
Compression of Dynamic Graphs Generated by a
Duplication Model

Krzysztof Turowski, Abram Magner, and Wojciech Szpankowski
Center for Science of Information,
Department of Computer Science

Purdue University, West Lafayette, IN, USA
Email: krzysztof.szymon.turowski@gmail.com, abram10@gmail.com, spa@cs.purdue.edu

I. INTRODUCTION

Complex systems can often be modeled as a set of dynamic
(time-evolving) graphs. In these systems, the spatial structure
of the domain, as well as patterns of interactions evolve in
time – this evolution critically determines emergent properties,
associated function, robustness, and security of the system.
Understanding the evolution of such systems, identifying crit-
icalities, and controlling driving processes, pose foundational
problems in system design and analysis.

Compression schemes for advanced data structures have
become the challenge of today. To meet this challenge, we
have recently initiated a systematic study of advanced data
structures such as trees [17], [18], unlabeled Erdős-Renyi
graphs [3], and preferential attachment graphs [11]. In this
paper we continue this quest and consider another dynamic
graphs generated by a vertex-duplication model.

The full duplication model was almost exclusively analyzed
in the context of the typical properties such as degree distribu-
tion [4]. It is shown that average degree depends strongly on
the initial conditions[10]. It is also proved that the asymptotic
degree distribution is nonstationary, yet it exhibits power-law
behaviour with exponent dependent on the lowest nonzero
degree in the initial graph[15]. Other parameters studied in
the context of duplication models are number of small cliques
[8] or degree-degree correlation [2].

The rest of the paper is organized as follows: in Section II
we define a model together and present its basic properties. In
Section III we establish main results of this paper concerning
entropy of the unlabelled and labelled graphs generated by a
full duplication model. Algorithms which achieve this bounds
within a constant term are presented in Section IV with Section
V being devoted to the experimental verification of these
findings.

II. FULL DUPLICATION MODEL

A. Definition

Definition of the full duplication model can be states as
follows: let us denote by G0 an original graph on n0 vertices

for some fixed constant n0. Then, for any 1 ≤ i ≤ n we obtain
Gi−1 from Gi by choosing one of vertices of Gi (denoted by
v) uniformly at random, attaching to a graph a new vertex
vi and adding edges between vi and all vertices adjacent to
v. Note that v and vi are not connected – although if one
wants to achieve higher clustering, the results in this paper
can be straightforwardly applied to the model in which we
add not only edges between vi and the neighbours of v, but
also between vi and v.

Every Gn has n+n0 vertices. The distinction between n and
n0, not present in other models, is based on the fact that the
properties of the Gn heavily depend on G0 and its structure.
However, since n0 is fixed, we may treat G0 also as fixed
beforehand.

Throughout this paper, we will refer to the vertices of G0

as U = {u1, . . . , un0
} and to all other vertices from Gn as

V = {v1, . . . , vn}. We denote by Nn(v) the neighbourhood
of the vertex v, that is, all vertices there are adjacent to v in
Gn. Sometimes we drop the subscript, if the size of the graph
is clear from the context.

An example of an evolving graph is presented in Figure 1.
On the left, we see original G0 on 6 vertices, on the right
there is G3 with added vertices such that v1 as a copy of u2,
v2 – a copy of u1, and v3 – a copy of v1.

Here, due to the limited space and the brievity of analysis,
we restict the analysis to asymmetric G0, that is, |Aut(G0)| =
1. This is not much of a concern, since the analysis can
be, with certain reservations and complications, extended to
arbitrary G0. Moreover, it is supported by the fact that even
medium-sized graphs (up to 100 vertices) are likely to be
asymmetric.

B. Basic properties

Let us introduce concepts of a parent and an ancestor of a
vertex. We say that w is a parent of v (denoted by w = P (v)),
when v was copied from w at some time 1 ≤ i ≤ n. We say
that w is an ancestor of v (denoted by w = A(v)), when
w ∈ U and there exists vertices vi1 , . . . , vik such that w =

u1 u2 u3 u4

u5u6

(a) Initial G0

u1 u2 u3 u4

u5u6v1v2

v3

(b) G3

Fig. 1: Example graph growth in pure duplication model

P (vi1), vij = P (vij+1
) for 1 ≤ j ≤ k − 1, and vik = v. For

convenience we assume that if v ∈ U , then P (u) = A(u) = u.
In our example from Figure 1 u2 is an ancestor of both v1

and v3, but only a parent of v1 and not v3.
Le us also define the neighbourhood of v N(v) = {u uv ∈

Gn}. It is closely tied to A as the following lemma shows:

Lemma 1. If A(vi) = A(vj) if and only if N(vi) = N(vj).

