ψS with |S| ≤ k. This is done be reversing the recursive equations
in the orthogonalization process. Consequently, the polynomial p decomposes as

p ≡
∑

S:|S|≤k

pSψS .

From the Parseval’s identity, we have that

∥Y − p∥22,D =
∑
S
(αS − pS)2

=
∑

S:|S|≤k

(αS − pS)2 +
∑

S:|S|>k

(αS)
2

where αS = ⟨Y, ψS⟩D are the Fourier coefficients corresponding to Y . The second equality follows
since the Fourier expansion of p is zero for S with |S| > k. As the above equation holds for all
p ∈ Pk, only the first term will be changed. Therefore, the least square error is obtained by setting
pS = αS for all S with |S| ≤ k. Hence, the optimal polynomial p∗ decomposes as

p∗ ≡
∑

S:|S|≤k

αSψS .

The proof is complete by noting that αS = ⟨Y, ψS⟩D .

Appendix B. Proof of Lemma 2

From (3) in the main text, the generalization error of sign[hJ ] can be written as 1
2 −

1
2⟨Y, sign[hJ ]⟩.

Since sign[hJ ] is a function depending only on the coordinates of J , then in the inner product, we
can replace Y with ΠJ

Y . Hence, we obtain that

P
{
Y ̸= sign[hJ (X)]

}
=

1

2
− 1

2
⟨ΠJ

Y , sign[hJ ]⟩

=
1

4

(
1− ∥ΠJ

Y ∥
2
2 + ∥ΠJ

Y − sign[hJ ]∥22
)
. (8)

The 2-norm quantity above is upper-bounded as follows

∥ΠJ
Y − sign[hJ ]∥22

(a)

≤
(
∥ΠJ

Y − hJ ∥2 + ∥hJ − sign[hJ ]∥2
)2
,

=
(
∥ΠJ

Y − hJ ∥
2
2 + ∥hJ − sign[hJ ]∥22 + 2∥ΠJ

Y − hJ ∥2∥hJ − sign[hJ ]∥2
)
,

(9)

where (a) follows from the Minkowski’s Inequality inequality for 2-norm. Note that |hJ−sign[hJ ]| =
|1− hJ |. Therefore,

∥hJ − sign[hJ ]∥22 = E
[
(1− |hJ (XJ )|)2

]
= 1 + ∥hJ ∥22 − 2∥hJ ∥1. (10)
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From this relation and equations (8), (9), we obtain the following upper bound

4P
{
Y ̸= sign[hJ (X)]

}
≤ 2− 2∥hJ ∥1 + ∥hJ ∥22 − ∥ΠJ

Y ∥
2
2︸ ︷︷ ︸

(I)

+ ∥ΠJ
Y − hJ ∥

2
2 + 2∥ΠJ

Y − hJ ∥2 ∥hJ − sign[hJ ]∥2︸ ︷︷ ︸
(II)

. (11)

In what follows, we bound the terms denoted by (I) and (II).

Bounding (I): From the Minkowski’s inequality for 2-norm, we have

∥hJ ∥22 ≤
(
∥ΠJ

Y ∥2 + ∥hJ −ΠJ
Y ∥2

)2

= ∥ΠJ
Y ∥

2
2 + ∥hJ −ΠJ

Y ∥
2
2 + 2∥ΠJ

Y ∥2∥hJ −ΠJ
Y ∥2

≤ ∥ΠJ
Y ∥

2
2 + ∥hJ −ΠJ

Y ∥
2
2 + 2∥hJ −ΠJ

Y ∥2

where the second inequality is due Bessel’s inequality implying that ∥ΠJ
Y ∥2 ≤ 1. Hence, the term

(I) in (11) is upper bounded as

(I) ≤ λ1 =∆ ∥hJ −ΠJ
Y ∥

2
2 + 2∥hJ −ΠJ

Y ∥2. (12)

Bounding (II): From (10), we have

∥hJ − sign[hJ ]∥22 = 1 + ∥hJ ∥22 − 2∥hJ ∥1
(a)

