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Abstract

We study sequential probability assignment in the context of online learning under logarithmic loss and obtain
tight lower and upper bounds for sequential minimax regret. Sequential minimax regret is defined as the minimum
excess loss over data horizon T that a predictor incurs over the best expert in a class, when the samples are
presented sequentially and adversarially. Our upper bounds are established by applying Bayesian averaging over
a novel "smooth truncated covering" of the expert class. This allows us to obtain tight (minimax) upper bounds
that subsume the best known non-constructive bounds in an algorithmic fashion. For lower bounds, we reduce the
problem to analyzing the fixed design regret via a novel application of Shtarkov sum adapted to online learning. We
demonstrate the effectiveness of our approach by establishing tight regret bounds for a wide range of expert classes.
In particular, we fully characterize the regret of generalized linear function with worst Lipschitz transform functions
when the parameters are restricted to a unit norm ℓs (s ≥ 2) ball of dimension d. We show that the regret grows as
Θ(d log T ) when d ≤ O(T s/(s+1)−ϵ) for all ϵ > 0 (with precise constant 1 when d ≤ eo(log T )) and Õ(T s/(s+1))

when d ≥ Ω(T s/(s+1)). Finally, we show that the Bayesian approach may not always be optimal if the support of
the prior is included in the reference class itself.
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I. INTRODUCTION

Sequential probability assignment is a fundamental problem in information theory, portfolio optimization, and
machine learning. The problem is formulated as a game between Nature and predictor. At each time step t, the
predictor attempts to predict a distribution µt over a set Y of Nature’s next possible outcome (i.e., label). Nature
reveals the true label yt after the predictor has made a prediction. The predictor incurs a loss that depends on
the prediction µt and Nature’s outcome yt. The goal of the predictor is to minimize its cumulative loss over a
finite time-step horizon T . A commonly used measure of loss is logarithmic loss, defined as − log(µt(yt)), i.e.,
the negative logarithm of the probability assigned to the true label. Logarithmic loss is both a natural metric for
real machine learning tasks [1], [2], [3], [4] and also deeply connected to universal compression in information
theory [5], [6], [7], [8], [9], [10], [11].

In practice, minimization of cumulative loss by itself is not very informative without knowing the generating
mechanism underlying Nature. Hence, one must compare it to some constant comparator to assess relative loss. In
this context, information theory and machine learning communities introduced the notion of regret defined as the
difference between the cumulative loss incurred by the predictor and the minimal cumulative loss incurred by the
best expert in an expert class H, without making any assumption regarding the generating mechanism underlying
Nature. Furthermore, to obtain fundamental limits for individual sequences one rather considers minimax regret in
which the regret is estimated for the worst sequence and the best prediction rule. In this paper, we study sequential
(agnostic) minimax regret for a broad class of experts H. We address the challenging question of how minimax
regret depends on the structure of the class of experts H. Observe that when the class of experts is interpreted as a
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class of sources (distributions), we fall under universal compression studied extensively in information theory [5],
[6], [7], [8], [9], [10], [11].

In online learning studied in this paper, the situation is more complicated, since one must also to deal with
the features, known in information theory as side information. Let X be the set of features, we model experts as
functions X → D(Y), where D(Y) is the set of all probability measures over Y . For the clarity of presentation,
throughout the paper, we assume that Y = {0, 1} and the distributions over Y is specified as a real number in
Ŷ = [0, 1], which is interpreted as the probability assigned on label 1. However, we should emphasis that our results
also work for a general finite set Y .

More precisely, experts are modeled as a set of functions H ⊂ [0, 1]X , the predictor at each time t is a function
ϕt : X t × Yt−1 → [0, 1] and the logarithmic loss can be written as:

ℓ(ŷt, yt) = −yt log(ŷt)− (1− yt) log(1− ŷt). (1)

The pointwise regret is defined as:

R(ŷT , yT ,H|xT ) =

T∑
t=1

ℓ(ŷt, yt)− inf
h∈H

T∑
t=1

ℓ(h(xt), yt), (2)

where ŷt = ϕt(y
t−1,xt) is the predicted outcome. Observe that the first term in (2) represents the accumulated loss

incurred by the learning algorithm (the predictor), while the second summation deals with the best experts within
H in the hindsight after observing xT and yT . Depending to how sequences xT , yT are generated by Nature, we
define the following two notions of minimax regrets:
Fixed Design: This point of view studies minimal regret for the worst realization of the label with the feature
vector xT known in advance (also known as transduction online learning in the literature). Let ϕt, t > 0 be the
strategies of the predictor. The fixed design minimax regret for a given xT is defined as [12]:

r∗T (H|xT ) = inf
ϕT

sup
yT

R(ϕT , yT ,H|xT ). (3)

Further, the fixed design maximal minimax regret is:

r∗T (H) = sup
xT

inf
ϕT

sup
yT

R(ϕT , yT ,H|xT ). (4)

When the side information/features are known in advance, we can view the set of experts as a set of sources
(i.e., probability distributions over YT ). In this case, we can show [13] that minimax regret r∗T (H|xT ) is completely
characterized by the so called Shtarkov sum introduced in Shtarkov’s seminal work [14]. However, we notice that
Shtarkov’s characterization only works for the static or simulatable [1] experts, i.e., the prediction made by the
experts can only depend on the past labels. A more challenging (and more realistic) scenario is when the features
are revealed sequentially as well, as defined in the sequel.
Sequential Design: In this paper we primarily focus on sequential or agnostic minimax regret in which the
optimization on regret is performed at each time t without knowing in advance xT or yT . Then the sequential
(maximal) minimax regret is: [15]

raT (H) = sup
x1

inf
ŷ1

sup
y1

· · · sup
xT

inf
ŷT

sup
yT

R(ŷT , yT ,H|xT ). (5)

It is not hard to show that raT (H) ≥ r∗T (H) for all H, moreover, raT (H) can be exponentially larger (i.e., T vs
log T ) than r∗T (H) for certain H, see [12] and Proposition 1. However, we will show in this paper that r∗T (H) can
actually match raT (H) for many natural classes, arguing that r∗T (H), and its Shtarkov sum representation, can be a
powerful technique for deriving tight lower bounds for raT (H).

Our main goal in this paper is to gain insights into the growth of sequential regret raT (H) for various classes H,
and to show how the structure of H impacts the precise growth of regret. We summarize our main contributions as
follows:



A. Summary of Results

We make two major contributions in this paper. We provide a general algorithmic framework for obtaining tight
regret upper bounds for raT (H) using the concept of (global) sequential covering (that was implicitly used in [16],
[15] for general convex and Lipschitz losses, e.g., absolute loss) together with a novel Smooth Truncated Bayesian
Algorithm (Algorithm 2). The main technical contribution of this part is a smooth truncation approach (see Lemma 4)
that allows us to resolve the difficulty of unboundedness and non-Lipschitz of log-loss as in [2]. Our first result
(Theorem 1) establishes a general tight upper bound on raT (H) that subsumes the state-of-the-art bounds in [2],
[17] established only non-constructively (i.e., via the minimax theorem). Moreover, our upper bound in Theorem 1
provides optimal constants that improve universally the bound in [17]. The optimality of constants also allows us to
obtain the tightest bounds with optimal leading constants for special classes. Our second general contribution is
a lower bounding technique through fixed design regret r∗T (H) and its Shtarkov sum, which extends the results
in [13], [18], [4] that were only established for Logistic regression.

Beyond general results, we study a broad set of concrete expert classes and derive tight regret (lower and upper)
bounds for raT (H) with provable optimal constants. In Section IV, we study a general Lipschitz parametric class
H with parameters restricted to a norm ℓs ball in Rd. This includes, e.g., the logistic regression, normal location
model and neural networks with Lipschitz activation functions. In particular, we show that regret grows as

d log(T/d) +O(d)

for such a class H, where the constant 1 in front of d log(T/d) is optimal for d ≪ T/ log T (see Theorem 2 and 3).
Section IV-B extends results to the case when the function log f has bounded Hessian for any f ∈ H, showing that
the regret is upper bounded as

d

2
log(T/d) +O(d)

under ℓ2 ball (see Theorem 4). In Theorem 5 we derive a matching lower bound of the form

d

2
log(T/d(s+2)/s) +O(d)

for generalized linear functions of the form f(⟨w,x⟩) with f ′(0) ̸= 0, w,x in a unit ℓs ball and d ≪ T s/(s+2),
where w represents a d dimensional weight vector. This result recovers all the lower bounds in [4] obtained for
logistic regression 1 but with full range of s ≥ 1. In Section IV-C, we show that the leading constant 1

2 can still be
achieved for certain classes with non-Lipschitz log f (therefore with unbounded Hessian). In particular, this holds
for the linear function |⟨w,x⟩| with w in a ℓ1 ball. This follows from a general result for classes generated by
convex combinations of simple classes established in Theorem 6. In Section V, we study the situation in which
data dimension d grows faster than T through the sequential fat-shattering number introduced in [15]. In particular,
we show that for the linear function f(w,x) = |⟨w,x⟩| with w in a unit ℓs ball and x in a unit ℓs/(s−1) ball (of
dimension d ≥ T ), the regret satisfies

Ω(T s/(s+1)) ≤ raT (Hf ) ≤ Õ(T s/(s+1)),

where Õ hides poly-logarithmic factors and s ≥ 2. Section V also provides lower bounds for general Lipschitz type
classes. In particular our result (Theorem 9) recovers the lower bounds of [17] for the non-parametric Lipschitz
function classes, but with general ℓs norms and simpler proof, which may be of independent interest. Finally, in
Section VI, we discuss the issue of optimality of Bayesian algorithms and show that there exist finite classes H
such that the best achievable sequential regret is of order O(

√
log |H|) but the Bayesian algorithm with any prior

over H can only achieve a sequential regret of order Ω(log |H|).

1The technique of [4] based on the redundancy capacity theorem also works for other functions with bounded second derivatives, like the
probit function.



B. Related Work

a) Regrets in online leanring: A large body of existing work in online regression deals with logistic regression.
The work of [19] studies pointwise regret of logistic regression in the proper setting. Unlike improper learning,
investigated in our work, where feature xt at time t is also available to the learner, [19] showed that pointwise
regret is Θ(T 1/3) for d = 1 and O(

√
T ) for d > 1. Furthermore, [20] demonstrates results that the regret for

logistic regression grows as O(d log T/d), and was further generalized in [3]. These results were strengthened in
[4], which also provides matching lower bounds. Precise asymptotics for the fixed design minimax regret were
recently presented in [13], [18] for d = o(T 1/3).

