
1

Compression of Dynamic Graphs Generated by a
Duplication Model

Krzysztof Turowski, Abram Magner, and Wojciech Szpankowski
Center for Science of Information,

Department of Computer Science, Purdue University, West Lafayette, IN, USA
Email: krzysztof.szymon.turowski@gmail.com, abram10@gmail.com, spa@cs.purdue.edu

Abstract—We continue building up the information theory of
non-sequential data structures such as trees, sets, and graphs.
In this paper, we consider dynamic graphs generated by a full
duplication model in which a new vertex selects an existing
vertex and copies all of its neighbors. We ask how many bits
are needed to describe the labeled and unlabeled versions of
such graphs. We first estimate entropies of both versions and
then present asymptotically optimal compression algorithms up
to a constant term. Interestingly, for the full duplication model
the labeled version needs Θ(n) bits while its unlabeled version
(structure) can be described by Θ(logn) bits due to a significant
amount of symmetry (i.e., the cardinality of the automorphism
group of graphs generated by this model is on average quite
high).

I. INTRODUCTION

Complex systems can often be modeled as dynamic graphs.
In these systems, patterns of interactions evolve in time,
determining emergent properties, associated function, robust-
ness, and security of the system. There are several broad
questions whose answers shed light on the evolution of such
dynamic networks: (i) how many bits are required to best
describe such a network and its structure (i.e., unlabeled
underlying graph); (ii) how to infer underlying dynamic
processes governing network evolution; (iii) how to infer
information about previous states of the network; and (iv)
how to predict the forward evolution of the network state.
In this conference paper we deal with the first question (i.e.,
labeled and unlabeled graph compression).

To better understand the evolution of network structural
properties, several probabilistic models have been proposed,
including, e.g., the preferential attachment, duplication-
divergence, Cooper-Frieze, and fit-get richer models [2], [6],
[10], [24].

Clearly, some models are more suitable to certain types of
data than others. For example, it has been claimed that the
preferential attachment mechanism [2] plays a strong role in
the formation of citation networks [23]. However, due to the
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high power law exponent of their degree sequence (greater
than 2) and lack of community structure [6], they are not
likely to describe well biological networks such as protein
interaction networks or gene regulatory networks [19]. For
such networks another model, known as the vertex-copying
model, or simply the duplication model, has been claimed
as a better fit. In the vertex-copying model, one picks an
existing vertex and inserts its clone, possibly with some
random modifications, depending on the exact variation of the
model [6], [20], [13]. Experimental results show that these
variations on the duplication model better capture salient
features of protein interaction networks [22] than does the
preferential attachment model.

In this paper we present comprehensive information-
theoretic results for the full duplication model in which
every new vertex is a copy of some older vertex. We
establish precisely (that is, within a O(1) additive error) the
entropy for both unlabeled and labeled graphs generated by
this model and design asymptotically optimal compression
algorithms that match the entropies up to a constant term.
Interestingly, we shall see that the entropy of labeled graphs
is H(Gn) = Θ(n), while the structural entropy (the entropy
of the isomorphism class of a random graph from the model,
denoted by S(Gn)) is significantly smaller: H(S(Gn)) =

Θ(log n). Thus, the vast majority of information of the
labeled graphs in this model is present in the labeling itself,
not in the underlying graph structure. In contrast, the entropy
of the labeled and unlabeled graphs generated by, e.g., the
preferential attachment model is Θ(n log n) [17].

Clearly, given its simplicity, this model should be regarded
as a stepping stone toward a better understanding of more
advanced models of this type. The extensions are typically
defined by a fixed-probability mix of the full duplication
model and other rules, such as no-duplication or uniform
attachment. We shall deal with such models in a forthcoming
paper.

Graph compression has enjoyed a surge in popularity
in recent years, as the recent survey [3] shows. However,
rigorous information-theoretic results are still lacking, with
a few notable exceptions. The rigorous information-theoretic
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analysis of graph compression (particularly in the unlabeled
case) was initiated by Choi and Szpankowski [5], who ana-
lyzed structural compression of Erdős-Rényi graphs (see also
[1]). The authors of [5] presented a compression algorithm
that provably achieves asymptotically the first two terms of
the structural entropy. In Magner et al. [17] the authors
precisely analyzed the labeled and structural entropies and
gave asymptotically optimal compression algorithms for pref-
erential attachment graphs. There has been recent work on
universal compression schemes, including in a distributed
scenario, by Delgosha and Anantharam [8], [9]. Additionally,
several works deal with compression of trees [11], [12], [18],
[25].