≤ 1 + 2(∥ΠJ
Y ∥

2
2 + ∥ΠJ

Y − hJ ∥
2
2)− 2∥hJ ∥1

(b)
= 1 + 2(∥ΠJ

Y ∥
2
2 + ∥ΠJ

Y − hJ ∥
2
2)− 2

(
∥ΠJ

Y ∥1 + (∥hJ ∥1 − ∥ΠJ
Y ∥1)

)
= 1 + 2(∥ΠJ

Y ∥
2
2 − ∥ΠJ

Y ∥1) + 2∥ΠJ
Y − hJ ∥

2
2 − 2

(
∥hJ ∥1 − ∥ΠJ

Y ∥1
)

(c)

≤ 1 + 2∥ΠJ
Y − hJ ∥

2
2 − 2

(
∥hJ ∥1 − ∥ΠJ

Y ∥1
)

(d)

≤ 1 + 2∥ΠJ
Y − hJ ∥

2
2 + 2∥ΠJ

Y − hJ ∥2, (13)

where (a) follows from the Minkowski’s inequality for 2-norm and the inequality (x + y)2 ≤
2(x2+y2). Equality (b) follows by adding and subtracting ∥ΠJ

Y ∥1. Inequality (c) holds, since from
Jensen’s inequality ∥ΠJ

Y ∥22 ≤ ∥Π
J
Y ∥1. Lastly, inequality (d) holds because of the following chain

of inequalities ∣∣∣∥ΠJ
Y ∥1 − ∥hJ ∥1

∣∣∣ ≤ ∥ΠJ
Y − hJ ∥1 ≤ ∥Π

J
Y − hJ ∥2, (14)

where the first inequality is due to the Minkowski’s inequality for 1-norm and the second inequality
is due to Holder’s inequality.

Next, we show that the quantity
∥∥hJ − sign[hJ ]

∥∥
2

without the square is upper bounded by the
same term as in the right-hand side of (13). That is

(II) =
∥∥hJ − sign[hJ ]

∥∥
2
≤ λ2 =∆ 1 + 2∥ΠJ

Y − hJ ∥
2
2 + 2∥ΠJ

Y − hJ ∥2. (15)
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The argument is as follows: if
∥∥hJ − sign[hJ ]

∥∥
2

is less than one, then the upper bound holds
trivially as λ2 ≥ 1; otherwise, this quantity is less than its squared and, hence, the upper-bound
holds.

As a result of the bounds in (11), (12), and (15) we obtain that

4P
{
Y ̸= sign[hJ (X)]

}
≤ 2− 2∥hJ ∥1 + λ1 + ∥ΠJ

Y − hJ ∥
2
2 + 2λ2∥ΠJ

Y − hJ ∥2

= 2− 2∥ΠJ
Y ∥1 +

(
∥ΠJ

Y ∥1 − ∥hJ ∥1
)
+ λ1 + ∥ΠJ

Y − hJ ∥
2
2 + 2λ2∥ΠJ

Y − hJ ∥2

≤ 2− 2∥ΠJ
Y ∥1 + ∥Π

J
Y − hJ ∥2 + λ1 + ∥ΠJ

Y − hJ ∥
2
2 + 2λ2∥ΠJ

Y − hJ ∥2,

where the last inequality is due to (14). Therefore, from the definition of λ1 and λ2, and the function
U in the statement of the lemma, we obtain

4P
{
Y ̸= sign[hJ (X)]

}
≤ 2− 2∥ΠJ

Y ∥1 + 4U(∥ΠJ
Y − hJ ∥2).

This completes the proof.

Appendix C. Proof of Lemma 3

For any subset S ⊆ [d], let xS =
∏
r∈S xr. Let bjℓ = ED[XSjXSℓ ] and b̂j,ℓ = 1

n

∑n
l=1 x

SjxSℓ for
all j, ℓ as in Procedure 1. Note that if b̂j,ℓ = bj,ℓ then ψS = ψ̂S . Let Π̄J

Y denote the version of Π̂J
Y

under this assumption. From Minkowsky’s inequality, by adding and subtracting Π̄J
Y we have

∥ΠJ
Y − Π̂J

Y ∥2 ≤ ∥Π
J
Y − Π̄J

Y ∥2 + ∥Π̄
J
Y − Π̂J

Y ∥2. (16)

Note that the first term above measures the error in estimating the Fourier coefficients; while the
second term measures the error is creating the basis. The first term is bounded as follows.