Proof. If u = A(vi), then obviously N(vi) = N(u) in Gj .
All vertices vk, k > i, are either adjacent to both u and vj or
to none of them – therefore N(vi) = N(u) in any Gn, n ≥ j.

If G0 is simple and asymmetric, then N(u) 6= N(u′) in G0

for any u and u′, so there exists a vertex u′′ which is adjacent
to exactly one of u, u′. Clearly, N(u)−N(u′) in any Gn also
constains u′′ so N(u) 6= N(u′) in Gn for any N

Since the relations A and N are transitive, we may conclude
the proof.

For 1 ≤ i ≤ n0 Ci,n = |{w ∈ Gn : A(w) = ui}, that is, a
count of vertices from Gn such that they are ultimately copies
of ui (including ui itself).

The sequence of variables (Ci,n)n0
i=1 can be described as a

urn-ball model with n0 urns. At n = 0 each urn contains
exactly one ball. Each iteration consists of picking an urn
at random, proportionally to the number of balls in each
bin – that is, with probability Ci,n∑n0

j=1 Cj,n
– removing this

ball and adding two new balls to this urn. Therefore, the
joint distribution of (Ci,n)n0

i=1 is the Dirichlet multinomial
distribution with K = n0 and αi = 1 for 1 ≤ i ≤ n0:

P{((Ci,n)n0
i=1 = (ki + 1)n0

i=1} =
Γ(n+ 1)Γ(n0)

Γ(n+ n0)

n0∏
i=1

Γ(ki + 1)

Γ(ki + 1)

(1)

Each variable Ci,n is identically distributed – though not
independent, as

∑n0

i=1 Ci,n = n – so we may analyze the
properties of Cn ∼ Ci,n for every 1 ≤ i ≤ n0. It has beta-
binomial distribution with parameters α = 1, β = n0−1. That
is:

P{Cn = k + 1} =

(
n

k

)
B(k + 1, n+ n0 − k − 1)

B(1, n0 − 1)
(2)

= (n0 − 1)

(
n

k

)
B(k + 1, n+ n0 − k − 1)

(3)

for any k ≥ 0, where B is a beta function.
Therefore, since Cn ∼ BBin(n, 1, n0 − 1) + 1 we know

immediately that ECn = n
n0

+ 1. We will also need two other
properties, proved in the Appendix A.

Lemma 2. If X ∼ BBin(n, α, β) + 1, then E[logX] =

log n+ (ψ(α)− ψ(α+ β)) log e+O(n−1).

where ψ is a digamma function.
Using the fact that for all integers r, s ψ(r) − ψ(s) =

Hr−1 −Hs−1 we obtain:

Corollary 1. For all n > 0 E[logCn] = log n−Hn0−1 log e+

O(n−1).

Lemma 3. If X ∼ BBin(n, α, β) + 1, then
E[X logX] = n log n α

α+β + nα(ψ(α+1)−ψ(α+β+1)) log e
α+β +

log n+
(
ψ(α)− ψ(α+ β) + 3

2 −
α

2(α+β)

)
log e+O(n−1).

As previously, in our case we can simplify some terms using
the fact that Hs = Hs−1 + 1

s to get:

Corollary 2. For all n > 0 E[Cn logCn] = n log n 1
n0

+

n
(1−Hn0

) log e

n0
+ log n+ (3

2 + 1
2n0
−Hn0

) log e+O(n−1).

III. MAIN THEORETICAL RESULTS

From [11] we know that

Lemma 4. H(Gn) − H(S(Gn)) = E[log Γ(Gn)] −
E[log |Aut(Gn)|]

where |Aut(Gn)| is the number of automorphisms of Gn
and Γ(Gn) is a size of a set of relabelings of Gn such that it
produces a graph generated with positive probability from G0

in this model. Here H(Gn) denote the entropy of a labelled
graph and H(S(Gn)) denote the entropy of an unlabelled
graph, or a structural entropy of Gn.

The proofs of the following theorems were moved to the
respective appendices.