The full duplication model was almost exclusively ana-
lyzed in the context of the typical properties such as degree
distribution [6]. It was shown that the average degree depends
strongly on the initial conditions[16]. It was also proved
that the asymptotic degree distribution fails to converge, yet
it exhibits power-law behavior with exponent dependent on
the lowest nonzero degree in the initial graph [21]. Other
parameters studied in the context of duplication models are
number of small cliques [14] or degree-degree correlation [4].
To the best of our knowledge the entropy and compression
of duplication models was not discussed previously in any
available literature.

II. FULL DUPLICATION MODEL

In this section we define the full duplication model and
present some of its properties.

A. Definitions

The full duplication model is defined as follows: let us
denote by G0 a given graph on n0 vertices for some fixed
constant n0. Then, for any 1 ≤ i ≤ n we obtain Gi from
Gi−1 by choosing one of the vertices of Gi−1 (denoted by v)
uniformly at random, attaching to the graph a new vertex vi
and adding edges between vi and all vertices adjacent to v.
Note that v and vi are not connected – although if one wants
to achieve higher clustering, the results in this paper can
be straightforwardly applied to the model in which we add
not only edges between vi and the neighbors of v, but also
between vi and v. Observe that Gn has n+n0 vertices. Also,
properties of Gn heavily depend on G0 and its structure,
which we assume to be fixed.

Throughout this paper, we will refer to the vertices of G0

as U = {u1, . . . , un0
} and to all other vertices from Gn as

V = {v1, . . . , vn}. We denote by Nn(v) the neighborhood of
the vertex v, that is, all vertices that are adjacent to v in Gn.
Sometimes we drop the subscript, if the size of the graph is
clear from the context.

An example of the duplication process is presented in
Figure 1. On the top, we show the original G0 on 6 vertices,

and on the bottom we plot G3 with new vertices such that
v1 is a copy of u2, v2 is a copy of u1, and v3 is a copy of
v1.

u1 u2 u3 u4

u5u6

(a) Initial G0

u1 u2 u3 u4

u5u6v1v2

v3

(b) G3

Fig. 1: Example graph growth in the full duplication model

Here, due to the limited space, we restrict our analysis
to asymmetric G0 (i.e., the underlying automorphism group
is of size 1); however, extensions to general G0 are rather
straightforward. We observe that typically even moderate-
sized graphs are likely to be asymmetric.

B. Basic Properties

Let us introduce the concept of a parent and an ancestor
of a vertex. We say that w is the parent of v (denoted by
w = P (v)), when v was copied from w at some time 1 ≤
i ≤ n. We say that w ∈ U is the ancestor of v (denoted by
w = A(v)), when there exist vertices vi1 , . . . , vik such that
w = P (vi1), vij = P (vij+1) for 1 ≤ j ≤ k−1, and vik = v.
For convenience we write that if u ∈ U , then P (u) = u and
A(u) = {u}. Note that the ancestor of any given vertex is
unique. In our example from Figure 1 u2 is an ancestor of
both v1 and v3, but only a parent of v1 and not v3.

The neighborhood of a vertex is closely tied to its ancestor,
as the following lemma shows:

Lemma 1. We have A(vi) = A(vj) if and only if N(vi) =

N(vj).

Proof: If u = A(vi), then N(vi) = N(u) in Gj , j ≥ i.
We can prove this by induction on the number of intermediate
vertices whose ancestor was u before vi. For the base case,
when this number is 0, vi is the first vertex to duplicate
u, and the claim is trivially true. Now, if there are k ≥ 1
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vertices whose ancestor is u, and all of their neighborhoods
are equal to that of u, an additional vertex choosing to
duplicate any vertex included in their shared neighborhood
is added to all of their neighborhoods. Additionally, a vertex
that chooses to duplicate one of the descendants of u inherits
its neighborhood from all of them.

Now, we prove the other direction: i.e., if N(vi) = N(u),
then A(vi) = u. Since G0 is simple and asymmetric, N(u) 6=
N(u′) in G0 for any u′ 6= u. This implies that N(vi) 6=
N(u′), which in turn implies, by the discussion above, that
A(vi) 6= u′ for any u′ 6= u. Thus, A(vi) = u, as desired.

