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Precise Regularized Minimax Regret with
Unbounded Weights

Michael Drmota, Philippe Jacquet, Changlong Wu and Wojciech Szpankowski

Abstract

In online learning, a learner receives data in rounds and, at each round, predicts a label that is then compared to
the true label, incurring a loss. The total loss over T rounds, when compared to the loss of the best expert from a
class of experts or forecasters, is called the regret. In this paper, we focus on logarithmic loss for logistic-like experts
with unbounded d-dimensional weights, a scenario that has been largely unexplored. To address the irregularities
introduced by the unbounded weight norm, we introduce a regularized version of the average (fixed design) minimax
regret by imposing a soft constraint on the weight norm. We demonstrate that the regularized minimax regret is fully
characterized by a complexity measure we term the regularized Shtarkov sum. We also show how the behavior of
the standard regret can be inferred from the regularized regret. Our main results provide a precise characterization of
the regularized Shtarkov sum and, consequently, the regularized regret with unbounded weights up to second-order
asymptotics. Notably, unlike the d/2 log T regret growth known for bounded weights, our results imply that the
regularized regret grows as (1/2 + α/4)d log T when the regularization parameter is of order Θ(T−α) for α ≤ 1/2.
We achieve this using tools from analytic combinatorics, including multidimensional Fourier analysis, the saddle
point method, and the Mellin transform.

I. INTRODUCTION

The problem of online learning under logarithmic loss and its regret analysis has been intensively studied over
the last decade [1], [2], [3], [4], [5]. However, even for logistic regression, there is a lack of precise second-order
asymptotics (especially for unbounded weights), with a possible exception of [6] which is restricted to categorical
data. In this paper, we initiate the study to fill this gap.

To set the stage of our discussion, we recall that the online learning problem can be described as a game between
nature/environment and a learner/predictor. Broadly, the objective of the learner is to process past observations to
predict the next realization of nature’s labeling sequence. At each round t ∈ N, the learner receives a d-dimensional
data/feature vector xt ∈ Rd to make a prediction ŷt ∈ [0, 1] of the true label yt ∈ {−1, 1}. Once a prediction is
made, nature reveals the true label yt, and the learner incurs some loss evaluated based on a predefined function
ℓ : Ŷ × Y → R+ where Ŷ = [0, 1] and Y = {−1, 1} are the prediction and label domains, respectively. In regret
analysis, we are interested in comparing the accumulated loss of the learner with that of the best strategy within a
predefined class H of expert functions h : Rd 7→ Ŷ . After T rounds, the pointwise regret is defined as

R(gT , yT ,H|xT ) =

T∑
t=1

ℓ(ŷt, yt)− inf
h∈H

T∑
t=1

ℓ(h(xt), yt),

where ŷt = gt(y
t−1,xt) is the prediction based on prior observations yt−1 and xt. Throughout, we write yt =

(y1, . . . , yt) and xt = (x1, . . . ,xt) for t ∈ [T ]. Note that the prediction rule gT need not necessarily come from H,
which is also known as improper learning in the literature [3].

In this paper, we focus specifically on the logarithmic loss defined as:

ℓ(ŷt, yt) = −1 + yt
2

log(ŷt)−
1− yt

2
log(1− ŷt).

We fix a function p(w) from R → [0, 1] and restrict our study to the class of experts:

Hp = {hw : w ∈ Rd}, (1)
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where hw (as a function from Rd → R) is defined by

hw(x) := p(⟨w,x⟩), for x ∈ Rd

and ⟨w,x⟩ is the scalar product of x and w. Hereafter, we focus on the logistic regression with p(w) = (1 +
exp(−w))−1 [7], [8], since its precise analysis is the key step to analyze a larger class of functions and other losses.
In the last Section V, we discuss the quantum tomography problem with a different loss function departing from
the classical logistic regression, however, our methodology still applies.

While we assume that xt lies on a compact manifold Mx (e.g., Mx = [−1, 1]d, the unit ball Bd, or the sphere
Sd), we do not bound the weights w ∈ Rd, and this seems to have never been analyzed in depth, to the best of our
knowledge. Specifically, we assume that ∥w∥ ≤ R ≤ ∞, where R can grow with T .