Lemma 5. E[log |Aut(Gn)|] = n log n − nHn0 log e +
3n0

2 log n+O(1)

Lemma 6. E[log Γ(G)] = n log n − n log e + 2n0+1
2 log n +

O(1)

Theorem 1. H(S(Gn)) = (n0 − 1) log n+O(1)

Theorem 2. H(Gn) = n(Hn0 − 1) log e+ n0−1
2 log n+O(1)

Proof. The theorem follows straightly from the application of
Lemma 4 to Theorems 5, 6 and 1.

IV. ALGORITHMIC RESULTS

A. Retrieval of parameters from Gn

Theorem 3. For a given labelled Gn or its unlabelled struc-
ture S(Gn), then we can retrieve its n, n0 and G0 – in case
of structure up to automorphisms of Gn.

Proof. For a given labelled Gn let (w1, w2, . . . , wn+n0) be its
order of vertices. It is sufficient to find the smallest k such that
N(wk) = N(wi) for some 1 ≤ i < k. Then n0 = k − 1 and
G0 is induced by a sequence (w1, . . . , wk−1).

The case for unlabelled graphs is similar: we know (for
details see Lemma 7) that the sequence of the first n0 vertices
of the graph (that is, G0) contains exactly one vertex from
each set {v : A(v) = ui}.

Since from Lemma 1 we know that A(v) = A(w) iff
N(v) = N(w), it sufficient to scan all vertices of Gn and
split them into sets such that v and w belongs to the same set
iff N(v) = N(w). Then, we pick one vertex from each set
to from G0. Obviously, n0 and n may be extracted from the
sizes of G0 and Gn.

B. Unlabelled graphs

A sequence (Ci,n)n0
i=1 together with G0 describes com-

pletely unlabelled graph S(Gn) – yet one may have up
to n0 log n0 redundant descriptions due to the possible per-
mutations of variables. Nevertherless, it is obvious that
H(S(Gn)) = H(Ci,n) +O(1).

A trivial algorithm COMPRESSUNLABELLEDOPTIMAL

would write down a sequence (Ci,n)n0
i=1 associated with our

Gn as log n-bit numbers. This requires always n0 log n bits,
so ELSU (n) = n0 log n + O(1). Due to Theorem 2 this is
1 + 1

n0−1 -approximate algorithm to our problem.
The pseudo code of the optimal algorithm, called COM-

PRESSUNLABELLEDOPTIMAL and based upon arithmetic
coding, is as follows:

function COMPRESSUNLABELLEDOPTIMAL(S(Gn),
S(G0))

Fix a permutation π from [1, 2, . . . , n0] to the vertices
of S(G0)

Fix any ordering (v1, . . . , vn) of the vertices of S(Gn)\
S(G0)

a← 0, b← 1

for i = 1, 2, . . . , n0 do
C[i] = 1

for j = 1, 2, . . . , n do

if N(vj) = N(ui) then
C[i] = C[i] + 1

for i = n0, n0 − 1, . . . , 1 do
start← Γ(n+1)Γ(i)

Γ(n+i)

∑k−1
j=1

Γ(n+n0−j)
Γ(n+n0−1)

end← start+ Γ(n+1)Γ(k)Γ(n+n0−k)
Γ(n+k)Γ(n+n0−j)

b← a+ (b− a) ∗ start
a← a+ (b− a) ∗ end
n← n− C[i] + 1

p← b− a, x← a+ b

2
return S(G0)‖π‖[first d− log pe+ 1 bits of x]

Theorem 4. Algorithm COMPRESSUNLABELLEDOPTIMAL is
optimal up to a constant term for unlabelled graphs compres-
sion, when graph is generated by a full duplication model.

Proof. It is sufficient to observe that

P((Ci,n)n0
i=1 = (ki + 1)n0

i=1) (4)

= P((Ci,n)n0
i=1 = (ki + 1)n0

i=1|Cn0,n = kn0
+ 1)P(Cn0,n = cn0

)

(5)

= P((Ci,n)n0−1
i=1 = (ki + 1)n0−1

i=1 |
n0−1∑
i=0

Ci,n = kn0
+ 1)P(Cn0,n = kn0

+ 1)

(6)

= P((Ci,n−kn0
)n0−1
i=1 = (ki + 1)n0−1

i=1)f(ki|
∑
j≤i

kj , 1, n0 − 1)

(7)

where f is a probability mass funtion of beta-binomial distri-
bution.