Regret bounds under logarithmic loss for general expert class H was first investigated by Vovk under the framework
of mixable losses [21], [22]. In particular, Vovk showed that for finite class H, the regret growth is log |H| via the
aggregating algorithm (i.e., the Bayesian algorithm that we will discuss below). We refer the reader to [1, Chapter
3.5, 3.6] and the references therein for more results on this topic. Cesa-Bianchi and Lugosi [23] were the first to
investigate log-loss under general (infinite) expert class H [1, Chapter 9.10, 9.11], where they derived a general
upper bound using the concept of covering number and a two-stage prediction scheme. In particular, Cesa-Bianchi
and Lugosi showed that for Lipschitz parametric classes with values bounded away from {0, 1}, one can achieve a
regret bound of the form d/2 log(T/d). When the values are close to {0, 1}, they used a hard truncation approach
that gives a sub-optimal bound of the form (3/2)d log(T/d) (this is not explicitly shown in [23] but can be derived
using their approach). Moreover, the approach of [23] only works for the fixed design regret (or simulatable in
their context). In [2], the authors extended the result of [23] to the sequential case via the machinery of sequential
covering that was established in [24]. However, [2] also used the same hard truncation as in [23] resulting in
suboptimal upper bounds. In [17], the authors obtained an upper bound similar to the upper bound presented in
Theorem 1 using the observation that the log function is self-concordant. In particular, this allows them to resolve
the tight bounds for non-parametric Lipschitz functions mapping [0, 1]s → [0, 1]. However, their bounds are proved
non-constructively, i.e., the proof does not provide an algorithm that achieves such bounds. We note also a recent
result [25] that uses a similar idea of smoothing for controlling the unboundedness of log-loss, however, the result
assumes that features xT are presented i.i.d.. More importantly, the results in [25] only hold for average case regret.

b) Regrets in information theory: The fixed design regret is closely related to the universal compression and
universal prediction studied in [5], [6], [7], [8], [9], [10], [11], [26]. Here, there is no feature vector xt and the
dimension d = 1. A sequence yT is generated by a source P that belongs to a class of sources S, which can be
viewed as the reference class H in online learning. The minimax regret for logarithmic loss is given by [27], [14],
[5]

r∗T (S) = min
Q

max
yT

[− logQ(yT ) + log sup
P∈S

P (yT )],

where Q is the universal probability assignment approximating the unknown P ∈ S . The main question is how the
structure of S impacts the growth of minimax regret. Let m denote the alphabet size (in online learning, we only
consider m = 2). It is known [5], [6], [7], [8], [9], [10], [11] that for Markov sources of order r, regret grows as
mr(m−1)

2 log T for fixed m [7], [6], [8], [28]. In [28], minimax regret was analyzed for all ranges of m and T . For
non-Markovian sources, the growth is super logarithmic. For example, for renewal sources of order r, regret is
Θ(T r/(r+1)) [29], and the precise constant in front of the leading term is known for r = 1 [30]. We note that [31],
[32] studied the general classes of densities smoothly parameterized by d-dimensional data to obtain general results
for minimax regret that can be phrased as online regret. Notably, [33] studied the case with ℓ1 controls on the
parameters and derived a

√
T log(1 + d/T ) type regret bound. However, such results are still under the regime

of fixed design case. In [34] the authors studied smooth parametric sources in the sequential case using a similar
Bayesian averaging approach as in our work. However, the result of [34] only holds when the dimension of the
parameter is a constant (i.e., does not scale as T ). Sequential prediction under log-loss with side information has
also being investigated in [35], [36], [37], [38], notably [36], [35], [37] consider the scenario where the features
xT are generate by an i.i.d. source. However, such results heavily rely on the underlying statistical mechanism
for generating data, while in our paper the selection of xT , yT are completely general and can even be adversarial.



We note that [39] considers an intermediate scenario between full adversary and well-specified case, but without
considering the side information. Furthermore, in [40] the authors provide justifications of selecting the log-loss in
statistical inference problems. The optimality of Bayesian algorithms has also being studied in [41], but only for the
simulatable case.

The current work is a substantial extension of our preliminary results [42].

II. NOTATION AND PRELIMINARIES

We denote X as the input feature space and H as the expert class, which is a class of functions mapping
X → [0, 1]. Throughout the paper, we use Ŷ = [0, 1] and Y = {0, 1} to denote the prediction and label spaces
respectively. We often use an auxiliary set W to index H. If f is a function mapping W ×X → [0, 1], we define
the class induced by f as:

Hf = {f(w, ·) ∈ [0, 1]X : w ∈ W}.

We say a function g is sequential if it maps X ∗ → [0, 1], where X ∗ is set of all finite sequences with elements
in X . We denote G as a class of sequential functions. Note that any function mapping X → [0, 1] can be viewed
as a special case of sequential function. If T is a time horizon, then for any t ∈ [T ], we write xt = {x1, · · · ,xt}
and yt = {y1, · · · , yt}. We use standard asymptotic notation f(t) = O(g(t)) if there exists a constant C such that
f(t) ≤ Cg(t) for sufficient large t and f(t) = Ω(g(t)) if g(t) = O(f(t)). We denote f(t) ≪ g(t) or f(t) = o(g(t))

if lim supt→∞ f(t)/g(t) = 0 and f(t) ≫ g(t) if g(t) ≪ f(t). We also assume that the function log(x) is the natural
logarithm (base e).

The main objective of this paper is to study the growth of sequential minimax regret raT (H) for a large class of
experts H. We accomplish it using two different techniques. For lower bound, we precisely estimate fixed design
minimax regret r∗T (H|xT ) using the Shtarkov sum [14], discussed next. For the upper bound, we construct novel
global covering sets G of H, and design a new (truncated) Bayesian algorithm to find precise bounds with constants
that are provably optimal.

a) Lower Bounds: We investigate the lower bound of the sequential regret raT (H) by considering its corre-
sponding fixed design minimax regret r∗T (H|xT ) and r∗T (H) = supxT r∗T (H|xT ). We are able to do this using the
recent result [12], which we quote next:

Proposition 1 (Wu et al., 2022). Let H be any general hypothesis class and ℓ be any loss function. Then

raT (H) ≥ r∗T (H).

In particular, for logarithmic loss ℓ and threshold functions H = {1{w ≥ x} : w, x ∈ [0, 1]}, we have raT (H) = T

but r∗T (H) = log(T + 1).

We establish precise growth of r∗T (H) by estimating the Shtarkov sum that has been analyzed in information theory
[14], [5] and recently applied to online learning [43], [13]. For logarithmic loss, the Shtarkov sum (conditioned on
xT ) is defined as follows 2

ST (H|xT )
def
=

∑
yT∈{0,1}T

sup
h∈H

Ph(y
T | xT ), (6)

where Ph(y
T | xT ) =

∏T
t=1 h(xt)

yt(1 − h(xt))
1−yt and we interpret h(xt) = P (yt = 1|xt). The regret can be

expressed in terms of the Shtarkov sum (see [13, Equation (6)] or [1, Theorem 9.1]) as:

r∗T (H) = sup
xT

logST (H|xT ). (7)

This allows us to reduce the lower bounds of r∗T (H) to the lower bounds of ST (H|xT ). For some cases, one can
lower bound ST (H|xT ) analytically, see e.g., Theorem 5 and 7. However, in most of the cases, an analytic formula

2Note that the Starkov sum can be defined for any class of measures, however, here we only use the form for product measures.



is not available (or hard to derive). We deal with such cases using a non-parametric approach, as established in
Lemma 1 below 3.

Lemma 1. Let P be a finite class of distributions over the same domain Ω. Denote

S =
∑
ω∈Ω

max
p∈P

p(ω)

to be the Shtarkov sum. Then for any estimation rule Φ : Ω → P we have:

S ≥ |P| ·
(
1−max

p∈P
p ({ω : Φ(ω) ̸= p})

)
Proof. Note that Φ partitions Ω into |P| disjoint parts. For any p ∈ P , we denote Ωp = {ω ∈ Ω : Φ(ω) = p} to be
the partition corresponding to p. We have:∑

p∈P
p(Ωp) =

∑
ω∈Ω

pω(ω) ≤
∑
ω∈Ω

max
p∈P

p(ω) = S,

where pω ∈ P is the distribution such that ω ∈ Ωpω
. This implies

min
p∈P

p(Ωp) ≤
S

|P|
.

The result follows by taking the complements of Ωp.

We note that the crucial part of applying this approach is selection of features xT that maximize ST (H|xT ),
which is generally non-trivial, see Section V.

b) Upper Bounds: We now discuss our constructive approach to upper bounds. In the next section, we present
our Smooth truncated Bayesian Algorithm (Algorithm 2) that provides a constructive and often achievable upper
bound. Here we summarize some, mostly known, preliminaries.

Let G be any class of functions mapping X ∗ → [0, 1]. Let W be an index set of G and µ be an arbitrary finite
measure over W . The standard Bayesian predictor with prior µ is presented in Algorithm 1. Based on this algorithm,
we can prove following two lemmas (see e.g., [1, Chapter 3.3]) that are used to establish most of the upper bounds
in this paper. For completeness, we provide simple proofs in Appendix A.

Algorithm 1 Bayesian predictor
Input: Reference class G := {gw : w ∈ W} with index set W and prior µ over W

1: Set pw(y0 | x0) = 1 for all w ∈ W .
2: for t = 1, · · · , T do
3: Receive feature vector xt

4: Make prediction with the following equation:

ŷt =

∫
W gw(x

t)pw(y
t−1 | xt−1)dµ∫

W pw(yt−1 | xt−1)dµ
.

5: Receive label yt
6: For all w ∈ W , update: pw(y

t | xt) = e−ℓ(gw(xt),yt)pw(y
t−1 | xt−1).

7: end for

Lemma 2. Let G be a class of functions gw : X ∗ → [0, 1], w ∈ W . Let ŷt be the Bayesian prediction rule as in
Step 4 of Algorithm 1 with prior µ. Then, for any xT and yT we have

T∑
t=1

ℓ(ŷt, yt) ≤ − log

∫
W pw(y

T | xT )dµ∫
W 1dµ

,

3Note that Lemma 1 is conceptually similar to the redundancy-capacity theorem based approach as in [4], however, we are bounding the
Shtarkov sum here directly without going through the Fano’s inequality.



where pw(y
T | xT ) = e−

∑T
t=1 ℓ(gw(xt),yt) and ℓ is the log-loss as in equation (1).

The following lemma bounds the regret under log-loss of finite classes, which is well known.

Lemma 3. For any finite class of functions G, we have raT (G) ≤ log |G|.

We note that the crucial part of applying the Bayesian approach is to appropriately design a class G that covers
H. This will be the main theme of our work on deriving upper bounds on raT (H). We also discuss the strength of
this approach in Section VI.

III. MAIN RESULT AND BAYESIAN AVERAGING

We first introduce a notation of covering set called the global sequential cover, which was implicitly used in [15,
Section 6.1] for deriving regret bounds under absolute loss and dates back to the ideas in [16].

Definition 1 (Global sequential covering). For any H ⊂ [0, 1]X , we say that class G of functions mapping X ∗ → [0, 1]

is a global sequential α-covering of H at scale α if for any xT ∈ X T and h ∈ H, there exists g ∈ G such that
∀t ∈ [T ],

|h(xt)− g(xt)| ≤ α.

Throughout we assume that 0 ≤ α ≤ 1.

Note that global sequential covering defined in Definition 1 is different from the (local) sequential covering
used in [17] (and originally from [15]), since our covering functions do not depend on the underlying trees in the
definition of [15]. This is crucial to apply our covering set directly in an algorithmic way (see Algorithm 2). Note
that, global sequential covering subsumes the classical notion of uniform covering, where the covering function
does not depend on past observations. However, global sequential covering can be substantially smaller than the
uniform cover. We discuss this in Section V. Note that the definition of sequential covering can be extended to
sequential experts as well (simply replace h(xt) with h(xt)). More generally, one can also consider the case when
the experts could depend on both the past features and labels. We refer to Appendix C for more discussions.

A. General Upper Bounds via Smoothing.

We are now in position to state our first main result:

Theorem 1. If for any α ≥ 0 there exists a global sequential α-covering set Gα of H, then

raT (H) ≤ inf
0≤α≤1

{T log(1 + 2α) + log |Gα|} ≤ inf
0≤α≤1

{2αT + log |Gα|} , (8)

and this bound is achived by using Algorithm 2 over Gα with truncation parameter α and uniform prior.

We point out that Theorem 1 also improves the upper bounds of [17] by obtaining better constants in front of
both αT and log |Gα| (i.e., from (4, 4) to (2, 1)), while the results of [17] are only proved non-constructively. The
proof of Theorem 1 is based on the following key lemma.

Lemma 4. Suppose H has a global sequential α-covering set G for some α ∈ [0, 1]. Then, there exists a truncated
set G̃ of G with |G̃| = |G| such that for all xT , yT and h ∈ H there exists a g̃ ∈ G̃ satisfying

ph(y
T | xT )

pg̃(yT | xT )
≤ (1 + 2α)T , (9)

where

ph(y
T | xT ) =

T∏
t=1

h(xt)
yt(1− h(xt))

1−yt and pg̃(y
T | xT ) =

T∏
t=1

g̃(xt)yt(1− g̃(xt))1−yt .