Note that Π̄J
Y equals to Π̄J

Y (x
d) =

∑
S⊆J f̄SψS(x

d), where the Fourier-estimates f̄S are given
as f̄S = 1

n

∑
i Y (i)ψS(X(i)). In addition, by definition of the projection function ΠJ

Y , we have that
ΠJ
Y (x) =

∑
S⊆J fS ψS(x). Therefore, from Parseval’s identity, the 2-norm factors as

∥ΠY − Π̄J
Y ∥

2
2 =

∑
S⊆J
|fS − f̄S |2.

In what follows, we show that |fS − f̄S | ≤ ϵ for all subsets S ⊆ [d] with |S| ≤ k. For that, we use
the standard arguments using McDiarmid’s inequality.

Note that f̄S is a function of the training random samples (X(i), Y (i)), i = 1, 2, ..., n. Observe
that E[f̄S ] = fS which implies that f̄S is an unbiased estimation of fS . Since the samples are drawn
i.i.d., we apply McDiarmid’s inequality to bound the probability of the event |fS − f̄S | ≥ ϵ′.

For that, fix i ∈ [d] and suppose (X(i), Y (i)) in the training set is replaced with an independent
and identically distributed (i.i.d.) copy (X̃(i), Ỹ (i)). With this replacement f̄S is changed to another
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random variable denoted by f̃S . Then

|f̄S − f̃S | =
1

n
|Y (i)ψS(X(i))− Ỹ (i)ψS(X̃(i))|

≤ 1

n
|Y (i)ψS(X(i))|+ |Ỹ (i)ψS(X̃(i))|

≤ 1

n
|ψS(X(i))|+ |ψS(X̃(i))|

≤ 2

n
∥ψS∥∞,

where ∥ψS∥∞ = maxx |ψS(x)|. Let ck = maxS⊆[d],|S|≤k∥ψS∥2∞. Then, from McDiarmid’s in-
equality, for any ϵ′ ∈ (0, 1)

P
{

max
S:|S|≤k

∣∣f̄S − fS∣∣ ≥ ϵ′} ≤ 2
[ k∑
m=0

(
d

m

)]
exp

{
− nϵ′2

2ck

}
, (17)

where we also used the union bound. For k ≤ d/2, we obtain that

k∑
m=0

(
d

m

)
≤ kd

k

k!
.

As a result, with probability at least (1− δ), maxS:|S|≤k
∣∣f̄S − fS∣∣ ≤√

2ck
n log 2dk

(k−1)!δ . Hence, for
any k-element subset J , with probability at least (1− δ), we have that

∥ΠJ
Y − Π̄J

Y ∥
2
2 ≤ 2k

2ck
(k − 1)!n

log
2dk

(k − 1)!δ
. (18)

Next, we bound the second term in (16). The argument follows from having b̂j,ℓ ≈ bℓ,j that
itself follows again from McDiarmid’s inequality. Since there are at most O(dk) such coefficients,
we obtain a similar bound as in (18) for the second term. That said, combining all the bounds, we
obtain the desired result

∥ΠJ
Y − Π̂J

Y ∥2 ≤ O
(√

2kck
(k − 1)!n

log
dk

(k − 1)!δ

)
,

for any k-element subset J .