That is, the marginal distribution of a Dirichlet multinomial
distribution is beta-binomial distribution. And if we fix a value
of one coordinate to c for Dirichlet multinomial distribution,
it is known that the resulting distribution is also Dirichlet
multinomial, but with n0 − 1 coordinates and all values
summing up to n− c.

We repeat this process – but note that the sequence stops
for n0 = 2:

P((Ci,n)2
i=1 = (ki + 1)2

i=1) (8)

= P(C1,n = k1 + 1|C1,n = k1 + 1)P(C2,n = k1 + 1) (9)

= f(k1|k1 + k2, 1, n0 − 1) (10)

Putting all together we get

P((Ci,n)n0
i=1 = (ki + 1)n0

i=1) (11)

=

n0∏
i=2

f(ci|
∑
j≤i

kj , 1, n0 − i) (12)

=

n0∏
i=2

(n0 − 1)
Γ(
∑
j≤i kj + 1)Γ(

∑
j<i kj + n0 − i)

Γ(
∑
j≤i kj + n0 − i+ 1)Γ(

∑
j<i kj + 1)

(13)

= (n0 − 1)!
Γ(n+ 1)

Γ(n+ n0 − 1)
= nB(n, n0) (14)

It matches the entropy, so by the properties of arith-
metic encoding (see [5]), we know that ELO(S(Gn)) ≤
H((Ci,n)n0

i=0) + 2 +ELO(S(G0)) +ELO(π) = H(S(Gn)) +

O(1).

C. Labelled graphs

Labelled graph Gn is equivalent to a sequence (A(vi))
n
i=1

for a given (labelled) G0 (which obviously can be encoded on
the constant number of bits).

A trivial algorithm COMPRESSLABELLEDSIMPLE just
writes all A(vi) as a log n0-bit number. Clearly, this gives
us always a codeword with length n log n0 and therefore (as
we need to compress G0) ELSL(n) = n log n0 + O(1).
Note that from Theorem 2 we know that this algorithm is
asymptotically (1 + 1−γ

logn0
)-approximate, where γ is Euler-

Mascheroni constant.
This sequence is random with P(A(vi) = uj) =

Cj,i−1

i+n0−1 for
1 ≤ i ≤ n, 1 ≤ j ≤ n0. Therefore, given Gi−1 we know the
conditional probabilities of Gi and we may construct another
algorithm based on arithmetic coding.

The pseudo code of the optimal algorithm is as follows:

function COMPRESSLABELLEDOPTIMAL(Gn, G0)
a← 0, b← 1

for i = 1, 2, . . . , n0 do
C[i] = 1

for i = 1, 2, . . . , n do
for j = 1, 2, . . . , n0 do

if N(vi) = N(uj) then
start←

∑j−1
k=1

C[k]
n0+i−1

end← start+ C[j]
n0+i−1

b← a+ (b− a) ∗ start
a← a+ (b− a) ∗ end
C[i] = C[i] + 1

p← b− a, x← a+ b

2
return G0‖[first d− log pe+ 1 bits of x]

Theorem 5. Algorithm COMPRESSLABELLEDOPTIMAL is
optimal up to a constant term for unlabelled graphs compres-
sion, when graph is generated by a full duplication model.

Proof. By the properties of arithmetic encoding (see [5]),
we know that ELO(Gn) ≤ H(Gn|G0) + 2 + ELO(G0) =

H(Gn) +O(1).

Note that COMPRESSLABELLEDOPTIMAL and COM-
PRESSLABELLEDSIMPLE differ only in that the first updates
at each step the probabilities and the second fixes them to a
constant 1

n0
.

V. EXPERIMENTAL RESULTS

We implemented our compression algorithms for both la-
belled and unlabelled cases and run on a synthetic data,
generated according to the vertex duplication rules. Figure ??
reports the results of compression for unlabelled graphs, figure
3 for labelled graphs.

(a) n0 = 2

(b) n0 = 64

Fig. 2: Compression for unlabelled graphs

As we see, for unlabelled graphs the error does converge
to values less than 2, which is consistent with the properties
of arithmetic encoding. For labelled graphs we observe diver-
gence in error – which is apparently very small compared to
the size of graphs. Unfortunately, the size of sample space for
is very large compared to the size of sampled graphs, therefore
the average length of compressed graphs cen be even negative.

(a) n0 = 2

(b) n0 = 64

Fig. 3: Compression for labelled graphs

ACKNOWLEDGMENT

This work was supported by NSF Center for Science of
Information (CSoI) Grant CCF-0939370, by NSF Grant CCF-
1524312, and NIH Grant 1U01CA198941-01.