For 1 ≤ i ≤ n0 let Ci,n = |{w ∈ Gn : A(w) = ui}, that
is, the number of vertices from Gn that are ultimately copies
of ui (including ui itself).

The sequence of variables (Ci,n)n0
i=1 can be described as

a ball and urn model with n0 urns. At time n = 0 each urn
contains exactly one ball. Each iteration consists of picking
an urn at random, proportionally to the number of balls in
each bin – that is, with probability Ci,n∑n0

j=1 Cj,n
– and adding a

new ball to this urn. It is known [15] that the joint distribution
of (Ci,n)n0

i=1 is the Dirichlet multinomial distribution denoted
as Dir(n, α1, . . . , αn0), with K = n0 and αi = 1 for 1 ≤
i ≤ n0:

P ((Ci,n)n0
i=1 = (ki + 1)n0

i=1) =
Γ(n+ 1)Γ(n0)

Γ(n+ n0)
.

Each variable Ci,n is identically distributed – though not
independent, as we know that

∑n0

i=1 Ci,n = n – so we may
analyze the properties of Cn ∼ Ci,n for every 1 ≤ i ≤
n0. It has the beta-binomial distribution BBin(n, α, β) with
parameters α = 1, β = n0 − 1. That is:

P(Cn = k + 1) =

(
n

k

)
B(k + 1, n+ n0 − k − 1)

B(1, n0 − 1)

= (n0 − 1)

(
n

k

)
B(k + 1, n+ n0 − k − 1)

for any k ≥ 0, where B(x, y) = Γ(x)Γ(y)
Γ(x+y) is the Euler beta

function.
Therefore, since Cn ∼ BBin(n, 1, n0 − 1) + 1 we know

immediately that ECn = n
n0

+ 1.
We will also need some other properties discussed below:

Lemma 2. If X ∼ BBin(n, α, β), then E[log(X + 1)] =

log n+O(1).

Lemma 3. If X ∼ BBin(n, α, β), then

E[(X + 1) log(X + 1)] = n log n
α

α+ β

+ n
α (ψ(α+ 1)− ψ(α+ β + 1)) log e

α+ β
+ log n+O(1).

where ψ(x) = Γ′(x)
Γ(x) is the Euler digamma function.

For all integers r, s we have ψ(r)−ψ(s) = Hr−1−Hs−1

and Hs = Hs−1 + 1
s (where Hj denotes the jth harmonic

number). Therefore,

Corollary 1. Asymptotically,

E[logCn] = log n+O(1)

E[Cn logCn] = n log n
1

n0
+ n

(1−Hn0
) log e

n0

+ log n+O(1).

III. MAIN THEORETICAL RESULTS

As discussed in the introduction, our goal is to present
results for the duplication graphs on structural parameters
which are fundamental to statistical and information-theoretic
problems involving the information shared between the labels
and the structure of a random graph. In graph structure
compression the goal is to remove label information to
produce a compact description of a graph structure.

Formally, the labeled graph compression problem can be
phrased as follows: one is given a probability distribution Gn
on graphs on n vertices, and the task is to exhibit a pair of
mappings (i.e., a source code) (E,D), where E maps graphs
to binary strings satisfying the standard prefix code condition,
and D maps binary strings back to graphs, such that, for all
graphs H , D(E(H)) = H , and the expected code length
E[|E(G)|], with G ∼ Gn, is minimized. The standard source
coding theorem tells us that the fundamental limit for this
quantity is H(G).

The unlabeled version of this problem relaxes the invert-
ibility constraint on the encoder and decoder. In particular, we
only require D(E(H)) ∼= H; i.e., the decoder only outputs
a graph isomorphic to H . Again, the optimization objective
is to minimize the expected code length. Thus, in effect, the
source code efficiently describes the isomorphism type of
its input. Denoting by S(G) the isomorphism type of G,
the fundamental limit for the expected code length is the
structural entropy of the model, which is given by H(S(G)).

There is a relation between the labeled entropy H(G)

and structural entropy H(S(G)). To express it succinctly for
a broad class of graph models we need the automorphism
group∗ Aut(G), the positive-probability labeled represen-
tatives of a given structure, and the set Γ(G) of feasible
permutations of G; i.e., the set of permutations of G that
yield a graph that has positive probability under the random
graph model in question. See [5], [17] for more details.