We are interested in the fixed design regret where the feature vector xT is known in advance. Specifically, for
any given H and xT , the fixed design minimax regret is defined as

rT (H|xT ) := inf
gT

sup
yT

R(gT , yT ,H|xT ). (2)

When the class H is clear, as in our case, we simply write rRT (x
T ) := rT (H|xT ). This notion was also known in the

literature as transductive online learning [9]. To decouple it from the feature vector xT , one either maximizes over
all possible xT or takes the average over the features. We study here the averaged fixed design minimax regret as

r̄T (H) := ExT [rT (H|xT )],

where the feature vector xT is generated by an i.i.d. process. The importance of fixed-design regret lies in the fact
that it is a universal lower bound for various regrets discussed in the literature [4], [10].

As discussed in [6], [11] the minimax regret rT (xT ) can be studied through the so called Shtarkov sum which
for bounded ∥w∥ ≤ R becomes

SR(x
T ) =

∑
yT

sup
||w||≤R

P (yT |xT ,w) (3)

where P (yT |xT ,w) =
∏T

t=1 p(yt⟨xt,w⟩), and the regret is then rRT (x
T ) = logSR(x

T ). While the Shtarkov sum
approach provides an exact solution, there are two main issues: computational and analytical. The optimization
problem sup∥w∥≤R P (yT |xT ,w) is non-convex and, more problematically, most of the optimal solutions

w∗ = arg sup
∥w∥≤R

P (yT |xT ,w) (4)

lie on the boundary ∥w∥ = R. To address these issues, one often resorts to regularization (see [12], [13]).
In view of these challenges, we introduce and study a regularized version of the minimax regret. We first notice

that for the logarithmic loss function we can write ℓ(ŷ, y) = − logP (y|ŷ) and ℓ(hw(x), y) = − logP (y|x,w),
leading to the regularized pointwise regret

Rε
T (ŷ

T , yT |xT ) = −
T∑
t=1

logP (yt|ŷt) + sup
w∈Rd

T∑
t=1

logP (yt|xt,w)e−ε||w||2 (5)

where ε ≥ 0 and supw∈Rd is unconstrained. Then, the regularized minimax regrets are defined as

rεT (x
T ) = inf

ŷT
max
yT

Rε
T (ŷ

T , yT |xT ), r̄εT (H) := ExT [rεT (H|xT )] (6)

and the generalized Shtarkov sum is

Sε(x
T ) =

∑
yT

sup
w

P (yT |xT ,w)e−ε||w||2 . (7)

We show in Section II that
rεT (x

T ) = logSε(x
T )

holds as well. Notice that the optimization

w∗
ε := argw∈Rd P (yT |xT ,w)e−ε||w||2
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is much easier to compute since it is log-concave and ||w∗
ε || < ∞ holds always. However, unlike the regularization

introduced in [12], [13], here we are not aiming to control the computational complexity. Instead, the introduction
of regularization is primarily for the sake of analytical considerations (i.e., allowing the existence of the Fourier
transform, as detailed in Section II).

Furthermore, our regularized regret can be interpreted as a soft-constraint on R = ||w|| with R ∼ 1/
√
ε. In fact,

in Lemma 1 we prove for all xT the following relations between standard (classical) regret rRT (x
T ) for ∥w∥ ≤ R

and the regularized regret rεT (x
T )

rRT (x
T ) ≤ rεT (x

T ) ≤ rR
√
d log T

T (xT ) +O(1) (8)

for ε = 1/R2. This demonstrates that the standard regret and the regularized regret grow asymptotically the same
order for polynomially growing R, giving us another justification to study precisely the regularized regret and the
associated Shtarkov sum.

A. Related Work

Online learning under logarithmic loss can be viewed as universal compression (source coding) with side
information, as discussed in [14], [15] and [16], [17], [18], [19], [20]. The logistic-type class of experts, as in (1),
was studied extensively in [3], [7], [2], [8], [4] under various formulations of regret. In particular, it is known
that for any range R of the weight w, the minimax regret can be upper bounded by (d/2) log

(
TR2/d

)
for the

sequential regret, i.e., where both xT and yT are selected sequentially [3], [8], [4]. For the fixed design regret we
study here, the precise dependency on the weight norm R is largely unexplored. Several prior results, such as [8],
[4], [21], have demonstrated that the regret lower bound grows as (d/2) log