Algorithm 2 Smooth truncated Bayesian predictor
Input: Reference class G with index set W and prior µ over W , and truncation parameter α

1: Let pw(y0 | x0) = 1 for all w ∈ W
2: for t = 1, · · · , T do
3: Receive feature xt

4: For all w ∈ W , set

g̃w(x
t) =

gw(x
t) + α

1 + 2α

5: Make prediction

ŷt =

∫
W g̃w(x

t)pw(y
t−1 | xt−1)dµ∫

W pw(yt−1 | xt−1)dµ

6: Receive label yt
7: For all w ∈ W , update: pw(y

t | xt) = e−ℓ(g̃w(xt),yt)pw(y
t−1 | xt−1).

8: end for

Proof. We construct the set G̃ as in Algorithm 2. For any g ∈ G, we define a smooth truncated function g̃ such that
for any xt ∈ X ∗

g̃(xt) =
g(xt) + α

1 + 2α
.

We introduce the following short-hand notation; for any function f , we define f(yt) = f(xt)yt(1− f(xt))1−yt . For
any xT , yT , and h ∈ H, let g ∈ G be a α-covering of h and g̃ be the truncated function as defined above. Now, the
key observation is that for any yt ∈ {0, 1}, we have h(yt) ≤ g(yt) + α since g α-covers h. This implies that

h(yt)

g̃(yt)
≤ g(yt) + α

(g(yt) + α)/(1 + 2α)
= 1 + 2α.

Therefore, we have

ph(y
T | xT )

pg̃(yT | xT )
=

T∏
t=1

h(yt)

g̃(yt)

≤ (1 + 2α)T .

This completes the proof of Lemma 4.

Remark 1. A different way of understanding Lemma 4 is through the concept of sequential dominance. We say a
function class G sequentially α-dominates a class H if for any xT , yT and h ∈ H there exists g ∈ G such that
log ph(y

T | xT ) − log pg(y
T | xT ) ≤ αT . Lemma 4 proves that if a class H admits a sequential α-covering set,

then one can convert the covering set into a sequential 2α-dominate set. The concept of dominance is the "right"
way of characterizing the log-loss due to the multiplicative nature of log-loss.

Proof of Theorem 1. We show that for any 0 ≤ α ≤ 1, if an α-covering set Gα exists, then one can achieve the
claimed bound for such an α. To do so, we run the Smooth truncated Bayesian Algorithm (Algorithm 2) on Gα

with uniform prior and truncation parameter α. We denote G̃α to be the truncated class of Gα as in Lemma 4 (same
as the step 4 of Algorithm 2). We now fix xT , yT . By Lemma 3 (with G being G̃α), we have:

T∑
t=1

ℓ(ŷt, yt) ≤ inf
g̃∈G̃α

T∑
t=1

ℓ(g̃(xt), yt) + log |G̃α| = inf
g̃∈G̃α

T∑
t=1

ℓ(g̃(xt), yt) + log |Gα|,

the last equality follows from |Gα| = |G̃α|. Since
∑T

t=1 ℓ(f(x
t), yt) = − log pf (y

T | xT ) for any function f , then



by Lemma 4 we conclude that:

inf
h∈H

T∑
t=1

ℓ(h(xt), yt) ≥ inf
g̃∈G̃α

T∑
t=1

ℓ(g̃(xt), yt)− T log (1 + 2α) .

The result follows by combining the inequalities and noticing that log(1 + x) ≤ x for all x ≥ −1.

We further note that for any constants c1, c2 for which the bound raT (H) ≤ c1αT + c2 log |Gα| holds universally,
we must have c1 ≥ 2 and c2 ≥ 1. Therefore, Theorem 1 achieves the optimal constants in the form c1αT+c2 log |Gα|.
To see this, we let X = [T ] and define g to be the function that maps every t ∈ [T ] to 1

2 . Let H be the class of
functions that maps to [1/2− α, 1/2 + α]. Clearly, H is α-covered by g. By noting that the maximum probability
is (1/2 + α)T = (1 + 2α)T (1/2)T , we compute the Shtarkov sum (6) to find:

raT (H) ≥ r∗T (H) ≥ log(1 + 2α)T ∼ 2αT,

where ∼ holds when α is sufficiently small. This implies that we must have c1 ≥ 2. The fact that c2 ≥ 1 is due to
the fact that the mixability constant of log-loss is 1, which also follows from Theorem 3 below.

IV. LIPSCHITZ PARAMETRIC CLASSES

We now consider a Lipschitz parametric function class. Given a function f : W×X → [0, 1], define the following
class

Hf = {f(w, ·) ∈ [0, 1]X : w ∈ W},

where w ∈ W is often a d-dimensional vector in Rd.
We will assume that f(w,x) is L-Lipschitz on w for every x, where L ∈ R+. More formally, ∀w1,w2 ∈ W

and x ∈ X , we require that L-Lipschitz function f satisfy:

|f(w1,x)− f(w2,x)| ≤ L||w1 −w2||,

where || · || is some norm on W . For example, if we take W ⊂ Rd, then the norm can be ℓ1, ℓ2 or ℓ∞ norm. For
any specific norm || · ||, we write B(R) to be the ball under such norm with radius R in W . In particular, we denote
by Bd

s(R) the ball in Rd of radius R under ℓs norm centered at the origin.

A. Characterization of Lipschitz Class

We start with the following upper bound for general Lipschitz parametric classes. We provide here a simple
covering based proof, but refer to Appendix E for a proof without relying on construction of a cover.

Theorem 2. Let f : Bd
s(R)× Rd → [0, 1] be a L-Lipschitz function under ℓs norm. Then

raT (Hf ) ≤ min

{
d log

(
2RLT

d
+ 1

)
+ 2d, T

}
. (10)

Proof. By L-Lipschitz condition, to find an α-covering in the sense of Definition 1, we only need to find a covering
of Bd

s(R) with radius α/L under ℓs norm. By standard result (see e.g. Lemma 5.7 and Example 5.8 of [44]) we
know that the covering size is upper bounded by(

2RL

α
+ 1

)d

.

By Theorem 1, we find:

raT (Hf ) ≤ inf
0<α<1

{
2αT + d log

(
2RL

α
+ 1

)}
.

Taking α = d/T , we conclude:

raT (Hf ) ≤ d log

(
2RLT

d
+ 1

)
+ 2d.



This completes the proof for T ≥ d. The upper bound T is achieved by predicting 1
2 every time.

Example 1. For logistic function f(w,x) = (1 + e−⟨w,x⟩)−1, and w ∈ Bd
2(R) with x ∈ Bd

2(1), our result recovers
those of [3], but with a better leading constant (the bound in [3] has a constant 5). Note that, the result in [17] also
provides a sub-optimal constant c ∼ 4. Moreover, our bounds have a logarithmic dependency on Lipschitz constant
L (note that [3] achieves a linear dependency on L, though their Lipschitz condition is for function log f ).

The question arises whether the factor in front of log T can be improved to d/2 instead of d as discussed in some
recent papers [4], [13], [18]. In Theorem 3 below, we show that, in general, it cannot unless we further strengthen
our assumption (see Theorem 4).

Theorem 3. For any d, T,R, L such that T ≫ d log(RLT ), there exists L-Lipschitz function f : Bd
s(R)×Rd → [0, 1]

under ℓs norm such that

raT (Hf ) ≥ d log

(
RLT

d

)
− d log 64− d log log(RLT ). (11)

We remark that Theorem 3 also demonstrates the tightness of the upper bound in Theorem 2 for all the parameters
d, T,R, L on the leading growth. To prove Theorem 3 we first introduce the following well known packing number
estimates of Boolean cube, see [44, Example 5.3].

Lemma 5. For any M with M ≤ eT/8, there exist M vectors v1, v2, · · · , vM ∈ {0, 1}T such that for any i ̸= j ∈ [M ]

we have:
T∑
t=1

1{vi[t] ̸= vj [t]} ≥ T/4.

Proof of Theorem 3. Let x1, · · · ,xT ∈ Rd be any distinct points. We construct an L-Lipschitz function f(w,x)

such that the regret restricted only on xT is large, which will give us the desired lower bound. To do so, we
consider a maximum packing M of the parameter space Bd

s(R) of radius α/L > 0 under ℓs norm (where α is to
be determined later). Standard volume argument (see Chapter 5 of [44]) yields:

|M | ≥
(
LR

2α

)d

.

Now, we define an L-Lipschitz functions f(w,x) only on w ∈ M and x ∈ {x1, · · · ,xT }. By Lemma 5 (assume
for now the conditions are satisfied), we can find |M | binary vectors V ⊂ {0, 1}T such that any pair of vectors has
Hamming distance lower bounded by T/4. For each of the vector v ∈ V , we define a vector u ∈ [0, 1]T in the
following manner – for all t ∈ [T ]:

1. If v[t] = 0 then set u[t] = 0;
2. If v[t] = 1 then set u[t] = α.
Denote by U the set of all such vectors u. Note that |U | = |M |. For any w ∈ M , we define the following

function f : we associate a unique u ∈ U such that for all t ∈ [T ]:

f(w,xt) = u[t].

We now show that f is indeed L-Lipschitz restricted on M for all xt ∈ {x1, · · · ,xT }. This is because for any
w1 ̸= w2 ∈ M , we have |f(w1,xt)− f(w2,xt)| ≤ α by definition of U and ||w1 −w2||2 ≥ α/L, since M is a
packing.

We now view vectors u ∈ U as a product of Bernoulli distributions with each coordinate t independently sampled
from Bern(u[t]). We show that the sources in U are identifiable. To see this, we note that for any distinct pairs
u1, u2 ∈ U , there exists a set I ⊂ [T ] such that u1 and u2 differ on I and |I| ≥ T/4. This further implies that there
exists a set J ⊂ I with |J | ≥ T/8 such that u1 takes all 0 on J and u2 takes all α on J (or vice versa). We can
then distinguish u1, u2 by checking if the samples on J are all 0s or not. The probability of making an error is
upper bounded by:

(1− α)T/8 ≤ e−αT/8.



Since there are only |M |2 such pairs, we have the probability of wrongly identifying the source upper bounded by

|M |2e−αT/8.

Taking α = 16d log(RLT )
T , the error probability is upper bounded by:(

RLT

32d log(RLT )

)2d

e−2d log(RLT ) ≤
(

1

32d log(RLT )

)2d

≤ 1

2
,

for sufficiently large d, T , where we use the fact that |M | ≤
(

RLT
32d log(RLT )

)d
. Note that we only showed a lower

bound on |M |, but this is not a problem since we can always remove some points from M to make the upper
bound holds as well.

By Lemma 1, we know that the Shtarkov sum of sources in U is lower bounded by |M |/2. Therefore, we have:

raT (Hf ) ≥ r∗T (Hf ) ≥ log(|M |/2) ≥ d log (RLT/d)− d log 64− d log log(RLT ).

Now, we have to extend the function f to the whole set Bd
s(R) and keep the L-Lipschitz property. This follows

from a classical result in real analysis (see [45, Theorem 1]) by defining for all w ∈ Bd
s(R) and xt ∈ {x1, · · · ,xT }

f(w,xt) = sup
w′∈M

{f(w′,xt)− L||w −w′||s}.

For x ̸∈ {x1, · · · ,xT }, we can simply let f(w,x) = 0 for all w.
Finally, we need to check that the condition of Lemma 5 holds for our choice of α, but this is satisfied by our

assumption T ≫ d log(RLT ).

B. Lipschitz Class with Bounded Hessian.

As we have shown in Theorem 3, the leading constant, 1, of the regret for Lipschitz parametric classes can not
be improved in general. We now show that for some special function f , one can improve the constant to 1

2 , as
already noted in [4], [13], [18]. For any function f : Rd × Rd → [0, 1], we say the Hessian of log f is uniformly
bounded on X ⊂ Rd, if there exists constant C such that for any w ∈ Rd, x ∈ X , and y ∈ {0, 1} we have:

sup
||u||2≤1

|uτ∇2
w log f(w,x)y(1− f(w,x))1−yu| ≤ C,

where ∇2
w is the Hessian at w. We note that this condition is similar to the common assumption on the Fisher

information matrix as in [7], [32] in the non-sequential case.