REFERENCES

[1] R. Albert, A.-L. Barabási. Statistical mechanics of complex networks.
Rev. Mod. Phys, 74:47-97, 2002.

[2] S. Boccaletti, D.-U. Hwang, and V. Latora. Growing hierarchical scale-
free networks by means of nonhierarchical processes. International
Journal of Bifurcation and Chaos, 17(7):2447-2452, 2007.

[3] Y. Choi, W. Szpankowski. Compression of graphical structures: Funda-
mental limits, algorithms, and experiments. Information Theory, IEEE
Transactions on, 58(2):620-638, 2012.

[4] F. Chung, L. Lu, T. G. Dewey, D. J. Galas, Duplication Models for
Biological Networks, Journal of Computational Biology 10(5):677-687,
2003.

[5] T. Cover, J. Thomas, Elements of information theory, John Wiley and
Sons, 2006.

[6] P. Flajolet. Singularity analysis and asymptotics of binomial sums. Theor.
Comput. Sci., 215(1-2):371-381, 1999.

[7] I. Ispolatov, P. L. Krapivsky, and A. Yuryev. Duplication-divergence
model of protein interaction network. Phys. Rev. E, 71:061911, 2005.

[8] I. Ispolatov, P. L. Krapivsky, I. Mazo, and A. Yuryev. Cliques and
duplication-divergence network growth. New Journal of Physics, 2005.

[9] P. Jacquet, W. Szpankowski. Entropy computations via analytic depois-
sonization. IEEE Transactions on Information Theory, 45(4):1072-1081,
1999.

[10] J. Kim, P.L. Krapivsky, B. Kahng, S. Redner. Infinite-order percolation
and giant fluctuations in a protein interaction network. Phys. Rev. E,
66:055101, 2002.

[11] T. Łuczak, A. Magner, W. Szpankowski. Structural Information in
Graphs: Symmetries and Admissible Relabelings.

[12] Mark Newman, Networks: An Introduction, Oxford University Press
2010.

[13] R. V. Solé, R. Pastor-Satorras, E. Smith. Evolving protein interaction
networks through gene duplication, Journal of Theoretical Biology,
222:199-210, 2003.

[14] D. J. de S. Price. A general theory of bibliometric and other cumulative
advantage processes J. Amer. Soc.Inform. Sci., 27(5):292-306, 1976.

[15] A. Raval. Some asymptotic properties of duplication graphs. Phys. Rev.
E, 68:066119, 2003.

[16] M. Shao, Y. Yang, J. Guan, S. Zhou, Choosing appropriate models for
protein-protein interaction networks: a comparison study. Briefings in
Bioinformatics, 15(5):823-838, 2014.

[17] A. Magner, W. Szpankowski, K. Turowski. Lossless Compression of
Binary Trees with Correlated Vertex Names, ISIT 2016: 1217-1221.

[18] Z. Gołębiewski, A. Magner, W. Szpankowski. Entropy of Some General
Plane Trees (with Z. Golebiewski and A. Magner), ISIT 2017: 1563-
1567.

APPENDIX

A. Proof of the Lemma 2

From the definition of beta-binomial distribution as a com-
pund of beta and binomial distributions:

E[logX] =

n∑
k=0

log(k + 1)

∫ 1

0

(
n

k

)
pk(1− p)n−kb(p, α, β)dp

(15)

=

∫ 1

0

b(p, α, β)dp

n∑
k=0

log(k + 1)

(
n

k

)
pk(1− p)n−k

(16)

(17)

where b(p, α, β) = pα−1(1−p)β−1

B(α,β) – a probability density
function for beta distribution.