(
T/d2

)
(with no dependency on R),

which can deviate arbitrarily from the generic (d/2) log
(
TR2/d

)
upper bound for R → ∞. Recently, [22] showed

that for fixed design regret, the upper bound can be improved to 2d log T for a general monotone class even with
R = ∞. The authors of [22] also demonstrated that for R = ∞, the (1 + o(1))d log(T/d) regret holds for logistic
regression. This leaves open the question of precisely characterizing the fixed design regret in the transition region
of the regret from (d/2) log T to d log T as R → ∞. In this paper we provide an answer when R = o(T 1/4) for
the regularized and classical regret. To the best of our knowledge, [22] is the only work that studies the precise
characterization of fixed design regret with unbounded weights (although recently [23] studied unbounded weights
but not its precise behavior). We should emphasize that studying the transition region poses substantial technical
challenges if a precise characterization is desired (i.e., precise up to the second order asymptotic). Our findings are
most closely related to [11], [6]. In [6], a precise maximal minimax regret is analyzed, but only for a finite number
of feature values (see also [15]).

B. Summary of Contributions

In this paper, we present for the first time precise second-order asymptotics for the regularized Shtarkov sum
and consequently the regularized minimax regret as in (6) with ε > 0. While our derivations do not directly work
for ε = 0, we extend our findings to ε → 0 as long as ε ≫ T−1/2 (which means that there exists a sufficiently
large positive constant c such that ε ≥ cT−1/2) showing a phase transition of the leading term of of the (average)
Shtarkov sum and the corresponding one for the regret. We should emphasize that to analyze such a phase transition,
we need precise expression for the second-order terms. This result also shed lights on the classical minimax regret
as shown in (27) when the weight norm R grows as O(T 1/4).

More precisely, we represent first in (9) the regularized minimax regret as the logarithm of the generalized
Shtarkov sum. Then in Theorem 1 we present precise second-order asymptotic expansion of the average Shtarkov
sum and hence the regularized minimax regret for logistic regression with unbounded weights. We prove that for
ε ≫ T−1/2 the regularized minimax regret grows as (d/2) log(2T/π) + logCd(ε) where Cd(ε) has a complicated
multidimensional integral which we explicitly evaluate for ε → 0 in Theorem 2. Furthermore, for ε = Θ(T−α)
with α ≤ 1/2, we show in Theorem 2 that the leading term grows as ((1/2 + α/4)d− α/2) log T for regularized
and classical regret. We also conjecture it reaches d log T for ε ∼ 1/T 2. We accomplish it using powerful analytic
techniques1 such as saddle point method, Mellin transform, and multidimensional Fourier transform (see [24], [25]),

1A. Odlyzko argued: “Analytic methods are extremely powerful and when they apply, they often yield estimates of unparalleled precision.”
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hopefully initiating an analytic learning theory (see [16]) in which problems of machine learning are solved by
tools of complex analysis.2

We present here analysis for the simplest model for the logical regression and uniform distribution for x. However,
we must emphasize that the hardest challenge is to find the right approach for the simplest case and then bring
more technical approaches to generalize. This is particularly true for analytic techniques as witnessed by regret
analysis in information theory: the Shtarkov sum was first precisely analyzed for a memoryless source [26], then
extended to Markov sources [17] and finally to renewal processes [27].

II. MAIN RESULTS

In this section we present our main results with most proofs delegated to the next two sections and the Appendix.
Before we start our discussion, we derive the connection between the regularized regret (6) and generalized Shtarkov
sum (7). Note that, for any given xT , the predictor ŷt can be compactly represented as a distribution Q over
{−1,+1}T such that ŷt = Q(+1|yt−1,xT ) and ℓ(ŷt, yt) = − logQ(yt|yt−1,xT ). Then the regularized regret can
be written as

rεT (H|xT ) = min
Q

max
yT

[− logQ(yT |xT ) + sup
w

logP (yT |xT )e−ε||w||2 ]

= min
Q

max
yT

[− logQ(yT |xT ) + logP ∗
ε (y

T |xT )] + log
∑
vT

sup
w

P (vT |xT ,w)e−ε||w||2

(a)
= log

∑
yT

sup
w

P (yT |xT ,w)e−ε||w||2 = logSε(x
T ) (9)

where (a) follows since minQ is attained when Q = P ∗
ε , and Sε(x

T ) is defined in (7) and

P ∗
ε (y

T |xT ) :=
supw P (yT |xT ,w)e−ε||w||2∑
vT supw P (vT |xT ,w)e−ε||w||2

is the generalized maximum-likelihood distribution, We note that the regularized minimax regret can also be achieved
precisely by the following "regularized" Normalized Maximum Likelihood (NML) predictor:

p̂t := P ∗
ϵ (yt | yt−1,xT ) =

∑
vT−t P ∗

ϵ (v
T−tyt | xT )∑

vT−t+1 P ∗
ϵ (v

T−t+1yt−1 | xT )
. (10)