Theorem 4. Let f : Rd × Rd → [0, 1] be a function such that the Hessian of log f is uniformly bounded by C on
X . Let

Hf = {f(w,x) : w ∈ W,x ∈ X}

be such a class of f restricted to some compact set W ⊂ Rd. Then for any ϵ > 0,

raT (Hf ) ≤ log
Vol(W∗)

Vol(Bd
2(ϵ))

+
1

2
CTϵ2 + log 2. (12)

where W∗ = {w+u | w ∈ W, u ∈ Bd
2(ϵ)}, Vol(·) is volume under Lebesgue measure. In particular, for W = Bd

2(R)

and ϵ =
√

d/CT , we have:

raT (Hf ) ≤
d

2
log

(
2CR2T

d
+ 2

)
+ d/2 + log 2.

Note that Theorem 4 subsumes the results of [20], [4]4, where the authors considered functions of form f(⟨w,x⟩),
and required that the second derivative of log f be bounded, see also [1, Chapter 11.10]. However, the KL-divergence-
based argument of [20] can not be used directly in the setup of Theorem 4 since we do not assume that the function

4To get the upper bounds in [4] one only needs to estimate the volume of ℓs balls, which is well known [46].



f has a linear structure. Our main proof technique for Theorem 4 is a direct application of Lemma 2 and an
estimation of the integrals via Taylor expansion.

Proof of Theorem 4. The proof resembles that of [3] but running the Bayesian predictor (Algorithm 1) over W∗

instead of W with G being Hf and µ being Lebesgue measure. Let xT , yT , and ŷT be the feature, label, and
predictions of the Bayesian predictor, respectively. By Lemma 2:

T∑
t=1

ℓ(ŷt, yt) ≤ − log

∫
W∗ pw(y

T | xT )dµ∫
W∗ 1dµ

, (13)

where µ is the Lebesgue measure and

pw(y
T | xT ) =

T∏
t=1

f(w,xt)
yt(1− f(w,xt))

1−yt .

We now write ht(w)
def
= log f(w,xt)

yt(1−f(w,xt))
1−yt to simplify notation. It is easy to see that ℓ(f(w,xt), yt) =

−ht(w). Let w∗ be the point in W that maximizes

h(w)
def
=

T∑
t=1

ht(w).

Let u = ∇h(w∗) be the gradient of h at w∗. By Taylor theorem, we have for any w ∈ W∗:

h(w) = h(w∗) + uτ (w −w∗) +
1

2
(w −w∗)τ∇2

w′h(w′)(w −w∗),

where w′ is a convex combination of w and w∗ and uτ is the transpose of u.
Now, the key observation is that for any point w such that uτ (w −w∗) ≥ 0, we have:

h(w) ≥ h(w∗) +
1

2
(w −w∗)τ∇2

w′h(w′)(w −w∗) ≥ h(w∗)− 1

2
CT ||w −w∗||22, (14)

where the last inequality follows from our assumption about the bounded Hessian of log f . Let B be the half ball
of radius ϵ centered at w∗ such that for all w ∈ B we have uT (w −w∗) ≥ 0. By (14), for all w ∈ B

h(w) ≥ h(w∗)− 1

2
CTϵ2. (15)

Note that B ⊂ W∗. Then, using above observations we arrive at:

T∑
t=1

ℓ(ŷt, yt) ≤ − log

∫
W∗ pw(y

T | xT )dµ∫
W∗ 1dµ

(16)

≤ − log

∫
B pw(y

T | xT )dµ∫
W∗ 1dµ

, since B ⊂ W∗ (17)

≤ − log
e−CTϵ2/2

∫
B pw∗(yT | xT )dµ∫
W∗ 1dµ

(18)

= − log pw∗(yT | xT ) + CTϵ2/2− log
Vol(B)

Vol(W∗)
(19)

= − log pw∗(yT | xT ) + CTϵ2/2− log
1
2Vol(Bd

2(ϵ))

Vol(W∗)
(20)

=

T∑
t=1

ℓ(f(w∗,xt), yt) + log
Vol(W∗)

Vol(Bd
2(ϵ))

+ CTϵ2/2 + log 2. (21)

This completes the proof of the general bound. The last part of the theorem follows from the fact that if W = Bd
2(R),



W∗ = Bd
2(R+ ϵ), and noting that:

Vol(Bd
2(R+ ϵ))

Vol(Bd
2(ϵ))

≤ (R/ϵ+ 1)d.

Remark 2. When compared to the technique in [34], Theorem 4 does not assume that the gradient critical point of
the loss is zero (e.g., the minimum may occur on the boundary). This is why we need to restrict to the half ball B in
order to discard the linear term of Taylor expansion in Equation (15). Moreover, in the proof, we work directly on
the continuous space instead of a discretized cover, giving an efficient algorithm provided the posterior is efficiently
samplable (by e.g., assuming some log-concavity of f as in [3]).

We complete this part with the following lower bound for generalized linear functions under unit ℓs balls.

Theorem 5. Let f : R → [0, 1] be an arbitrary function such that there exist c1, c2 ∈ (0, 1) and for all r > 0 we
have [c1 − c2d

−r, c1 + c2d
−r] ⊂ f([−d−r, d−r]) for sufficiently large d. Let

Hf = {f(⟨w,x⟩) : w ∈ Bd
s(1),x ∈ Bd

s(1)}

where s > 0. Then
raT (Hf ) ≥

d

2
log

(
T

d(s+2)/s

)
−O(d) (22)

where O hides some absolute constant that is independent of d and T .

Note that for the logistic function f(x) = (1 + e−x)−1 Theorem 5 holds with c1 =
1
2 and c2 =

1
5 . Therefore,

1. If s = 1, then

raT (Hf ) ≥
d

2
log

(
T

d3

)
−O(d).

2. If s = 2, then

raT (Hf ) ≥
d

2
log

(
T

d2

)
−O(d).

3. If s = ∞, then

raT (Hf ) ≥
d

2
log

(
T

d

)
−O(d).

This recovers all the lower bounds from [4]. We note that a simple sufficient condition for Theorem 5 to hold is to
require f ′(0) ̸= 0 if f(x) is differentiable.

Remark 3. We note that the leading constants in Theorems 4 and 5 match only if d grows sub-polynomially w.r.t. T
(i.e., when d = eo(log T )). However, when d grows polynomailly w.r.t. T the leading constants will no longer match,
though the bounds still have the asymptotic rate Θ(d log T ) for d ≪ T (s/s+2)−ϵ with ϵ > 0. Moreover, for s = 2,
the condition d ≪

√
T for achieving a Ω(d) lower bound cannot be relaxed since for logistic function f one can

achieve an Õ(
√
T ) upper bound independent of dimension d, see [3, Example 2].

The proof of Theorem 5 is based on the following technique lemma 5, see Appendix D for detailed proof.

Lemma 6. The following inequality holds, for r > 0:∑
y∈{0,1}T/d

sup
w∈[c1−c2d−r,c1+c2d−r]

P (y | w) ≥ Ω(
√

T/d2r+1), (23)

where P (y | w) = wk(1− w)T/d−k with k being the number of 1s in y.

Proof of Theorem 5. We choose a particular xT : We split xT into d blocks, each with length of T/d. With
that, the ith parts of the input and the output are denoted by x(i) = (x(T/d)∗(i−1)+1, · · · ,x(T/d)∗i) and y(i) =

5A similar technique for the ℓ2 case was used in [12] recently and developed independently by [47].



(y(T/d)∗(i−1)+1, · · · , y(T/d)∗i), respectively. We define for any xt in the ith block x(i) equals ei the standard d base
of Rd with 1 in position i and 0s elsewhere. Note that, with this choice of xts, we have ⟨w,xt⟩ = wi, where wi is
the ith coordinate of w and xt ∈ x(i).

We will lower bound r∗T (Hf | xT ), which will automatically give a lower bound on raT (Hf ). We only need to
compute the following Shtarkov sum:

ST (Hf |xT ) =
∑

yT∈{0,1}T

sup
w∈Bd

s (1)

d∏
i=1

Pf (y(i)|wi), (24)

where Pf (y(i)|wi) = f(wi)
ki(1− f(wi))

T/d−ki with ki being the number of 1s in y(i). We observe that:

ST (Hf |xT ) ≥
∑

yT∈{0,1}T

d∏
i=1

sup
wi∈[−d−1/s,d−1/s]

Pf (y(i)|wi)

=

d∏
i=1

∑
y(i)∈{0,1}T/d

sup
wi∈[−d−1/s,d−1/s]

Pf (y(i)|wi)

=
( ∑

y∈{0,1}T/d

sup
w∈[−d−1/s,d−1/s]

Pf (y|w)
)d

≥

 ∑
y∈{T/d}

sup
w∈[c1−c2d−1/s,c1+c2d−1/s]

P (y | w)

d

where P (y | w) is as in Lemma 6 and the last inequality holds since [c1− c2d
−1/s, c1+ c2d

−1/s] ⊂ f([d−1/s, d−1/s])

by the assumption. Now, Lemma 6 implies that

ST (Hf | xT ) ≥ cd
(

T

d(s+2)/s

)d/2

,

where c is some absolute constant that is independent of d and T . We conclude that:

raT (Hf ) ≥ r∗T (Hf ) ≥ logST (Hf |xT ) ≥ d

2
log

(
T

d(s+2)/s

)
−O(d),

which completes the proof.

C. Tight Constants Beyond Bounded Hessian

One may observe that the main technique we use in the previous sections for upper bounds is to apply a Bayesian
predictor over some uniform cover on the parameter space. In this section, we demonstrate that one can improve the
upper bounds by performing the Bayesian averaging over some non-uniform cover for certain hypothesis classes.
This phenomenon is well known in the information theory community for the fixed design case [31]. However,
for the sequential case, the situation is more complicated, since we need to deal with xT without knowing it in
advance. We note that, this phenomenon was discussed for the sequential case by Shamir [4] for analyzing the
regret of Logistic regression, where the author used a Gaussian prior to obtain a 1

2 leading constant. However, as
we demonstrated in the proof of Theorem 4, this can actually be achieved by a uniform prior as well. We now show
in this section that the non-uniform cover can indeed provide tighter sequential regret bounds than the uniform
cover for certain classes.

Lemma 7. Let h1, h2 be arbitrary functions that map X → [0, 1], we define a function class H = {hw =

wh1 + (1− w)h2 : w ∈ [0, 1]}. Then

raT (H) ≤ 1

2
log T + log log T +O(1).



Proof. For any given xT , yT , we denote h̃i(xt) = (1− yt)(1− hi(xt)) + ythi(xt) for i ∈ {1, 2}. We also denote
h̃w(xt) = wh̃1(xt) + (1− w)h̃2(xt). We have the log-loss over xT , yT against hw as:

T∑
t=1

ℓ(hw(xt), yt) =

T∑
t=1

− log h̃w(xt).

Let Lt(w) = − log h̃w(xt); we have:

L′′
t (w) =

(h̃1(xt)− h̃2(xt))
2

h̃w(xt)2
.

We now consider two cases (using elementary algebra):
1. If h̃1(xt) ≥ h̃2(xt), we have:

|L′′
t (w)| =

1

(w + h̃2(xt)/(h̃1(xt)− h̃2(xt)))2
≤ 1

w2
.

2 If h̃1(xt) ≤ h̃2(xt), we have:

|L′′
t (w)| =

1

(1− w + h̃1(xt)/(h̃2(xt)− h̃1(xt)))2
≤ 1

(1− w)2
.

Let E be a non-uniform cover that is constructed as follows. Let e0 = 1
T , we define recursively:

en =

(
1 +

√
1

T

)
en−1.

Let N be the maximum number for which eN ≤ 1
2 . It is easy to verify that N ≤ O(

√
T log T ). We define

E = {en, 1 − en : n ∈ {0, · · · , N}} ∪ {0, 1}. By construction of E, we have for any w ∈ [1/T, 1 − 1/T ] there
exists e ∈ E such that:

|e− w| ≤ min{w
√

1/T , (1− w)
√

1/T}.