We know from [6], [9] that

n∑
k=0

(
n

k

)
pk(1− p)n−k log(k + 1) = log(np+ 1) +O(n−1)

(18)
and

log(np+ 1) = log n+ log p+O(n−1) (19)

hence

E[logX] =

∫ 1

0

b(p, α, β)[log n+ log p+O(n−1)]dp (20)

= log n

∫ 1

0

b(p, α, β)dp+

∫ 1

0

b(p, α, β) log pdp+O(n−1)

(21)

= log n+ (ψ(α)− ψ(α+ β)) log e+O(n−1)

(22)

B. Proof of the Lemma 3

Similarly as above:

E[X logX] =

n∑
k=0

(k + 1) log(k + 1)

∫ 1

0

(
n

k

)
pk(1− p)n−kb(p, α, β)dp

(23)

=

∫ 1

0

b(p, α, β)dp

n∑
k=0

(k + 1) log(k + 1)

(
n

k

)
pk(1− p)n−k

(24)

(25)

In this case from [6], [9] we get:
n∑
k=0

(
n

k

)
pk(1− p)n−k(k + 1) log(k + 1) (26)

= (np+ 1) log(np+ 1) +
np(1− p) log e

2(np+ 1)
+O(n−1)

(27)

= np log n+ np log p+ log n+ log p+
(3− p) log e

2
+O(n−1)

(28)

Then,

E[X logX] =

∫ 1

0

b(p, α, β)[np log n+ np log p (29)

+ log n+ log p+
(3− p) log e

2
+O(n−1)]dp (30)

= n log n

∫ 1

0

b(p, α, β)pdp+ n

∫ 1

0

b(p, α, β)p log pdp

(31)

+ log n

∫ 1

0

b(p, α, β)dp+

∫ 1

0

b(p, α, β) log pdp (32)

+
3 log e

2

∫ 1

0

b(p, α, β)dp− 1

2

∫ 1

0

b(p, α, β)pdp+O(n−1)

(33)

= n log n
α

α+ β
+ n

α log e(ψ(α+ 1)− ψ(α+ β + 1))

α+ β
(34)

+ log n+ (ψ(α)− ψ(α+ β) +
3

2
− α

2(α+ β)
) log e (35)

+O(n−1) (36)

Under the assumption that |Aut(G0)| = 1 we have

E[log Aut(Gn)] = E
[
log

n0∏
i=1

Ci,n!

]
. To prove it, it is suffi-

cient to notice that all vertices v, w such that A(v) = A(w)

can be mapped on one another freely – but if A(v) 6= A(w),
there does not exist any automorphism σ such that σ(v) = w

and σ(w) = v.

E[log Aut(Gn)] = E

[
log

n0∏
i=1

Ci,n!

]
=

n0∑
i=1

E[logCi,n!] = n0E[logCn!]

We use Stirling approximation together with Corollary 1
and 2 to obtain:

E[logCn!] = E[Cn logCn]− log eECn +
1

2
E[logCn] +O(1)

= E[Cn logCn]− n log e

n0
+

1

2
E[logCn] +O(1)

= n log n
1

n0
+ n

(1−Hn0
) log e

n0
+ log n− n log e

n0
+ log n

1

2
+O(1)

and finally:

E[log Aut(Gn)] = n log n− nHn0
log e+

3n0

2
log n+O(1)

Gn has n + n0 vertices, therefore the trivial bound is
Γ(Gn) ≤ (n+ n0)!.

We can do the exact computation of Γ(Gn) using the
following lemma:

Lemma 7. Let π be a relabeling of Gn such that it produces
a positive-probability graph under full duplication model. If
1 ≤ π(i) ≤ π(j) ≤ n0, then A(wi) 6= A(wj) for any i 6= j.

Proof. First, let us note that n0 vertices in any given sequence
has to be isomporphic to a given G0.

Let (w1, w2, . . . wn+n0) be any permutation of vertices of
Gn. Let us define F (i) = {j : A(wj) = ui}.

If |F (i)∩∧{1 ≤ j ≤ n0}| ≥ 2 for any i, then there exists in
G0 two identical vertices – which contradicts the assumption
that |Aut(G)| = 1.

If |F (i) ∩ ∧{1 ≤ j ≤ n0}| = 0 for any i, then let k =

minF (i). Clearly wk has to be a copy of some wj for 1 ≤
j ≤ k, but all other vertices have different ancestors and (by
Lemma 1) nonequal set of neighbours – a contradiction.

Therefore |F (i)| = 1 for all 1 ≤ i ≤ n0.

Clearly, any permutation of first n0 vertices is admissible,
since every order of vertices in G0 is admissible. Moreover,
any permutation of last n vertices is admissible, because we
may assume that all chosen vertices for replication are only
these already existing in G0. This, together with a fact that
Ci,n = |F (i)| lead us to the formula:

Γ(Gn) = n0!n!

n0∏
i=1

(
Ci,n

1

)
= n0!n!

n0∏
i=1

Ci,n

E[log Γ(Gn)] = log n0! + log n! +

n0∑
i=1

E[logCi,n]

= log n0! + log n! + n0E[logCn]

= log n! + n0 log n+O(1)

and the result E[log Γ(Gn)] = n log n − n log e + (n0 +
1
2) log n+O(1) follows from the Stirling approximation.