Our objective is then to find precise asymptotics for the generalized Shtarkov sum Sε(x
T ) as defined in (7). Note

that for a sequence of labels yT and a sequence of features xT we have for any ε > 0

P (yT |xT ,w) =

T∏
t=1

p(yt⟨xt,w⟩) and Pε(y
T |xT ,w) =

T∏
t=1

p(yt⟨xt,w⟩)e−ε∥w∥2

. (11)

We also define L(yT |xT ,w) = logP (yT |xT ,w) and Lε(y
T |xT ,w) = L(yT |xT ,w) + ε∥w∥2.

Before we proceed, let us discuss a relation between the regularized Shtarkov sum Sε(x
T ) as well as regularized

regret rεT (x
T ) and the standard Shtarkov SR(x

T ) as well as the standard regret that we write as rRT (x
T ) when

||w|| ≤ R. Formally, we have the following result.

Lemma 1. For all xT , ε > 0 and R1, R2 ≥ 0, we have

e−εR2
1SR1

(xT ) ≤ Sε(x
T ) ≤ SR2

(xT ) + S∞(xT )e−εR2
2 . (12)

In particular, if logS∞(xT ) = O(d log T ) and ε = 1/R2 we find

rRT (x
T ) ≤ rεT (x

T ) ≤ rR
√
d log T

T (xT ) +O(1). (13)

2Following Handmaid’s percept: “The shortest paths between two truths on the real line passes through the complex plane."
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Proof. The lower bound of (12) follows from

Sε(x
T ) =

∑
yT

sup
w

P (yT |xT ,w)e−ε∥w∥2

≥
∑
yT

sup
∥w∥≤R1

P (yT |xT ,w)e−ε∥w∥2

≥
∑
yT

sup
∥w∥≤R1

P (yT |xT ,w)e−εR2
1 = e−εR2

1SR1
(xT ).

For the upper bound of (12), we have

Sε(x
T ) =

∑
yT

sup
w

P (yT |xT ,w)e−ε||w||2

≤
∑
yT

sup
||w||≤R2

P (yT |xT ,w)e−ε||w||2 +
∑
yT

sup
R2<||w||<∞

P (yT |xT ,w)e−ε||w||2

≤
∑
yT

sup
||w||≤R2

P (yT |xT ,w) + e−εR2
2

∑
yT

sup
|w||<∞

P (yT |xT ,w)

= SR2
(xT ) + S∞(xT )e−εR2

2 .

Taking ε = 1/R2, R1 = R and R2 = R
√
d log T , we have e−εR2

1 = e−1 and e−εR2
2 = ed log T . The inequality (13)

then follows by taking logarithm on both side of (12) and using the fact that logS∞(xT ) = O(d log T ).

It was shown in [22, Theorem 2] that for any expert class with a monotone p (including logistic regression), we
have logS∞(xT ) ≤ 2d log T . Therefore, (13) implies that

rϵ1T (xT ) ≤ rRT (x
T ) ≤ rϵ2T (xT ),

by taking

ϵ1 =
d log T

R2
, and ϵ2 =

1

R2
.

Thus the d log T factor contributes only to the lower-order term of rϵ1T (xT ) as R grows polynomially w.r.t T .
Therefore, the regret rRT (x

T ) (with a polynomial growth R) can be converted to the regularized regret rϵT (x
T ) with

the same leading constant as long as ϵ = 1
R2 .

We now focus on the logistic regression p(w) = (1 + exp(−w))−1 since all interesting behavioral phenomena
occur for this function, and its analysis is the key to a general case. For the logistic function we have

∇Lε(y
T |xT ,w) = −

T∑
t=1

p(−yt⟨xt,w⟩) yt xt + 2εw

and

∇2Lε(y
T |xT ,w) =

T∑
t=1

p(⟨xt,w⟩))p(−⟨xt,w⟩))xt ⊗ xt + 2εI, (14)

where x⊗ x denotes the matrix (xixj)1,≤i,j≤d and I the identity matrix.
To study the Shtarkov sum, and ultimately the minimax regret, we need a better understanding of of the optimal

w∗
ε defined as

w∗
ε = arg min

w∈Rd
Lε(y

T |xT ,w)

which is the (unique) solution of the equation ∇Lε(y
T |xT ,w) = 0. Similarly, for every a ∈ Rd the equation