Appendix D. Proof of Theorem 4

To derive an upper bound on the empirical error of ĝ, we first consider a weaker version of the
algorithm. The idea is to select θ randomly instead of optimizing it as in the algorithm. For that, we
use Lemma 4 in Section 4.1. Consequently, from the lemma and due the fact that θ in the algorithm
is selected to minimize the empirical error, we obtain that

PD̂
{
Y ̸= ĝ(X)

}
≤ 1

2
∥Y − p̂∥2

2,D̂
, (19)
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where p̂ is the output of L2-polynomial regression and ĝ ≡ sign[p̂ − θ], as in Algorithm 1. Let c∗

be the predictor with minimum generalization error in the (ϵ, k)-approximated concept class. Let p
be a degree k polynomial such that ∥c∗ − p∥2 ≤ ϵ. Since p̂ minimizes the empirical 2-norm, then
the right-hand side of (19) satisfies

1

2
∥Y − p̂∥2

2,D̂
≤ 1

2
∥Y − p∗∥2

2,D̂
. (20)

We proceed by taking the expected error of the empirical error with respect to the random
training samples. From (19) and (20) we obtain the following inequalities

E
[
PD̂

{
Y ̸= ĝ(X)

}]
≤ 1

2
E
[
∥Y − p∗∥2

2,D̂

]
=

1

2
∥Y − p∗∥22,D

(a)

≤ 1

2

(
∥Y − c∗∥2,D + ∥p∗ − c∗∥2,D

)2

≤ 1

2

(
∥Y − c∗∥2,D + ϵ

)2

(b)

≤ 1

2

(
∥Y − c∗∥22,D + 4ϵ+ ϵ2

)
(c)

≤ 2Popt +
5

2
ϵ, (21)

where (a) holds from Minkowski’s inequality for 2-norm, (b) holds as ∥Y − c∗∥2,D ≤ 2, and (c)
holds because of the second equality in (3) and that Popt = P{Y ̸= c∗(X)}.

Next, we connect the empirical error of ĝ to its generalization error. Note that the Vapnik–Chervonenkis
(VC) dimension of all functions of the form sign[p] for some polynomial of degree upto k does not
exceed dk+1. Therefore, from VC theory ( See Corollary 3.19 in (Mohri et al., 2018)) for any δ,
with probability at least (1− δ), the following inequality holds

P
{
Y ̸= ĝ(X)

}
≤ PD̂

{
Y ̸= ĝ(X)

}
+

√
2 dk+1

n
log

en

dk+1

+

√
log 1

δ

2n
. (22)

Therefore, the proof is complete by taking the expectation and combining it with the last bound in
(21).

Appendix E. Proof of Lemma 4

Note that y ̸= sign(p(x) − θ), if θ is between y and p(x). Hence, the expected empirical error of
sign[p(X)− θ] with respect to the random θ equals to

Eθ
[
PD̂

{
Y ̸= sign[p(X)− θ]

}]
=

1

n

∑
i

Eθ
[
1
{
yi ̸= sign(p(xi)− θ)

}]
=

1

n

∑
i

P
{
θ ∈ [p(xi), yi]

⋃
[yi, p(xi)]

}
︸ ︷︷ ︸

Pi

. (23)
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Next, we show that Pi ≤ 1
2(yi − p(xi))

2 for all (xi, yi)’s. Suppose yi = 1. If p(xi) > 1, then
Pi = 0 as θ ≤ 1. If p(xi) ∈ [0, 1], then

Pi = P
{
θ ∈ [p(xi), 1]

}
=

∫ 1

p(xi)
(1− t)dt

=
1

2

(
1− p(xi)

)2
=

1

2

(
yi − p(xi)

)2
.

If p(xi) ∈ [−1, 0], then

Pi = P
{
θ ∈ [p(xi), 1]

}
=

∫ 1

p(xi)
1− |t|dt

=
1

2
+

∫ 0

p(xi)
(1 + t)dt

=
1

2
− p(xi)−

1

2
(p(xi))

2

≤ 1

2
(1 + |p(xi)|)2 =

1

2
(yi − p(xi))2.

Lastly, if p(xi) < −1, then Pi = 1 because θ ≥ −1. In this case also Pi ≤ 1
2(yi − p(xi))

2. The
case for yi = −1 follows by symmetricity. Hence, we obtain the following inequality

Eθ
[
PD̂

{
Y ̸= ĝ(X)

}]
≤ 1

n

∑
i

1

2

(
yi − p(xi)

)2
.

The proof is complete by noting that the right-hand side equals to 1
2∥Y − p∥

2
2,D̂

.
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