As before mentioned, (Ci,n)n0
i=1 has Dirichlet multinomial

distribution for K = n0 and αi = 1 for 1 ≤ i ≤ n0. Therefore
we know that

P((Ci,n)n0
i=1 = (ki+1)n0

i=1) = nB(n, n0)

n0∏
i=1

k−1
i B(ki, 1)−1 = nB(n, n0)

leading to the desired result:

H(S(Gn)) = H(Ci,n) +O(1)

= −
∑
(ci)

P((Ci,n)n0
i=1) logP((Ci,n)n0

i=1)

= −
∑
(ci)

nB(n, n0) log(nB(n, n0)) = − log n− logB(n, n0)

= − log n− (n+
1

2
) log n− (n+ n0 +

1

2
) log(n+ n0) +O(1)

= − log n− n0 log n+O(1) = (n0 − 1) log n+O(1)

The last two lines follow respectively from Stirling approxi-
mation and Taylor expansion of log(n+ n0).

First, let us note (for the fixed, asymmetric G0)
the one-to-one relationship between Gn and a sequence
(A(v1), . . . , A(vn)). Therefore, the entropy of Gn i equal
to the entropy of a sequence (A(v1), . . . , A(vn)) generated
according to the rules.

This is in fact a joint distribution of n sequential steps of
ball-and-urn process with n0 urns, each containing one ball
at the beginning. Every chosen ball is removed, its color is
reported as i-th value and two new balls of the same color
are added instead. The number of balls in urns at a given
time is also known as a Dirichlet-multinomial distribution with
K = n0 and αi = 1 for 1 ≤ i ≤ n0.

We can compute the total entropy of this distribution the
following way. First, start with chain rule:

H(Gn|G0) =

n∑
i=1

H(Gi|Gi−1)

Then, for every 1 ≤ i ≤ n:

H(Gi|Gi−1) =
∑
G

pi−1(G)H(Gi|Gi−1 = G)

=
∑
G

pi−1(G)
∑
G′

pi(G
′|G) log

1

pi(G′|G)

where pi(G) = P(Gi = G), pi(G′|G) = P(Gi = G′|Gi−1 =

G).
Now observe that pi(G′|G) = P(A(vi) = uj) =

Cj,i−1(G)
i+n0−1

if G′ is equal to G with attached copy of uj for some 1 ≤
j ≤ n0. If G′ and G do not meet this condition, then clearly

the conditional probaility is equal to 0. This lead us to:

H(Gi|Gi−1) =
∑
G

pi−1(G)

n0∑
j=1

Cj,i−1(G)

i+ n0 − 1
log

i+ n0 − 1

Cj,i−1(G)

=

n0∑
j=1

E
[

Cj,i−1

i+ n0 − 1
log

i+ n0 − 1

Cj,i−1

]
= n0E

[
Ci−1

i+ n0 − 1
log

i+ n0 − 1

Ci−1

]
=

n0

i+ n0 − 1
(log(i+ n0 − 1)ECi−1 − E[Ci−1 logCi−1])

= log(i+ n0 − 1)− n0

i+ n0 − 1
E[Ci−1 logCi−1]

We recall Corollary 2 and slightly rearrange the terms:

E[Ci−1 logCi−1] = log(i− 1)
i+ n0 − 1

n0
+ (1−Hn0

) log e
i+ n0 − 1

n0

+ (
1

2
+

1

2n0
) log e+O(i−1)

Note that this formula holds only for i > 1, but from the
definition it is straightforward that E[C0 logC0] = 0.

Putting this all together we get

H(Gn) =

n0∑
i=1

(log(n+ i− 1)− log i)− (n− 1)(1−Hn0
) log e

− n0 + 1

2
(Hn+n0−1 −Hn0−1) log e+

n∑
i=1

O(i−1) +O(1)

= n0 log n− (1−Hn0
)(n− 1) log e

− n0 + 1

2
lnn log e+

n∑
i=1

O(i−1) +O(1)

= (Hn0
− 1)n+

n0 − 1

2
log n+O(log n)

but, as we see from the theorem, the error term is actually
smaller (O(1) instead of O(log n).