∇Lε(y
T |xT ,w) = a (15)

has a unique solution w∗
ε(a). Furthermore, if we denote GyT |xT ,ε(w) := ∇Lε(y

T |xT ,w), then we have w∗
ε =

G−1
yT |xT ,ε(0). Note that w∗ can be infinite, but w∗

ε < ∞.
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We shall analyze the Shtarkov sum via a multidimensional Fourier transform method. The first key issue is its
existence, which we address next and Appendix A. We set hyT |xT (a) = exp

(
−Lε(y

T |xT , G−1
yT |xT ,ε(a))

)
. The goal

is to show that (for every yT and xT ) the Fourier transform

h̃yT |xT (z) =

∫
Rd

hyT |xT (a)e−i⟨a,z⟩ da =

∫
Rd

exp
(
−Lε(y

T |xT , G−1
yT |xT ,ε(a))

)
e−i⟨a,z⟩ da

of hyT |xT (a) exists and that the inverse Fourier transform has an absolute convergent integral representation

hyT |xT (a) =
1

(2π)d

∫
Rd

h̃yT |xT (z)ei⟨a,y⟩ dz.

Actually we will need hyT |xT (0) since

sup
w∈Rd

Pε(y
T |xT ,w) = Pε(y

T |xT , G−1
yT |xT ,ε(0)) = hyT |xT (0).

Observe that by (15) (for w = G−1
yT |xT ,ε(a)) we have

a = −
T∑
t=1

p (−yt⟨xt,w⟩) ytxt + 2εw = O(1) + 2εw.

Note that the O(1)-term depends on yT and xT . Thus G−1
yT |xT ,ε(a) =

1
2εa+O(1) which directly implies that

hyT |xT (a) = O
(
e−

1

4ε
∥a∥2

)
. (16)

Hence the Fourier transform h̃yT |xT (z) certainly exists since (16) implies absolute convergence of the corresponding
integral. Furthermore, we establish in Appendix A the upper bound

h̃yT |xT (z) = O
(
|z1|−k1 · · · |zd|−kd

)
for all non-negative integers k1, . . . , kd which implies that the inverse Fourier transform is given by

hyT |xT (a) =
1

(2π)d

∫
Rd

h̃yT |xT (z)ei⟨a,z⟩ dz.

Consequently we can proceed to evaluate the Shtarkov sum as follows:

sup
w∈Rd

Pε(y
T |xT ,w) = Pε

(
yT |xT , G−1

yT |xT ,ε(0))
)
= exp

(
−L(yT |xT , G−1

yT |xT ,ε(0))
)

= (2π)−d

∫
Rd

h̃yT |xT (z) dz = (2π)−d

∫
Rd

∫
Rd

hyT |xT (a)e−i⟨a,z⟩ da dz

= (2π)−d

∫
Rd

∫
Rd

exp
(
−Lε(y

T |xT , G−1
yT |xT ,ε(a))

)
e−i⟨a,z⟩ da dz

=(2π)−d

∫
Rd

∫
Rd

P (yT |xT ,w)e−i⟨∇L(yT |xT ,w),z⟩e−ε∥w∥2−2iε⟨w,z⟩det
(
∇2Lε(y

T |xT ,w)
)
dw dz

where we have used the substitution a = GyT |xT ,ε(w) = ∇Lε(y
T |xT ,w). To complete our derivation, we observe

that ∑
yT∈{−1,1}T

P (yT |xT ,w) exp
(
−i⟨∇L(yT |xT ,w), z⟩

)
=

T∏
t=1

f(w,xt, z),

where f(w,x, z) denotes

f(w,x, z) = p(⟨x,w⟩)e−ip(−⟨x,w⟩) ⟨x,z⟩ + p(−⟨x,w⟩)eip(⟨x,w⟩) ⟨x,z⟩. (17)

This leads to our integral representation of the Shtarkov sum

Sε(x
T ) = (2π)−d

∫
Rd

∫
Rd

T∏
t=1

f(w,xt, z) e
−ε∥w∥2−2iε⟨w,z⟩det

(
∇2Lε(·|xT ,w)

)
dw dz. (18)
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We now assume that the vectors x1, . . . ,xT are iid random vectors X1, . . . ,XT that follow a probability distribution
over bounded support, however, this can be relaxed.3 Furthermore since P and ∇2Lε are bounded in a bounded
domain it follows that