Now, we are ready to present a relation between H(G)

and H(S(G)). The following lemma was proved in [17].

Lemma 4. We have, for any graph model Gn in which all
positive-probability labeled graphs that are isomorphic have
the same probability,

H(Gn)−H(S(Gn)) = E[log |Γ(Gn)|]− E[log |Aut(Gn)|].
∗An automorphism of a graph is a permutation that preserves edge

relations. In other words, it is a permutation which, when applied to the
graph, yields the same graph (note that, in mathematical literature, a graph
is by default labeled).



4

In Appendix A we prove the following results regarding
the expected logarithms of the sizes of the automorphism
group and feasible permutation set for samples Gn from the
full duplication model.

Lemma 5. We have

E[log |Aut(Gn)|] = n log n−nHn0 log e+
3n0

2
log n+O(1)

for large n.

In Appendix B we prove the following.

Lemma 6. Asymptotically

E[log |Γ(Gn)|] = n log n− n log e+
2n0 + 1

2
log n+O(1).

We now estimate the structural entropy. Recalling that we
assume throughout that the initial graph G0 is asymmetric,
it may be seen that the isomorphism type of Gn is entirely
specified by the vector (Ci,n)n0

i=1. We know that (Ci,n)n0
i=1

has the Dirichlet multinomial distribution with αi = 1 for
1 ≤ i ≤ n0. Therefore

P((Ci,n)n0
i=1 = (ki + 1)n0

i=1) = nB(n, n0)

n0∏
i=1

k−1
i B(ki, 1)−1

leading to

H(S(Gn)) = H(Ci,n) +O(1)

= −
∑

(ci)
n0
i=1

P((Ci,n)n0
i=1 = (ci)

n0
i=1)

logP((Ci,n)n0
i=1 = (ci)

n0
i=1)

= −
∑

(ci)
n0
i=1

nB(n, n0) log(nB(n, n0))

= − log n− logB(n, n0)

= − log n−
(
n+

1

2

)
log n

+

(
n+ n0 +

1

2

)
log(n+ n0) +O(1)

= − log n+ n0 log n+O(1) = (n0 − 1) log n+O(1).

The last two lines follow respectively from the Stirling
approximation and the Taylor expansion of log(n+ n0).

This leads to our first main result:

Theorem 1. For large n we have

H(S(Gn)) = (n0 − 1) log n+O(1).

To compute the graph entropy H(G) we can use Lemma 4
together with Theorem 1; however, it is instructive to com-
pute it with “bare hands” which is presented in Appendix
C.

Theorem 2. For large n

H(Gn) = n(Hn0
− 1) log e+

n0 − 1

2
log n+O(1).

IV. ALGORITHMIC RESULTS

In this section we present asymptotically optimal algo-
rithms for compression of labeled and unlabeled graphs
generated according to the full duplication model.

A. Retrieval of parameters from Gn

In order to present efficient compression algorithms for the
duplication model, we must first reconstruct G0 from Gn and
find values of n0 and n. This is relatively easy to accomplish.
Indeed, for a given labeled Gn let (w1, w2, . . . , wn+n0

) be
its vertices in the order in which they appeared (in particular,
(w1, . . . , wn0

) = (u1, . . . , un0
) and (wn0+1, . . . , wn0+n) =

(v1, . . . , vn)). It is sufficient to find the smallest k such that
N(wk) = N(wi) for some 1 ≤ i < k. Then n0 = k− 1 and
G0 is induced by the sequence (w1, . . . , wk−1).

The case for unlabeled graphs is similar: we know (for
details see Lemma 7 in the Appendix B) that the sequence
of the first n0 vertices of the graph (that is, G0) contains
exactly one vertex from each set {v : A(v) = ui}.

From Lemma 1 we know that A(v) = A(w) iff N(v) =

N(w), so it is sufficient to scan all vertices of Gn and split
them into sets such that v and w belongs to the same set iff
N(v) = N(w). Then, we pick one vertex from each set to
from G0. Obviously, n0 and n may be extracted from the
sizes of G0 and Gn.

For example, for a graph in Fig. 1(b) we may identify the
following classes of vertices with identical neighborhoods:
{u1, v2}, {u2, v1, v3}, {u3}, {u4} and {u5}. Therefore, we
know that n0 = 6, n = 3 and the G0 is isomorphic to a
graph induced, for example, by the set {v2, v3, u3, u4, u5}.