Let w∗ ∈ [0, 1] be the point that achieves the minimal of L(w) =
∑T

t=1 Lt(w). We have either w∗ = 0, 1 or
L′(w∗) = 0. For the latter case, we have by Taylor expansion, for all e (where w′ is convex combination of e, w∗):

L(e) = L(w∗) + L′′(w′)(e− w∗)2.

Taking e ∈ E such that |e − w∗| ≤ min{w∗√1/T , (1 − w∗)
√

1/T} (assume for now w∗ ∈ [1/T, 1 − 1/T ]) and
using the property for L′′(w) above, we have:

L(e) ≤ L(w∗) +O(1).

By applying Algorithm 1 over {he : e ∈ E} with uniform prior, we obtain the following regret bound:

raT (H) ≤ log |E|+O(1) =
1

2
log T + log log T +O(1).

Finally, we observe that the case for w∗ ≤ 1/T or ≥ 1− 1/T does not affect the result, since by taking e = 1/T

or 1− 1/T (respectively) guarantees that L(e) ≤ L(w∗) +O(1), see e.g., [12, Theorem 2].

Remark 4. Note that a uniform cover as in Theorem 2 can only provide a log T upper bound for the class in
Lemma 7. This follows by taking ∀x ∈ X , h1(x) = 0 and h2(x) = 1, i.e., the fixed design case with Bernoulli
sources. To see this, we let yT = 1 · · · 1 be all 1 sequence and 0, δ, 2δ, · · · , 1 be a uniform cover of [0, 1] with step
size δ. The probability assigned on yT given by the Bayesian algorithm (with uniform prior over the cover) is

δ

1/δ∑
n=1

(nδ)T ≤ δT+1

1/δ∑
n=1

nT ≤ δT+1min

{
(1/δ + 1)T+1

T + 1
,
1

δT

T∑
n=1

e−iδT

}
≤ max

{
2

T + 1
, 2δ

}
,



where the second inequality follows by that
∑N

n=1 n
T ≤ (N + 1)T+1/(T + 1) and nT /NT ≤ e−(N−n)T/N , the

last inequality follows by considering two cases, i.e., δ ≥ 1/(2T ) or δ < 1/(2T ). Now, if δ ≤ log2 T
T , then the

regret is lower bounded by (1 − o(1)) log T (against the source of parameter 1). Else, we take yT being any
binary sequence with T · δ/4 ones. In this case the probability assigned by any source Bernoulli(nδ) on yT equals
e−T (KL(nδ||δ/4)+H(δ/4)) ≤ e−T (δ/4+H(δ/4)), where we used the fact that KL(nδ||δ/4) ≥ δ/4 for sufficient small δ and
n ∈ N. Therefore, the Bayesian algorithm must assign probability ≤ e−T (δ/4+H(δ/4)) on yT . Since the assignment
of source δ/4 on yT is exactly e−TH(δ/4), the regret is lower bounded by T · δ/4 ≥ Ω(log2 T ) ≥ (1− o(1)) log T .

Using Lemma 7, we prove the following lemma:

Lemma 8. Let H1 and H2 be two finite classes, we define:

H = {wh1 + (1− w)h2 : h1 ∈ H2, h2 ∈ H2, w ∈ [0, 1]}.

Then there exists a covering class H′ such that for all xT , yT and h ∈ H there exists h′ ∈ H′ such that:

log ph(y
T | xT ) ≤ log ph′(yT | xT ) + C,

for some absolute constant C > 0 and there exists absolute constant c > 0:

|H′| ≤ |H1||H2| ∗ (c
√
T log T ).

Proof. Let E be the covering set constructed in the proof of Lemma 7, we define:

H′ = {eh1 + (1− e)h2 : h1 ∈ H1, h2 ∈ H2 and e ∈ E}.

We show that H′ is the desired class. Let xT , yT be arbitrary feature and label sequences. Let h∗ ∈ H be the
function that achieves the maximum ph∗(yT | xT ), where ph∗(yT | xT ) is defined in Lemma 4. There must be
functions h1 ∈ H1, h2 ∈ H2 and w∗ ∈ [0, 1] such that h∗ = w∗h1 + (1 − w∗)h2. Since classes H1 and H2 are
discrete, we must have either w∗ = 0, 1 or L′(w∗) = 0, where L(w) = − log phw

(yT | xT ) is the function in the
proof of Lemma 7 and hw = wh1 + (1− w)h2. Using the same argument as in the proof of Lemma 7, we have
log ph∗(yT | xT ) ≤ log phe

(yT | xT ) + O(1), where he = eh1 + (1 − e)h2 with e ∈ E. Since h∗ achieves the
maximum of ph(xT | yT ), we have for any h ∈ H, log ph(yT | xT ) ≤ log ph∗(yT | xT ) ≤ log phe

(yT | xT ) +O(1).
The result follows by counting the size of H′.

Theorem 6. Let h1, h2, · · · , hs be s functions and

H =


s∑

j=1

wjhj :

s∑
j=1

ws = 1 and wj ∈ [0, 1]

 .

Then
raT (H) ≤ s− 1

2
log T + (s− 1) log log T +O(s).

Proof. Let τ be any full binary tree with s leaves and root v0 (which has s− 1 internal nodes and s leaves). We
will associate each node in the tree with a set of functions in a bottom-up fashion with each of leaves associated to
one of the sets {hj} with j ∈ [s] respectively. For each internal node v, we denote HvL

and HvR
to be the sets

corresponding to its left and right child respectively. We then associate the covering set of HvL
and HvR

as in
Lemma 8 to the node v. By Lemma 8, the set Hv0

associated to the root v0 has size at most (c ∗
√
T log T )s−1 for

some absolute constant c since there are only s−1 internal nodes and each internal nodes contribute one merge in the
above process. Moreover, by Lemma 8 we will incur an additive constant C for the error of covering after each merge.
Therefore for any xT , yT and h ∈ H there exist h′ ∈ Hv0

such that log ph(yT | xT ) ≤ log ph′(yT | xT ) + (s− 1)C.
The result follows applying Algorithm 1 over Hv0

with uniform prior.



Corollary 1. Let f = ⟨w,x⟩ with w ∈ Bd
1(1) ∩ [0, 1]d and x ∈ [0, 1]d. Then we have

raT (Hf ) ≤
d

2
log T + d log log T +O(d).

Proof. Note that Hf is a convex combination of ⟨ej ,x⟩ with j ∈ [d] and the all-zero valued function, where ej is
the standard base of Rd with value 1 at position j and zeros elsewhere. The result follows by Theorem 6 by taking
s = d+ 1.

Remark 5. Note that the function log f in Corollary 1 is neither Lipschitz nor has bounded Hessian, yet we can
still achieve a 1

2 leading constant. It is worth noting that using the result in [1, Chapter 9.10] and the expected
majorizing martingale characterization for raT under Lipschitz loss as established in [48], one can show that the 1

2

constant can be achieved (non-constructively) if we only assume log f is Lipschitz (i.e., no requirement on Hessian).
This does not apply to the case in Corollary 1, since in our case the function log f is not even Lipschitz.

V. LARGE GROWTH

We now present some results for large d growing even faster than T . We will show that the size of global
sequential covering (Definition 1) of a class H can be bounded by the sequential fat-shattering number of H in a
similar fashion as in [15]. We first introduce the notion of sequential fat-shattering number as in [15].

We denote {0, 1}≤d to be the set of all binary sequences of length less than or equal to d. A binary tree of depth
d with labels in X is defined to be a map τ : {0, 1}≤d → X . For any function class H ⊂ [0, 1]X , we say H α-fat
shatters tree τ if there exists [0, 1]-value tree s : {0, 1}≤d → [0, 1] such that for any binary sequence ϵd1 ∈ {0, 1}d
there exists h ∈ H such that for all t ∈ [d]:

1. If ϵt = 0, then h(τ(ϵt−1
1 )) ≤ s(ϵt−1

1 )− α;

2. If ϵt = 1, then h(τ(ϵt−1
1 )) ≥ s(ϵt−1

1 ) + α.

Definition 2. The sequential α-fat shattering number of H is defined to be the maximum number d(α) such that H
α-fat shatters a tree τ of depth d := d(α).

In the lemma below, we present an upper bound for the cardinality of the global sequential covering set w.r.t. the
sequential fat-shattering number with algorithmically constructed cover set Gα, see [15, Section 6.1].

Lemma 9. Let H ⊂ [0, 1]X be any class of functions and d(α) be the sequential α-fat shattering number of H.
Then there exists a global sequential α-covering set Gα of H as in Definition 1 such that:

|Gα| ≤
d(α/2)∑
t=0

(
T

t

)⌈
1

α

⌉t
≤
⌈
T

α

⌉d(α/2)+1

. (25)

Proof. This follows by combining the Lemma 14 and Lemma 15 of [15] and noting that they consider interval
[−1, 1] and define α-fat shattering with α/2 margin, instead of [0, 1] and α we use here. See also [42].

We also prove the following simple Lipschitz composition lemma for global sequential covering.

Lemma 10. Let H ⊂ [0, 1]X be a function class, f : [0, 1] → [0, 1] be a L-Lipschitz function and H′ = {f ◦h : h ∈
H}. If there exists a global sequential α-covering set Gα of H then there exists a global sequential Lα-covering set
G′
α of H′ such that |Gα| = |G′

α|.

Proof. Let G′
α = {f ◦ g : g ∈ Gα}; one can verify, by L-Lipschitz property of f , that G′

α is the desired covering
set.

Example 2. By [49, Proposition 16] (taking Ψ(w) = ||w||ss in the proposition and observing that Ψ(w) is s-uniform
convex for all s ≥ 2, see e.g., [50, Section 3]) we know that the sequential α-fat shattering number of linear
functions ⟨w,x⟩ with w ∈ Bd

s(1), x ∈ Bd
s/(s−1)(1) and s ≥ 2 is of order Õ(α−s), where in Õ we hide a polylog



factor. Let f(w,x) = |⟨w,x⟩|, we have by Lemma 9 and 10 (since | · | is 1-Lipschitz) that the global sequential
α-covering number of Hf = {|⟨w,x⟩| : w ∈ Bd

2(1), x ∈ Bd
s/(s−1)(1)} is upper bounded by:⌈

T

α

⌉Õ(α−s)

.

Applying Theorem 1, we have:

raT (Hf ) ≤ inf
0<α<1

{
2αT + Õ

(
1

αs

)}
≤ Õ(T s/(s+1)),

by taking α = T−1/(s+1). This bound is independent of the data dimension d.

Remark 6. Observe that for any class H with sequential fat-shattering number of order α−s, one can achieve
a regret upper bound of order Õ(T s/s+1) by Theorem 1. We refer to [24], [49] for estimations of sequential
fat-shattering number of a variety of classes.

We complete this part with the following lower bound:

Theorem 7. For any s ≥ 1, we define:

Ds =

{
p ∈ [0, 1]T :

T∑
t=1

pst ≤ 1

}
.

We can view the vectors in Ds as functions mapping [T ] → [0, 1]. Then

raT (Ds) ≥ r∗T (Ds) ≥ Ω(T s/s+1). (26)

Proof. It is sufficient to compute the Shtarkov sum as in (6). For any yT ∈ {0, 1}T with k 1s, we claim that:

sup
p∈Ds

p(yT ) =
1

kk/s
,

where

p(yT ) =

T∏
t=1

pyt

t (1− pt)
1−yt .

To see this, we use a perturbation argument. Denote I to be the positions in yT that take value 1, and let |I| = k.
For any p such that p(yT ) is maximum, we must have pj = 0 for all j ̸∈ I . Suppose otherwise, we then can move
some probability mass on pj to some pi < 1 with i ∈ I , which will increase the value of p(yT ), thus a contradiction.
Now, we need to show that: ∏

i∈I
pi ≤

1

kk/s

This follows easily by AM-GM (i.e., arithmetic mean vs geometric mean) inequality since
∑

i∈I p
s
i ≤ 1 and it is

equality when pi =
1

k1/s for all i ∈ I . Now, the Shtarkov sum can be written as:

T∑
k=0

(
T

k

)
1

kk/s
. (27)

To find a lower bound, we only need to estimate the maximum term in the summation. We have:

max
k

(
T

k

)
1

kk/s
≥ max

k

T k

k(1+1/s)k
≥ e

s+1

s·e T s/s+1

,



where the last inequality follows by taking k = 1
eT

s/s+1, and we also use the fact that:(
T

k

)
≥ T k

kk
.