ESε(X
T ) = (2π)−d

∫
Rd

∫
Rd

E

[
T∏
t=1

f(w,Xt, z) det
(
∇2Lε(·|XT ,w)

)]
e−ε∥w∥2−2iε⟨w,z⟩ dw dz. (19)

This expression is the main tool that we will use to study asymptotically the minimax regret. The asymptotic
evaluation of (19) is very challenging as we will see in Sections III and in Section IV. We also want to note that
in the representation (18) the integral cannot be sees as a double multi-dimensional integral. The representation
there is only correct if the integration with respect to w is done first and the integration with respect to z in a
second step. This is due to the fact that this representation depends on the the inversion of the Fourier transform.
For example, by formally exchanging the integration we would have to calculate linear combinations of integrals
of the form

∫
Rd e

ih(w,xT )⟨w,z⟩ dz (for some function h(w,xT )), however, these integrals do not converge. After
taking the expectation the integral representation (19) for ESε(X

T ) is not only valid as an iterated integration (first
with respect to w and then with respect to z) but converges as a double multi-dimensional integral (this will be
shown in Section III for d = 1 and in Section IV for d > 1) with different asymptotic behaviors of the integrand
for various ranges, in particular if w and z are unbounded). Unfortunately this phenomenon does not show up
in the computation of the second moment E[Sε(x

T )2]. Here we have to add a regularization factor of the form
e−η∥z∥2

in order to make the appearing multi-integral convergent and by finally setting η > 0 sufficiently small, see
Appendix E.

Our first result of this paper can be summarized as follows, which we prove in Sections III and IV.

Theorem 1. Let w ∈ Rd and ε > 0. Assume features xt are generated by a uniform distribution over the
d-dimensional ball Bd and p(w) = (1 + exp{−w})−1 is the logistic function.

(i) For ε ≫ 1/
√
T there exists β(d) > 0 such that

E[Sε(x
T )] =

(
T

2π

)d/2 ∫
Rd

√
det(B̄(w)) e−ε∥w∥2

(1 +O(T−β(d))) (20)

with
B̄(w) =

1

Vol(Bd)

∫
Bd

p(⟨w|x⟩)(1− p(⟨w|x⟩))x⊗ xdx, (21)

where x⊗ x = xxτ being the tensor product of xt with τ denoting the transpose.
(ii) Furthermore,

E[Sε(x
T )2] = E[Sε(x

T )]2(1 +O(T−β(d))) (22)

which implies that

r̄εT = E
[
logSε(X

T )
]
= logE[Sε(X

T )](1 +O(T−β(d))) =
d

2
log T + logCd(ε) +O((log T )T−β(d)) (23)

where
Cd(ε) =

∫
Rd

√
det(B̄(w)) e−ε∥w∥2

dw

for ε ≫ 1/
√
T .

Before we proceed, we first show how to establish E
[
logSε(X

T )
]
= logE[Sε(X

T )](1 + O(T−β(d))) of (23)
using the fact that (22) holds which we prove in (A-23) of Appendix E (for simplicity of presentation we provide
details only for d = 1). Thus, let us consider the expected regret E[logSε(x

T )]. In order to simplify the notation
we set S = Sε(x

T ). Observe that (22) implies Var[S] = O((E[S])2T−β). By Jensen’s inequality we directly have
E[logS] ≤ logE[S]. Thus, it remains to obtain a lower bound. By Chebyshev’s inequality

P
[∣∣∣∣ S

E[S]
− 1

∣∣∣∣ ≥ 1

2

]
≤ 4

Var[S]
(E[S])2

= O(T−β).

3In what follows we assume that X is uniformly distributed in the unit ball. This simplifies several of our computations. However, they can
be directly extended to rotation invariant distributions with a sufficiently fast decreasing tail (for example as O(e−c∥x∥) for some constant
c > 0).
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Furthermore, for |x− 1| ≤ 1
2 we have

log x ≥ x− 1− c(x− 1)2

for some constant c > 0. Hence,

E
[
log

S

E[S]

]
= E

[
1[|S/E[S]−1|≤1/2] log

S

E[S]

]
︸ ︷︷ ︸

A

+E
[
1[|S/E[S]−1|>1/2] log

S

E[S]

]
︸ ︷︷ ︸

B

≥ E
[

S

E[S]
− 1

]
− E

[
1[|S/E[S]−1|>1/2]

(
S

E[S]
− 1

)]
− cE

[(
S

E[S]
− 1

)2
]

︸ ︷︷ ︸
A

+ E
[
1[|S/E[S]−1|>1/2] log

S

E[S]

]
︸ ︷︷ ︸

B

.