In summary, we establish the following result.

Theorem 3. For a given labeled Gn or its unlabeled version
S(Gn), we can retrieve its n, n0 and G0 (in the case of
structure up to isomorphisms of G0) in polynomial time in
terms of n.

B. Unlabeled graphs

A trivial algorithm COMPRESSUNLABELEDSIMPLE for
unlabeled compression writes down a sequence (Ci,n)n0

i=1

associated with our Gn as log n-bit numbers. This always
requires n0 log n bits, so ELSU (n) = n0 log n+O(1), where
LSU denotes the code length of our proposed scheme. By
Theorem 1 this achieves the fundamental limit to within a
multiplicative factor of 1 + 1

n0−1 .
However, it is easy to design an optimal algorithm up

O(1) term. The pseudocode of an optimal algorithm, called
COMPRESSUNLABELEDOPT, based on arithmetic coding, is
as follows:

function COMPRESSUNLABELEDOPT(S(Gn), S(G0))
Fix a labeled representative G0 of S(G0).
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Fix any ordering (v1, . . . , vn) of the vertices
of S(Gn) \ S(G0)

a← 0, b← 1

for i = 1, 2, . . . , n0 do
C[i] = 1

for j = 1, 2, . . . , n do
if N(vj) = N(ui) then

C[i] = C[i] + 1

for i = n0, n0 − 1, . . . , 1 do
start← Γ(n+1)Γ(i)

Γ(n+i)

∑k−1
j=1

Γ(n+n0−j)
Γ(n+n0−1)

end← start+ Γ(n+1)Γ(k)Γ(n+n0−k)
Γ(n+k)Γ(n+n0−j)

b← a+ (b− a) · start
a← a+ (b− a) · end
n← n− C[i] + 1

p← b− a, x← a+ b

2
return G0‖[first d− log pe+ 1 bits of x]

The next finding proves that COMPRESSUNLABELEDOPT

is asymptotically optimal.

Theorem 4. Algorithm COMPRESSUNLABELEDOPT is opti-
mal up to a constant term for unlabeled graphs compression,
when the graph is generated by the full duplication model.

Proof: It is sufficient to observe that

P((Ci,n)n0
i=1 = (ki + 1)n0

i=1) =

= P((Ci,n)n0
i=1 = (ki + 1)n0

i=1|Cn0,n = kn0 + 1)

· P(Cn0,n = kn0
+ 1)

= P

(
(Ci,n)n0−1

i=1 = (ki + 1)n0−1
i=1

∣∣∣ n0−1∑
i=0

Ci,n = kn0 + 1

)
· P(Cn0,n = kn0

+ 1)

= P((Ci,n−kn0
)n0−1
i=1 = (ki + 1)n0−1

i=1 )

· f

ki∣∣∣∑
j≤i

kj , 1, n0 − 1


where f is the probability mass function of the beta-binomial
distribution.

It is known that the marginal distribution of the Dirichlet
multinomial distribution is the beta-binomial distribution.
And if we fix a value of one coordinate to c for the Dirich-
let multinomial distribution, it is known that the resulting
distribution is also Dirichlet multinomial, but with n0 − 1

coordinates and all values summing up to n− c.
We repeat this process – but note that the whole process

stops when we have Dirichlet multinomial distribution dis-
tribution on with 2 coordinates:

P((Ci,n)2
i=1 = (ki + 1)2

i=1)

= P(C1,n = k1 + 1|C1,n = k1 + 1)P(C2,n = k1 + 1)

= f(k1|k1 + k2, 1, 1).

Putting all together we get

P((Ci,n)n0
i=1 = (ki + 1)n0

i=1)

=

n0∏
i=2

f(ci|
∑
j≤i

kj , 1, n0 − i)

=

n0∏
i=2

(n0 − 1)
Γ(
∑
j≤i kj + 1)Γ(

∑
j<i kj + n0 − i)

Γ(
∑
j≤i kj + n0 − i+ 1)Γ(

∑
j<i kj + 1)

= (n0 − 1)!
Γ(n+ 1)

Γ(n+ n0 − 1)
= nB(n, n0)

This matches the entropy, so by the properties of arith-
metic coding (see [7]), we know that ELO(S(Gn)) ≤
H((Ci,n)n0

i=0)+2+ELO(S(G0))+ELO(π) = H(S(Gn))+

O(1) (where LO denotes the code length). This completes
the proof.