Therefore, we have:
r∗T (Ds) ≥

s+ 1

s · e
T s/s+1 = Ω(T s/s+1),

which completes the proof.

To see why Theorem 7 implies a lower bound for f(w,x) = |⟨w,x⟩| with d ≥ T , as in Example 2, we take
w ∈ BT

s (1) (i.e., with d = T ) and define xt = et with et being the standard base of RT that takes value 1 at
position t and zero otherwise. Note that the functions of Hf with f(w,x) = |⟨w,x⟩| restricted on xT is exactly
the functions in Ds. Then:

raT (Hf ) ≥ r∗T (Hf ) ≥ r∗T (Ds) ≥ Ω(T s/(s+1))

and this is a matching lower bound of Example 2. Note that, for s = 2 we will have a regret bound for |⟨w,x⟩| of
order T 2/3. It is proved in [2] that for function f(w,x) = ⟨w,x⟩+1

2 , one can achieve regret of the form Õ(
√
T )6.

Example 2 implies that the generalized linear functions of form f(⟨w,x⟩) can have different regrets with polynomial
gap even with a simple shift on the value (though they have the same covering number).

A. Tighter Lower Bounds for Generalized Linear Functions.

We now provide additional lower bounds through the fixed design regret. As we have demonstrated in Theorems 5
and 7 that lower bounds can be derived by selecting some appropriate xT that maximizes r∗T (H | xT ). In these
theorems, we only choose xT to be some combinations of the standard base of Rd. In this section, we present
examples where a more sophisticated selection of xT leads to better lower bounds.

The following theorem shows that the leading constant 1 in Theorem 3 holds even for generalized linear functions
with Lipschitz transform function:

Theorem 8. For any s ≥ 1 and d ≪ T s/(s+1)/ log T , there exists a 1-Lipschitz function f : [0, 1] → [0, 1] such that
for hypothesis class:

Hf = {f(⟨w,x⟩) : w ∈ Bd
s(1),x ∈ Bd

s/(s−1)(1)},

we have
r∗T (Hf ) ≥ d log

(
T

d(s+1)/s

)
−O(d log log T ).

Note that, Theorem 3 applies to the general Lipschitz parametric class, while Theorem 8 applies specifically to
the generalized linear functions with Lipschitz transform function (which is a subset of Lipschitz parametric class).
That is why we have different exponents on the denominator inside the leading log term, i.e., d v.s. d(s+1)/s. By
Theorem 2 and Example 2 we know that both of the dependencies (for large d) are tight. Moreover, the lower bound
in Theorem 8 (as with Theorem 3) only holds for some hard function f , while the lower bounds in Theorems 5
and 7 are proved for specific functions f .

The proof of Theorem 8 is based on the following technical lemma, which can be viewed as a correlated version
of Lemma 5, see Appendix D for detailed proof.

Lemma 11. There exists a binary sequence b1, b2, · · · , b2T ∈ {0, 1} such that for any i ̸= j ∈ [T ] we have

T∑
t=1

1{bi+t ̸= bj+t} ≥ T

8
.

6A Ω̃(
√
T ) lower bound for d ≥

√
T can be derived from Theorem 5, recovering [2, Lemma 8].



Proof of Theorem 8. We partition the xT into d parts each of length T/d (assume w.l.o.g. that d divides T 7), and
denote K = T/d. For the ith part in the partition, we will select the K features of form x1ei, · · · , xKei, where
xj ∈ [0, 1] and ei is the standard base of Rd with position i being 1 and zeros elsewhere. Note that all of the parts
in the partition have the same scalars xjs but different vector ei. Clearly, the value of f(⟨w,x⟩) with x in the ith
part depends only on wi, where wi is the ith coordinate of w. Since w ∈ Bd

s(1), we may assume that each wi takes
values in the full range [−d−1/s, d−1/s] and selected independently. Therefore, it is sufficient to construct a function
f : [0, 1] → [0, 1] such that the class

Q = {f(w · x) : w ∈ [−d−1/s, d−1/s], x ∈ [0, 1]}

has large regret.
Let γ ∈ [0, 1] be a small real number depending on K that is to be determined later. For any number t ≤ 1/γ, we

define zt = (1− γ)t−1. Let Z = {zt : t ≤ 1/γ}. We now select the x1, · · · , xK to be elements in Z such that each
repeats at least ⌊γK⌋ times (there can be some elements in Z that repeat more than ⌊γK⌋ times). We also define
a sequence z′t with t ≤ 2/γ such that z′t = d−1/s(1− γ)t−1. We observe that |z′t − z′t+1| ≥ d−1/s · e−3 · γ for all
t ≤ 2/γ, since (1− γ)2/γ ∼ e−2 for γ small enough. For any number t ≤ 1/γ, we define wt = d−1/s(1− γ)t−1 ∈
[−d−1/s, d−1/s].

Let M = ⌊1/γ⌋ and b2M be the binary sequence as in Lemma 11 with T = M . Define f to be the function
over z′ts with t ≤ 2/γ, such that f(z′t) = 0 if bt = 0 and f(z′t) = d−1/s · e−3 · γ if bt = 1. Clearly, f is 1-Lipschitz
over the z′ts. By Lemma 11, for any wi and wj as defined above with i ̸= j ≤ 1/γ, there are at least M/16

positions t ≤ 1/γ such that f(wi · zt) take all 0s and f(wj · zt) take all values d−1/s · e−3 · γ (or vice versa). Note
that, any of the wi defines a product distribution over {0, 1}K such that each coordinate t ≤ K is an independent
Bernoulli random variable with parameter f(wi · xt). Since each zt appears least ⌊γK⌋ times in the xts, we have
the probability of wrongly identifying the source (of the product distribution) with parameters wi and wj being
upper bounded by

(1− d−1/s · e−3 · γ)(M/16)·⌊γK⌋ ≤ e−d−1/s·e−3·γ(K−1/γ−γK)/16.

Taking γ = 64 · e3 · (d1/s · logK)/K and applying a union bound on all the pairs wi, wj (there are at most K2 such
pairs), we can make error probability upper bounded by 1/2 for sufficiently large K. We now verify that γ → 0 as
K → ∞, this is guaranteed by our assumption that d ≪ T s/(s+1)/ log T . By Lemma 1, we have

r∗T (Q) ≥ log(K/(d1/s logK))−O(1).

Since K = T/d and each of the parts of the partition of xT are independent, we have

r∗T (H) ≥ d · r∗T (Q) ≥ d log

(
T

d(s+1)/s

)
−O(d log log T ).

Finally, by [45, Theorem 1], we can extend f to the whole set [0, 1] while keep the Lipshitz condition.

Remark 7. Note that the condition d ≪ T s/(s+1) cannot be relaxed (upto poly-log factors in general) by Example 2.
Our results in Theorem 8, Theorem 2, and Example 2 imply an interesting threshold phenomenon (for the generalized
linear functions with worst case Lipschitz transform function), i.e., when d ≪ T (s/s+1)−ϵ with ϵ > 0, the regret
grows as Θ(d log T ), while for d ≫ T s/s+1, the regret grows as Õ(T s/s+1). Moreover the leading constant is
exactly 1 for the d log T term if d is sub-polynomial w.r.t. T (e.g., d = e

√
log T ).

B. Additional Large Classes.

In this section we consider a general (including non-parametric) class H = {h ∈ [0, 1]B
d
s (1) : ∀x1,x2 ∈

Bd
s(1), |h(x1)− h(x2)| ≤ ||x1 − x2||s} of all Lipschitz functions mapping from a unit ℓs ball to [0, 1]. We also

assume that the Lipschitz condition is under the norm ℓs as well 8. The following theorem establishes a lower bound

7Otherwise, we round T to be some T ′ ≤ T that is divisible by d, this only incurs a O(d) regret loss.
8Note that our technique can be generalized to cases when the Lipschitz conditions are defined in a different norm.



for such function classes (a matching upper bound – up to poly-log factors – can be derived using Theorem 1 and
the classical uniform covering numbers as in [51, Lemma 5.2], see also [17]).

Theorem 9. For any d, T, s ≥ 1 such that d ≪ log T , we let H = {h ∈ [0, 1]B
d
s (1) : ∀x1,x2 ∈ Bd

s(1), |h(x1) −
h(x2)| ≤ ||x1 − x2||s}. Then

r∗T (H) ≥ Ω(T d/d+1).

Moreover, if d ≥ Ω(log T ), then r∗T (H) ≥ Ω(T ).

Proof. Let M be a maximum packing of Bd
s(1) under ℓs norm with radius T−r, where r = 1

d+1 . Standard volume
argument yields that:

|M | ≥ T dr.

Note that the packing number is independent of s, since we are packing a ℓs ball under the same ℓs norm. Assume
w.l.o.g. that |M | = ⌊T dr⌋. We now select xT to be all the elements in M such that each of them is repeated at
least ⌊T 1−dr⌋ times in xT . We now select a class F ⊂ H of functions that map M → {0, T−r} such that any
two functions differ by at least ⌊T dr/4⌋ elements in M . By Lemma 5, we know that there are at least 2T

dr/8

such functions. By removing some functions, we may assume that there are ⌊2T dr/16⌋ functions in F . We now
view the function f ∈ F as a product of Bernoulli process over {0, 1}T such that each coordinate t distributed as
Bernoulli(f(xt)). Now, for any distinct pair of functions f1, f2 ∈ F , we have the probability of wrongly identifying
the source f ∈ {f1, f2} by observing samples generated by f is upper bounded by (using the same identification
rule as in Theorem 3 by checking that the samples at distinct positions of f1, f2 are all 0s or not):(

1− T−r
)⌊T 1−dr⌋·⌊T dr/4⌋/2 ≤ e−T−r·⌊T 1−dr⌋·⌊T dr/4⌋/2 ≤ e−(1/8−o(1))T 1−r

,

where we used the fact that each element in M repeats at least ⌊T 1−dr⌋ times in xT and d ≪ log T . In order for a
union bound over all pairs in F to work (there are at most 2T

dr/8 such pairs), it is sufficient to have (since 2 < e):

T dr/8 ≤ T 1−r/8.

This holds when r = 1
1+d . Therefore, by union bound, we have for sufficient large T , one can identify the sources

in F with error probability upper bounded by 1
2 . Invoking Lemma 1, we conclude that

r∗T (H) ≥ r∗T (F) ≥ 1

16 log 2
T d/d+1 − log(2).

By definition, the functions in F restricted on M are 1-Lipschitz under ℓs norm. By [45, Theorem 1], we can
extend them to the whole set of Bd

s(1) while keeping the Lipschitz property. The last part of the theorem follows
from the fact that when d = c log T for any constant c, we have T−1/(1+d) ∼ e−1/c. We can therefore let c be
small enough so that e−1/c ≤ 1

16 , which will allow our argument above to go thorough (by reducing the size of F
by a constant on the exponent) and result in a regret bound Ω(T d/(d+1)) ≥ Ω(T ). Note that regret is monotone
increasing according to d, thus the result follows.

Remark 8. Note that Theorem 9 recovers the lower bound in [17, Theorem 3] established only for the ℓ∞ ball.
The main technique of [17] is to construct a distribution over some grid of [0, 1]d and show that regret is large for
the samples generated i.i.d. from this distribution, which we believe is not easily generalizable to the ℓs balls as we
established in Theorem 9. Moreover, our proof is simpler and more accessible for exposition. It is worth noting that
in the proof of Theorem 9 we construct F by packing the feature space, which differs from the proof Theorem 3
since the packing is performed on the parameter space.