Trivially

E
[

S

E[S]
− 1

]
= 0

and

E

[(
S

E[S]
− 1

)2
]
=

Var[S]
(E[S])2

= O(T−β).

Using Cauchy-Schwarz’s inequality, we find

E
[
1[|S/E[S]−1|>1/2]

(
S

E[S]
− 1

)]
≤

√
P
[∣∣∣∣ S

E[S]
− 1

∣∣∣∣ > 1

2

]
· Var[S]
(E[S])2

= O(T−β).

Therefore, the term A ≥ −c′T−β for some c′ > 0.
To bound the term B, we note that by the definition of the (regularized) Shtarkov sum, we have S ≥ 1 (to see this,

take w = 0 in (7)). Moreover, by (25) of Theorem 2 we have (uniformly for ε ≫ 1/
√
T ) that logE[S] ≤ c′′d log T

for some constant c′′ > 0. Therefore, we have

log
S

E[S]
≥ − logE[S] ≥ −c′′d log T.

This implies

B = E
[
1[|S/E[S]−1|>1/2] log

S

E[S]

]
≥ −c′′d log T E[1[|S/E[S]−1|>1/2]]

= −c′′d log T P
[∣∣∣∣ S

E[S]
− 1

∣∣∣∣ ≥ 1

2

]
≥ −c′′′

d log T

T β

for some constant c′′′ > 0. Consequently,

E[logS]− logE[S] = E
[
log

S

E[S]

]
≥ A+B ≥ −c′ + c′′′d log T

T β
→ 0 as T → ∞.

Together with the upper bound E[logS] ≤ logE[S] we thus obtain

E[logS] = logE[S] +O((log T )T−β) = logE[S] · (1 +O(T−β)).

which proves our main result (23) regarding the regret (provided (22) is true established in Appendix E).
Another question is whether Theorem 1 allows us to recover the classical regret with ε → 0. First, we note that

our proof of Theorem 1 works only for ε ≫ 1/
√
T , which corresponds to a radius R of order O(T 1/4) by Lemma 1.

Second, from [22], we know that for R = ∞, the leading term of the minimax regret is d log T , not (d/2) log T .
This indicates a transition region in which the leading term in log T grows from d/2 to d. In Theorem 2 below we
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partially fill this gap by providing the asymptotic behavior when R ∈ (0, T 1/4]. The main technical ingredient is the
following asymptotic analysis of det(B̄(w)).

Lemma 2. Suppose that the matrix B̄(w) is given by (21). Then, as ∥w∥ → ∞, we have

det(B̄(w)) =
vd−1

vd

π2

3(d+ 2)d−1
∥w∥−d−2

(
1 +O(∥w∥−2)

)
, (24)

where vd = πd/2/Γ(1 + d
2) denotes the volume of the d-dimensional unit ball.

The proof of a slightly more refined property is deferred to Appendix B (see Lemma 8). This leads to the
following noteworthy conclusion regarding the growth of the regularized Shtarkov sum.

Theorem 2. Under assumptions of Theorem 1 we have, as ε → 0 but ε ≫ T−1/2,

E[Sε(x
T )] =


T

d

2 C̄d

(
ε−

d

4
+ 1

2 +O(1)
)
(1 +O(T−β(d))) d ≥ 3,

T 1/2

(
1√
2π

∫∞
−∞

√∫ 1
−1 p(wx)(1− p(wx))x2dx dw +O(ε

1

4 )

)
(1 +O(T−β(d))) d = 1,

T
√

π
24

(
log ε−1 +O(1)

)
(1 +O(T−β(d))) d = 2,

(25)

where

C̄d = (2π)−
d

2

√
vd−1

vd

π2

3(d+ 2)d−1

dvd
2

Γ

(
d− 2

4

)
.

In particular, for d ≥ 3 and ε = Θ(T−α) with α ≤ 1
2 , we have

r̄εT = E
[
logSε(X

T )
]
=

(
(
1

2
+

α

4
)d− α

2

)
log T +O(1). (26)

Proof. Theorem 2 follows from Theorem 1 and Lemma 2. We only do the calculations for d ≥ 3. The cases d = 1
and d = 2 are then simple variants.