C. Labeled graphs

We note tat the labeled graph Gn is equivalent to a se-
quence (A(vi))

n
i=1 for a given (labeled) G0 (which obviously

can be encoded using a constant number of bits).
A trivial algorithm COMPRESSLABELEDSIMPLE just

writes all A(vi) as log n0-bit numbers. Clearly, this always
gives us a codeword with length n log n0 and therefore (as
we need to encode G0) ELSL(n) = n log n0 +O(1) (where
LSL denotes the code length). From Theorem 2 it is known
that this algorithm is asymptotically (1+ 1−γ

logn0
)-approximate,

where γ is Euler-Mascheroni constant.
It is easy to design an asymptotically optimal algorithm up

to the O(1) term. Indeed, the sequence of A(vi) is random
with P(A(vi) = uj) =

Cj,i−1

i+n0−1 for 1 ≤ i ≤ n, 1 ≤ j ≤ n0.
Therefore, given Gi−1 we know the conditional probabilities
of Gi and we may construct another algorithm based on
arithmetic coding.

The pseudocode of the optimal algorithm is as follows:

function COMPRESSLABELEDOPT(Gn, G0)
a← 0, b← 1

for i = 1, 2, . . . , n0 do
C[i] = 1

for i = 1, 2, . . . , n do
for j = 1, 2, . . . , n0 do

if N(vi) = N(uj) then
start←

∑j−1
k=1

C[k]
n0+i−1

end← start+ C[j]
n0+i−1

b← a+ (b− a) · start
a← a+ (b− a) · end
C[i] = C[i] + 1

p← b− a, x← a+ b

2
return G0‖[first d− log pe+ 1 bits of x]

The next theorem proves that COMPRESSLABELEDOPT is
asymptotically optimal.
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Theorem 5. Algorithm COMPRESSLABELEDOPT is optimal
up to a constant term for labeled graph compression, when
the graph is generated by the full duplication model.

Proof: By the properties of arithmetic encoding (see
[7]), we know that ELO(Gn) ≤ H(Gn|G0)+2+ELO(G0) =

H(Gn) +O(1), where LO denotes the code length.
Note that these two algorithms differ only in that the

optimal one updates the probabilities at each step and the
second fixes them to a constant value of 1/n0.

V. EXPERIMENTAL RESULTS

We implemented our compression algorithms for both
labeled and unlabeled graphs and ran them on synthetic data,
generated according to the full duplication model. Figure 2
reports the results of compression for unlabeled graphs, while
Figure 3 for labeled graphs.

(a) n0 = 2

(b) n0 = 64

Fig. 2: Entropy and redundancy for unlabeled graphs. The x
axis is n, and the y axis is a number of bits.

(a) n0 = 2

(b) n0 = 64

Fig. 3: Entropy and redundancy for labeled graphs. The x

axis is n, and the y axis is a number of bits.

For unlabeled graphs the experimental error does converge
quickly to values less than 2, which is consistent with the
well-known properties of arithmetic encoding. For labeled
graphs we observe divergence in error – which is apparently
very small compared to the size of graphs. Unfortunately, the
size of the sample space is very large compared to the number
of sampled graphs (here we generated 2·106 graphs for every
n considered); therefore, the average length of compressed
graphs varies significantly between experiments.
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[10] Alan Frieze and Michał Karoński. Introduction to Random Graphs.
Cambridge University Press, 2016.

[11] Z. Gołebiewski, A. Magner, and W. Szpankowski. Entropy of some
general plane trees. In 2017 IEEE International Symposium on
Information Theory (ISIT), pages 301–305, June 2017.

[12] D. Hucke and M. Lohrey. Universal tree source coding using grammar-
based compression. In 2017 IEEE International Symposium on
Information Theory (ISIT), pages 1753–1757, June 2017.

[13] I. Ispolatov, P. L. Krapivsky, and A. Yuryev. Duplication-divergence
model of protein interaction network. Phys. Rev. E, 71:061911, Jun
2005.

[14] Iaroslav Ispolatov, Pavel Krapivsky, I Mazo, and A Yuryev. Cliques
and duplication-divergence network growth. New Journal of Physics,
7:145, 07 2005.

[15] N. Johnson, A. Kemp, and S. Kotz. Univariate Discrete Distributions.
Wiley, 2005.