VI. OPTIMALITY OF BAYESIAN AVERAGING

So far, all the upper bounds established in previous sections are achieved by applying Bayesian averaging over
some well designed finite cover (e.g., uniform, non-uniform and sequential covers). A natural question is whether
the best bound can always be achieved by a Bayesian algorithm with prior over some finite cover. While we are



unable to answer this question in its generality, we will show in this section that the Bayesian algorithm can be
arbitrary loose if the support of the prior is included in the hypothesis class itself.

We first prove the following lemma, which establishes a non-constructive upper bound for raT (H) based on the
expected majorizing martingale characterization of [48]. However, we emphasize that this approach only works
for the Lipschitz convex losses and does not apply to log-loss in general. We are able to apply this approach here
because we have restricted the value of functions in H to be around 1

2 , which effectively reduced the log-loss to a
Lipschitz convex loss.

Lemma 12. Let H be a finite set of functions mapping X →
[
1−1/

√
T

2 , 1+1/
√
T

2

]
. The following general upper

bound holds:
raT (H) ≤ O(

√
log |H|).

Proof. Denote zt = (xt, yt) and ℓ(h, zt) = ℓ(h(xt), yt), we have by [48, Theorem 7] that

raT (H) ≤ sup
D

E sup
h∈H

[
T∑
t=1

Et[ℓ(h, zt)]− ℓ(h, zt)

]
,

where D runs over all joint distributions over zT , and Et is the conditional expectation conditioning on zt−1.
Note that for any given h, the terms Et[ℓ(h, zt)] − ℓ(h, zt) form martingale differences. Since h takes values in[
(1−

√
1/T )/2, (1 +

√
1/T )/2

]
, by cancelling the 1/2 factor, we have Et[ℓ(h, zt)]−ℓ(h, zt) ∈

[
−2
√

1/T , 2
√

1/T
]

for sufficiently large T , where we have used the fact that log(1 + α) ∼ α when α is small. Denote Xh
t =

Et[ℓ(h, zt)]− ℓ(h, zt), we have by Azuma’s inequality [1, Lemma A.7] and
∑T

t=1(X
h
t )

2 ≤ 4 that:

Pr

[
T∑
t=1

Xh
t ≥ ϵ

]
≤ e−ϵ2/2.

By union bound on H, we have:

raT (H) ≤ sup
D

E

[
sup
h∈H

T∑
t=1

Xh
1

]

≤ sup
D

∫
ϵ>0

Pr

[
sup
h∈H

T∑
t=1

Xh
1 ≥ ϵ

]
≤
∫
0≤ϵ≤

√
2 log |H|

1 +

∫
ϵ>
√

2 log |H|
|H|e−ϵ2/2

≤ O(
√

log |H|)

which completes the proof.

Note that Lemma 12 only shows that a O(
√

log |H|) sequential regret can be achieved by some algorithm, though
we are unaware how the algorithm can be implemented. We will show in the following discussion that such a bound
cannot be achieved by the Bayesian algorithm with any prior over H. We need the following characterization of
Bayesian algorithms under Log-loss, which is due to Kakade and Ng [52]. However, we will use the lemma below
differently than [52], since we will be deriving lower bounds for Bayesian algorithm instead of upper bounds as
in [52]. To our knowledge this lower bounding technique is new in literature.

Lemma 13. Let G ⊂ [0, 1]X
∗

be any class with index set W and µ, ν be probability distributions over W . For any
given xT , yT , we denote

Lν(x
T , yT ) =

∫
W

T∑
t=1

ℓ(gw(x
t), yt)dν.



Let ŷt be the Baysian predictor as in Algorithm 1 with prior µ, then

T∑
t=1

ℓ(ŷt, y)− Lν(x
T , yT ) = KL(ν||µ)− KL(ν||µT ),

where µT (u) =
pgu (y

T |xT )µ(u)∫
W pgw (yT |xT )dµ is the posterior distribution of µ conditioning on xT , yT , pf (yT | xT ) is defined in

Lemma 4 and KL is the KL-divergence.

Proof. The proof is identical to the proof in [52, Lemma 2.1] except that we do not lower bound KL(ν||µT ) being
0.

We have the following theorem, which is the main contribution of this section:

Theorem 10. For any infinite domain X , there exists a finite class H of functions mapping X →
[
1−1/

√
T

2 , 1+1/
√
T

2

]
with |H| ≤ e

√
T such that:

raT (H) ≤ O(
√

log |H|),

but for any prior µ over H, the Bayesian algorithm (Algorithm 1) with prior µ can only achieve the sequential
regret of order:

Ω(log |H|).

In particular, by taking |H| = e
√
T we established a T 1/4 factor between the best achievable regret and the regret

achievable by a Bayesian algorithm with best prior over H.

Proof. The general upper bound follows directly from Lemma 12. We now show that there exists a class H of
functions mapping X →

[
1−1/

√
T

2 , 1+1/
√
T

2

]
such that for any prior µ on H, the Bayesian predictor (Algorithm 1)

with prior µ can only achieve the sequential regret lower bounded by:

Ω(log |H|),

thus establishing a
√

log |H| gap compared to the best achievable upper bound established in Lemma 12. To
do so, we define H to be the class that for any i ∈ [|H|] there exists some x such that hi(x) = 1+1/

√
T

2 and

hj(x) =
1−1/

√
T

2 for all i ̸= j ∈ [|H|]. Such a class clearly exists when |X | ≥ |H|.
Let λ1, λ2, · · · , λ|H| be an arbitrary prior over H at the beginning of the Bayesian predictor, where λi is the

probability mass assigned on the ith function in H. We know that there must be some λi ≤ 1
|H| . We now construct

the following adversary for choosing xT , yT : For all time steps t, we assign value hi(xt) =
1+1/

√
T

2 for hi and

hj(xt) =
1−1/

√
T

2 for all other functions hj ∈ H (such xt exists by definition of H) and let yt = 1. We now analyze
the regret. By Lemma 13, we have by taking ν to be the distribution that assigns probability 1 on hi that the
pointwise regret (over the constructed xT , yT ) of Bayesian algorithm with prior µ equals:

log 1/λi + log

(
λi(1 +

√
1/T )T

λi(1 +
√

1/T )T + (1− λi)(1−
√

1/T )T )

)
≥ Ω(log |H|),

where the first equality follows since KL(ν||µ) = − log(µ(hi)) for any µ if ν assign probability 1 on hi, the last
inequality holds since λi ≤ 1

|H| and (1± 1/
√
T )T ∼ e±

√
T for T large enough. We note that the regret lower bound

established above can not be larger than 2
√
T , which is achieved when λi = 0. Taking |H| = e

√
T , one will establish

a T 1/4 factor on the discrepancy between the regret achieved by Bayesian algorithm and best achievable regret.

Remark 9. We note that a similar separation was discussed in [23, Section 5] but only holds for the simulatable
experts and uniform prior. Our Theorem 10 is stronger since it holds for sequential regret and it rules out the
possibility of optimality of Bayesian algorithms with any prior over H (not just uniform prior). We leave it as an
open problem to determine if such a separation as in Theorem 10 exists if we allow the covering functions to be
outside of H and sequential.



VII. CONCLUSION

In this work we derived the best known lower and upper (often matching) bounds on sequential online regret for
a large class of experts. We accomplish it by designing a new smooth truncated Bayesian algorithm, together with
the concept of global sequential covering, that achieves these upper bounds. For the lower bound, we used a novel
information-theoretic approach based on the Shtarkov sum and fixed designed minimax regret. These techniques can
be successfully used for a broader set of problems, e.g., when the features xT present stochastically [53]. There are
also several open problems left unsolved in this paper: (1). it is known by [17] (as well as by Theorem 7) that the
sequential covering number cannot completely characterize the sequential regret under log-loss, a natural question
is if the sequential dominate set (see Remark 1) is sufficient to characterize the regret (note that all of the upper
bounds established in this paper can be rephrased as constructing the dominate sets); (2). if not, can the Bayesian
algorithm with prior supported over some well designed class of sequential functions achieves the optimal regret for
any non-sequential expert class H?

APPENDIX A
PROOFS OF LEMMA 2 AND LEMMA 3

We prove here Lemma 2 and Lemma 3. For the reader’s convenience we repeat both lemmas.
Lemma 2 Let G be a class of functions gw : X ∗ → [0, 1], w ∈ W . Let ŷt be the Bayesian prediction rule as in Step
4 of Algorithm 1 with prior µ. Then, for any xT and yT we have

T∑
t=1

ℓ(ŷt, yt) ≤ − log

∫
W pw(y

T | xT )dµ∫
W 1dµ

,

where pw(y
T | xT ) = e−

∑T
t=1 ℓ(gw(xt),yt) and ℓ is the log-loss.

Proof. We first observe that for any y ∈ {0, 1} we have e−ℓ(·,y) is concave over [0, 1]. Let

λt−1(w) =
pw(y

t−1 | xt−1)∫
W pw(yt−1 | xt−1)dµ

.

Note that λt−1(w) forms a probability density over W w.r.t. µ. By definition of ŷt, we have ŷt = Eλt−1
[gw(x

t)],

where the expectation is over the density of λt−1(w). Therefore, by Jensen’s inequality and the update procedure as
in item 6 of Algorithm 1, we have:

e−ℓ(ŷt,yt) = e−ℓ(E[gw(xt)],yt) ≥ E[e−ℓ(gw(xt),yt)] =

∫
W pw(y

t | xt)dµ∫
W pw(yt−1 | xt−1)dµ

.

By telescoping the sum, we find:

e−
∑T

t=1 ℓ(ŷt,yt) ≥
∫
W pw(y

T | xT )dµ∫
W 1dµ

.

This implies:
T∑
t=1

ℓ(ŷt, yt) ≤ − log

∫
W pw(y

T | xT )dµ∫
W 1dµ

and completes the proof.

Lemma 3 For any finite class of experts G
raT (G) ≤ log |G|.



Proof. Let µ(w) = 1
|W| as in Lemma 2 and ŷt be the Bayesian predictor with input G and µ. Then

T∑
t=1

ℓ(ŷt, yt) ≤ − log

∫
W pw(y

T | xT )dµ∫
W 1dµ

(28)

= − log

∫
W

pw(y
T | xT )dµ+ log 1 (29)

= − log

∫
W

pw(y
T | xT )dµ (30)

≤ − log pw∗(yT | xT ) + log |W|, where w∗ maximizes pw(y
T | xT ) (31)

=

T∑
t=1

ℓ(gw∗(xt), yt) + log |G|, since |W| = |G|. (32)

This concludes the proof.

APPENDIX B
FAT-SHATTERING BASE LOWER BOUNDS

In this appendix we prove a lower bound based on the sequential fat-shattering number in contrast to the offset
sequential Rademacher complexity bound as in [2, Lemma 10]. We first prove the following simple lemma:

Lemma 14. For any x, δ ∈ [0, 1] we have

| log(x+ δ)− log(x)| ≥ δ

1 + δ
≥ δ/2

Proof. Observe that log(x + δ) − log(x) = log(1 + δ/x) ≥ log(1 + δ) since x ≤ 1. The result follows by the
elementary inequality log(1 + x) ≥ x

1+x for all x > −1.

Proposition 2. Let H ⊂ [0, 1]X be a class with sequential α-fat shattering number of order Ω(α−s). Then

raT (H) ≥ Ω(T (s−1)/s).

Proof. Let τ and s be the trees as in Definition 2 of sequential fat-shattering with α = T−1/s. We construct the
following adversary by tracing the trees. At each time step t, we will be at some node vt of τ (respectively in s),
initially with v1 being the root. For any prediction ŷt made by the predictor, if ŷt ≥ s(vt) we set yt = 0 and vt+1

being the left child of vt, else we set yt = 1 and vt+1 being the right child of vt. By definition of fat-shattering,
we can find a function h ∈ H such that for any xt we have ℓ(h(xt, yt)) ≤ ℓ(ŷt, yt) and |h(xt) − ŷt| ≥ α. By
Lemma 14, we have ℓ(ŷt, yt)− ℓ(h(xt, yt)) ≥ α/2 for all t ∈ [T ]. Since the fat-shattering number is of order α−s,
we have the depth of the tree is T . This implies a regret lower bound of order αT = T−1/s · T = T (s−1)/s.