[16] J. Kim, P. L. Krapivsky, B. Kahng, and S. Redner. Infinite-order
percolation and giant fluctuations in a protein interaction network.
Phys. Rev. E, 66:055101, Nov 2002.

[17] Tomasz Łuczak, Abram Magner, and Wojciech Szpankowski. Struc-
tural information and compression of scale-free graphs. preprint, 2017.

[18] A. Magner, K. Turowski, and W. Szpankowski. Lossless compression
of binary trees with correlated vertex names. Trans. Information
Theory, 64, 2018.

[19] Mark Newman. Networks: An Introduction. Oxford University Press,
2010.

[20] Romualdo Pastor-Satorras, Eric Smith, and Ricard V. Solé. Evolving
protein interaction networks through gene duplication. Journal of
Theoretical Biology, 222(2):199 – 210, 2003.

[21] Alpan Raval. Some asymptotic properties of duplication graphs. Phys.
Rev. E, 68:066119, Dec 2003.

[22] Mingyu Shao, Yi Yang, Jihong Guan, and Shuigeng Zhou. Choosing
appropriate models for protein–protein interaction networks: a com-
parison study. Briefings in Bioinformatics, 15(5):823–838, 2014.

[23] Price Derek De Solla. A general theory of bibliometric and other
cumulative advantage processes. Journal of the American Society for
Information Science, 27(5):292–306, 1976.

[24] Remco van der Hofstad. Random Graphs and Complex Networks:
Volume 1. Cambridge University Press, 2016.

[25] J. Zhang, E. H. Yang, and J. C. Kieffer. A universal grammar-based
code for lossless compression of binary trees. IEEE Transactions on
Information Theory, 60(3):1373–1386, March 2014.

APPENDIX

A. Proof of Lemma 5

Under the assumption that |Aut(G0)| = 1 we have

E[log |Aut(Gn)|] = E
[
log

n0∏
i=1

Ci,n!

]
. To prove it, it is suf-

ficient to notice that all vertices v, w such that A(v) = A(w)

can be mapped on one another freely (since they have equal
neighborhoods) – but if A(v) 6= A(w), there does not exist

any automorphism σ for which v and w are in the same orbit.
Precisely, this is because, if such a σ did exist, then one may
show that it induces an automorphism of G0.

E[log |Aut(Gn)|] = E

[
log

n0∏
i=1

Ci,n!

]

=

n0∑
i=1

E[logCi,n!] = n0E[logCn!].

We use Stirling’s approximation together with Corollary 1
to obtain

E[logCn!] =

= E[Cn logCn]− ECn log e+
1

2
E[logCn] +O(1)

= E[Cn logCn]− n log e

n0
+

1

2
E[logCn] +O(1)

= n log n
1

n0
+ n

(1−Hn0) log e

n0
+ log n

− n log e

n0
+ log n

1

2
+O(1).

Finally,

E[log |Aut(Gn)|] = n log n−nHn0 log e+
3n0

2
log n+O(1).

The proof is completed.

B. Proof of Lemma 6

Observe that Gn has n+n0 vertices; therefore, the trivial
upper bound is Γ(Gn) ≤ (n + n0)!. We can do the exact
computation of Γ(Gn) using the following lemma:

Lemma 7. Let π be a relabeling of Gn such that
it produces a positive-probability graph under the full
duplication model. Furthermore, let (w1, . . . , wn0+n) =

(u1, . . . , un0 , v1, . . . , vn). If 1 ≤ π(wi) < π(wj) ≤ n0, then
A(wi) 6= A(wj) for any i 6= j.

Proof: Let (w′1, w
′
2, . . . w

′
n+n0

) be the vector
(π−1(w1), . . . , π−1(wn0+n)). Let us define, for each
i ∈ [n0] = {1, . . . , n0}, F (i) = {j : A(w′j) = ui, π(wj) ∈
[n0]}; i.e., F (i) is the set of vertices whose ancestor in
Gn is ui and that map under π to the initial n0 vertices in
π(Gn). To prove the lemma, we will show that |F (i)| = 1.

If |F (i)| ≥ 2 for any i, then two vertices, wh 6= wk
are mapped by π to the initial n0 vertices, and they have
identical neighborhoods. This contradicts the assumption that
|Aut(G0)| = 1.