By Theorem 7, we know that the lower bound in Proposition 2 is not tight in general. However, it provides a
universal lower bound that holds for any class with large sequential fat-shattering number.

APPENDIX C
EXTENSION TO SEQUENTIAL EXPERTS

In this appendix, we briefly discuss how our results can be extended to sequential experts that make predictions
which depend on past features and labels. We say a function h a full sequential function if it maps (X×{0, 1})∗×X →
[0, 1]. Let H be a class of fully sequential functions. The sequential regret can be expressed as

raT (H) = sup
x1

inf
ŷ1

sup
y1

· · · sup
xT

inf
ŷT

sup
yT

T∑
t=1

ℓ(ŷt, yt)− inf
h∈H

T∑
t=1

ℓ(h(xt, yt−1), yt).

We define the following concept of the sequential dominance as in Remark 1.



Definition 3. For any fully sequential expert class H, we say a fully sequential function class G sequentially
α-dominate H if for all xT , yT and h ∈ H there exists g ∈ G such that

log ph(y
T | xT )− log pg(y

T | xT ) ≤ αT,

where for f ∈ {h, g}

pf (y
T | xT ) =

T∏
t=1

f(xt, yt−1)yt(1− f(xt, yt−1))1−yt .

The following result is straightforward and extends Theorem 1.

Proposition 3. Suppose a fully sequential expert class H admits a fully sequential α-dominate class Gα for all
α ≥ 0, then

raT (H) ≤ inf
α≥0

{αT + log |Gα|}.

Proof. We show that the claimed bound can be achieved for any given α ≥ 0. To do so, we run Algorithm 1 over
Gα with uniform prior and denote by ŷt such predictor. By inspecting the proof of Lemma 3 (and Lemma 2), we
know that it holds for the fully sequential functions as well. Using the same argument as in the proof of Theorem 1,
we have raT (H) ≤ αT + log |Gα|.

We now bound the size of sequential dominant sets through an extended notion of the sequential fat-shattering.
Let τ : {0, 1}≤d → (X ×{0, 1})∗×X be a (X ×{0, 1})∗×X -valued full binary tree such that for any ϵd ∈ {0, 1}d
and t ∈ [d] if we denote τ(ϵt−1) = (xi, yi−1) then τ(ϵt) = (xix′j , yi−1ϵty

′j−1), i.e., τ(ϵt−1) must be a prefix of
τ(ϵt). We also denote by s : {0, 1}≤d → [0, 1] a [0, 1]-valued full binary tree. We say a class of fully sequential
functions H sequential α fat-shatters τ witnessed by s if for any path ϵd ∈ {0, 1}d there exists h ∈ H for all t ∈ [T ]:

1. If ϵt = 0, then h(τ(ϵt−1)) ≤ s(ϵt−1)− α;
2. If ϵt = 1, then h(τ(ϵt−1)) ≥ s(ϵt−1) + α.

The extended sequential α fat-shattering number of H is defined as the maximum number d(α) such that there
exist trees τ and s with depth d(α) that can be α fat-shattered by H. The following result extends Lemma 9:

Proposition 4. Let H be a class of fully sequential functions with extended sequential α-fat shattering number α−s,
then it admits a sequential 4α-dominate set G such that

log |G| ≤ Õ(α−s).

Proof. The proof is similar to the proof of Lemma 9 (see [15, Section 6]) but needs additionally to deal with the
yT . Let J ⊂ [0, 1] be a discretization of [0, 1] with step size 2α, where |J | ≤ 1/(2α). For any h ∈ H, we define
the discretized function h′ of h by h′(xt, yt−1) = argmina∈J |a − h(xt, yt−1)| for all xt, yt−1. W.l.o.g., we will
assume the functions in H take values in J . Now, for any given xT , yT and h∗ ∈ H, we construct a predictor Φ in
the following manner. It maintains a running class of functions Ht, with H1 = H. At each time step t, for any
a ∈ J and y ∈ {0, 1}, we denote

Ht
(a,y) = {fh(x′j , y′j−1) = h(xtx′j , yt−1yy′j−1) : h(xt, yt−1) = a, h ∈ Ht}

i.e., the restriction of Ht with history xt, yt−1y. We denote FAT(H) as the extended sequential α fat-shattering
number of H. By definition of sequential fat shattering, we have for all a ∈ J , supy∈{0,1} FAT(Ht

(a,y)) ≤ FAT(Ht)

and there cannot be two elements a1 ≤ a2 ∈ J with a2 − a1 > 2α such that FAT(Ht
(a1,0)

) = FAT(Ht) and
FAT(Ht

(a2,1)
) = FAT(Ht). There can be only the following cases: (1). for all (a, y), FAT(Ht

(a,y)) ≤ FAT(Ht)− 1;
(2). there exists b ∈ J such that for all a < b− 2α we have FAT(Ht

(a,0)) ≤ FAT(Ht)− 1 and for all a > b+ 2α

we have FAT(Ht
(a,1)) ≤ FAT(Ht) − 1 (we argue by cases). At time step t, we update Ht+1 = Ht

(h∗(xt,yt−1),yt)

only if FAT(Ht+1) ≤ FAT(Ht) − 1 and predict Φ(xt, yt−1) = h∗(xt, yt−1), else, we retain Ht+1 = Ht and
predict Φ(xt, yt−1) = b+2α

1+4α . Since FAT(H) ≤ α−s, the class Ht can be updated at most α−s times. Now,
for any time step we update Ht, we have Φ(xt, yt−1) = h∗(xt, yt−1). For the non-update steps t, we have



ℓ(h∗(xt, yt−1), yt) ≥ ℓ(Φ(xt, yt−1), yt) − 4α. Clearly this is true if |h∗(xt, yt−1) − b| ≤ 2α by Lemma 4. Else,
by Case (2), we have either h∗(xt, yt−1) ≤ b but yt = 1 or h∗(xt, yt−1) ≥ b but yt = 0. In both cases, we have
ℓ(h∗(xt, y

t−1), yt) ≥ ℓ(Φ(xt, yt−1), yt). Therefore, Φ 4α-dominate h∗ on xT , yT . Since the running of Φ depends
only on the values of h∗ at updates, we have there exists I ⊂ [T ] and {kt}t∈I ∈ J |I| such that the running of Φ by
update at step t being kt have the same predictions as running on h∗. For any such I and {kt}t∈I , we construct the
function gI by running Φ by update at step t ∈ I with kt. Since the functions h∗ ∈ H and xT , yT are arbitrary, the
class G of all such gIs is sequential 4α-dominate H for all xT , yT . The size of G now follows by counting the
number of pairs I, {kt}t∈I as [15, Section 6].

APPENDIX D
OMITTED PROOFS OF TECHNICAL LEMMAS

In this appendix, we provide the proofs for some technical lemmas that are omitted in the main text.

Proof of Lemma 6. By Stirling approximation, for all k ∈ [T/d], there exists a constant C ∈ R+ such that

B(k, T/d)
def
=

(
T/d

k

)(
k

T/d

)k (
1− k

T/d

)T/d−k

≥ C

√
T/d

k(T/d− k)
.

Since P (y | w) achieves maximum at w = k ∗ d/T , we have:

∑
y∈{0,1}T/d

sup
w∈[c1−c2d−r,c1+c2d−r]

p(y | w) ≥
c1T/d+c2T/dr+1∑

k=c1T/d−c2T/dr+1

B(k, T/d).

Therefore, for each k in the above summation, we have:

1√
k(T/d− k)

≥
√

(c1 + c2d−r)(1− c1 − c2d−r)d/T.

Therefore, the LHS of (23) is lower bounded by:

C
√

(c1 + c2d−r)(1− c1 − c2d−r)

√
T

d

2c2
dr

= Ω(
√

T/d2r+1)

for sufficiently large d.

Proof of Lemma 11. We use the probabilistic method to construct sequence b2T . To do so, we select B2T uniformly
at random from {0, 1}2T and show that the event of the lemma happens with positive probability. For any i < j ∈ [T ],
we construct an i.i.d. sequence X0, · · · , XT/2−1 with uniform distribution over {0, 1} such that:

T−1∑
t=0

1{Bi+t ̸= Bj+t} ≥
T/2−1∑
t=0

Xt.

To do so, we maintain an index set I and a set X of random variables, initial I,X = ∅ and t = 0. For each
t ∈ [T − 1], if the index i + t ∈ I , we remove i + t from I and continue to t + 1; else, we add the indicator
1{Bi+t ̸= Bj+t} to X and j + t to I and continue to t + 1. Clearly all the random variables in X are mutually
independent and distributed uniformly over {0, 1}, since we add the indicator to X only when there is no overlap
on the indexes and B2T are i.i.d. random variables (notice that if i+ t ̸∈ I then j + t also does not appear in the
previous indexes, since i < j). We claim that |I| ≥ T/2. This follows from the fact that the conflict period must
not be more than the non-conflict period. The lemma now follows by Chernoff bound, to show that

∑T/2−1
t=0 Xt

tightly concentrates on T/4 and a union bound on all pairs (i, j).



APPENDIX E
ALTERNATIVE PROOF OF THEOREM 2

We now provide an alternative proof of Theorem 2 without relying on the construction of a cover of Bd
s(R).

The proof follows similar path as in the proof of Theorem 4. Let µ be the Lebesgue measure over Bd
s(R+ α/L),

where α is to be determined latter. Let f be the L-Lipschitz function as in Theorem 2 over Bd
s(R) for all x ∈ Rd.

By [45, Theorem 1], we can extend f to Bd
s(R+ α/L) while keeping the L-Lipschitz property by defining for all

w ∈ Bd
s(R+ α/L) and x ∈ Rd

f(w,x) = sup
w′∈Bd

s (R)
{f(w′,x)− L||w −w′||s}.

Denote by ŷt the predictor by running Algorithm 2 with prior µ over Hf (with the extended function f ) and
truncation parameter α. By Lemma 3, we have for any xT , yT that

T∑
t=1

ℓ(ŷt, yt) ≤ − log

∫
Bd

s (R+α/L) p̃w(y
T | xT )dµ∫

Bd
s (R+α/L) 1dµ

,

where

p̃w(y
T | xT ) =

T∏
t=1

f̃(w,xt)
yt(1− f̃(w,xt))

1−yt

and f̃ = f+α
1+2α . Let w∗ = argmaxw∈Bd

s (R){pw(yT | xT )}, where pw(yT | xT ) =
∏T

t=1 f(w,xt)
yt(1−f(w,xt))

1−yt .
Denote by B the ℓs ball centered at w∗ with radius α/L. Note that B ⊂ Bd

s(R+ α/L). By L-Lipschitz property,
for any w ∈ B and x ∈ Rd we have |f(w,x)− f(w∗,x)| ≤ α. By Lemma 4, this implies that for any w ∈ B we
have pw∗(yT | xT ) ≤ (1 + 2α)T p̃w(y

T | xT ). Therefore,

T∑
t=1

ℓ(ŷt, yt) ≤ − log

∫
Bd

s (R+α/L) p̃w(y
T | xT )dµ∫

Bd
s (R+α/L) 1dµ

≤ − log

∫
B p̃w(y

T | xT )dµ∫
Bd

s (R+α/L) 1dµ
, since B ⊂ Bd

s(R+ α/L)

≤ − log
e−2αT

∫
B pw∗(yT | xT )dµ∫

Bd
s (R+α/L) 1dµ

,

≤ − log pw∗(yT | xT ) + 2αT + log
Vol(Bd

s(R+ α/L))

Vol(Bd
s(α/L))

≤
T∑
t=1

ℓ(f(w∗,x), yt) + 2αT + d log

(
RL

α
+ 1

)
.

Taking α = d/T , we find

raT (Hf ) ≤ d log

(
RLT

d
+ 1

)
+ 2d

as needed.
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