If |F (i)| = 0 for any i, then there must exist some i′ ∈ [n0]

with |F (i)| ≥ 2, which is contradicted by the previous case.
Thus, |F (i)| = 1 as claimed for all 1 ≤ i ≤ n0.
Clearly, any permutation of the first n0 vertices is admissi-

ble, since every order of vertices in G0 is admissible. More-
over, any permutation of last n vertices is admissible, because
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we may assume that all chosen vertices for replication are
only these already existing in G0. This, together with the fact
that Ci,n = |F (i)|, leads us to the formula

|Γ(Gn)| = n0!n!

n0∏
i=1

(
Ci,n

1

)
= n0!n!

n0∏
i=1

Ci,n.

Then

E[log |Γ(Gn)|] = log n0! + log n! +

n0∑
i=1

E[logCi,n]

= log n0! + log n! + n0E[logCn]

= log n! + n0 log n+O(1),

and the final result E[log |Γ(Gn)|] = n log n−n log e+(n0+
1
2 ) log n+O(1) follows from the Stirling approximation.

C. Alternative Proof of Theorem 2

Now we give a direct proof of Theorem 2. First, let us note
(for the fixed, asymmetric G0) the one-to-one relationship
between Gn and a sequence (A(v1), . . . , A(vn)). Therefore,
the entropy of Gn is equal to the entropy of a sequence
(A(v1), . . . , A(vn)) generated according to the rules.

This is in fact a joint distribution of n sequential steps of
ball-and-urn process with n0 urns, each containing one ball
at the beginning. Every chosen ball is removed, its color is
reported as i-th value and two new balls of the same color
are added instead. The number of balls in urns at a given
time is also known as the Dirichlet multinomial distribution
with K = n0 and αi = 1 for 1 ≤ i ≤ n0.

We can compute the total entropy of this distribution the
following way. First, start with chain rule:

H(Gn|G0) =

n∑
i=1

H(Gi|Gi−1)

Then, for every 1 ≤ i ≤ n:

H(Gi|Gi−1) =
∑
G

pi−1(G)H(Gi|Gi−1 = G)

=
∑
G

pi−1(G)
∑
G′

pi(G
′|G) log

1

pi(G′|G)

where pi(G) = P(Gi = G), pi(G′|G) = P(Gi = G′|Gi−1 =

G).

Now observe that pi(G′|G) = P(A(vi) = uj) =
Cj,i−1(G)
i+n0−1

if G′ is equal to G with attached copy of uj for some 1 ≤
j ≤ n0. If G′ and G do not meet this condition, then clearly

the conditional probability is equal to 0. This lead us to:

H(Gi|Gi−1) =
∑
G

pi−1(G)

n0∑
j=1

Cj,i−1(G)

i+ n0 − 1
log

i+ n0 − 1

Cj,i−1(G)

=

n0∑
j=1

E
[

Cj,i−1

i+ n0 − 1
log

i+ n0 − 1

Cj,i−1

]
= n0E

[
Ci−1

i+ n0 − 1
log

i+ n0 − 1

Ci−1

]
= log(i+ n0 − 1)− n0

i+ n0 − 1
E[Ci−1 logCi−1].

Here, we need to use a stronger version of Corollary 1

E[Cn logCn] =
1

n0
n log n+ n

(1−Hn0) log e

n0

+ log n+

(
3

2
+

1

2n0
−Hn0

)
log e+O(n−1)

and slightly rearrange the terms:

E[Ci−1 logCi−1] = log(i− 1)
i+ n0 − 1

n0

+ (1−Hn0
) log e

i+ n0 − 1

n0

+

(
1

2
+

1

2n0

)
log e+O(i−1).

Note that this formula holds only for i > 1, but from the
definition it is straightforward that E[C0 logC0] = 0.

Putting this all together we get

H(Gn) =

n0∑
i=1

(log(n+ i− 1)− log i)

− (n− 1)(1−Hn0
) log e

− n0 + 1

2
(Hn+n0−1 −Hn0−1) log e+

n∑
i=1

O(i−1)

= n0 log n− (1−Hn0
)(n− 1) log e

− n0 + 1

2
lnn log e+

n∑
i=1

O(i−1)

= (Hn0
− 1)n+

n0 − 1

2
log n+O(log n)

but, as we see from the theorem, the actual error term is
even smaller (O(1) instead of O(log n)). This completes the
proof.