By Lemma 2 we have for ∥w∥ ≥ 1

det(B̄(w)) = Kd∥w∥−d−2
(
1 +O(∥w∥−2)

)
with Kd = vd−1

vd

π2

3(d+2)d−1 . Consequently we obtain (with sd = dvd denoting the surface measure of the d-dimensional
unit ball) ∫

Rd

√
detB̄(w)e−ε∥w∥2

dw =

∫
∥w∥≥1

√
detB̄(w)e−ε∥w∥2

dw +O(1)

=
√

Kd

∫
∥w∥≥1

∥w∥−
d+2

2

(
1 +O(∥w∥−2)

)
e−ε∥w∥2

dw +O(1)

= sd
√

Kd

∫ ∞

1
rd−1− d+2

2

(
1 +O(r−2)

)
e−εr2dr +O(1)

=
sd
2

√
Kdε

− d

4
+ 1

2

∫ ∞

ε
v

d

4
− 3

2 (1 +O(v−1ε))e−v dv +O(1)

=
sd
2

√
Kdε

− d

4
+ 1

2

∫ ∞

0
v

d

4
− 3

2 e−v dv +O(1)

=
sd
2

√
KdΓ

(
d− 2

4

)
ε−

d

4
+ 1

2 +O(1),

where we have used the substitution εr2 = v and the property that∫ ε

0
v

d

4
− 3

2 e−vdv = O(ε
d

4
− 1

2 ).

Thus, with the help of Theorem 1 the asymptotic result follows.
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We highlight the importance of (26). Note that previous results show that r̄RT ∼ (d/2) log T for bounded R = O(1),
while for R = ∞, it was observed in [22] that r̄RT ∼ d log T . It was conjectured that as R grows to infinity, the
leading coefficient in front of log T also increases. Theorem 2 and Lemma 1 demonstrate that such a growth rate is
linearly controlled by α. More precisely the relation (8) implies

d

2
log T +

d− 2

2
logR− d− 2

2
log log T +O(1) ≤ rRT ≤ d

2
log T +

d− 2

2
logR+O(1) (27)

for R ≪ T 1/4. It is very likely that the restriction ε ≫ T−1/2 is natural and that the behavior for T−1 ≪ ε ≪ T−1/2

will be different. This would be another major challenge to settle in future work.

III. PROOF OF THEOREM 1(I) FOR d = 1

In this and the next sections we present the proof of our main result Theorem 1(i). The proof is long, tedious,
and very technical. To help the reader, we focus here on d = 1. The extension for d > 1 is presented in Section IV.

The second part of Theorem 1 is still more technical. So we will only present in Appendix E the proof of the
relation E[Sε(x

T )2] = E[Sε(x
T )]2(1 +O(T−β(d))) for d = 1.

We start with a brief road map of the proof. We recall that we already used the following principle to represent
the maximum maxw f(w) = f(w∗) (where f(w) = Pε(y

T |xT , w)). By convexity we can determine w∗ by the
equation g(w) = ∇f(w) = 0 and is, thus, given by w∗ = g−1(0) which (by Fourier analysis) can be represented by

max
w

f(w) = f ◦ g−1(0) =
1

2π

∫
R

∫
R
f ◦ g−1e−iyz dy dz =

1

2π

∫
R

∫
R
f(w)e−ig(w)z∇2f(w) dw dz.

In our case we additionally have the property that ∇2f(w) does not depend on y and that the sum
∑

yT f(w)e−ig(w)z

factors nicely.
The main part of the proof is to evaluate the resulting double integral (that we have slightly simplified and where

we have taken the sum over all yT and the expectation with respect to xT ) asymptotically:

1

2π

∫
R

∫
R
f(w, z)T e−εw2−2iwz dw dz.

For small z and w the first term is approximated by

f(w, z) ≈ e−
1

2
zB(w)z

so that the integral over z can be evaluated by a Gauss-like integral. The main problem is that this approximation
does not hold for large z and w so it needs subtle analytic methods to show that these parts do not contribute to the
main term that is given by the Gauss-like integral. (This is even more involved in the case d > 1, see Section IV.)

We now start with the full details. In what follows we will use the notation f(w, z) = Ef(w,X, z). For the case
d = 1 we have

f(w, z) = Ef(w,X, z) =
1

2

∫ 1

−1

(
e−ixz/(1+exw)

1 + e−xw
+

eixz/(1+e−xw)

1 + exw

)
dx, (28)

hence ESε(X
T ) is given by

ESε(X
T ) =

1

2π

∫ ∞

−∞

∫ ∞

−∞
E

[
T∏
t=1

f(w,Xt, z)∇2Lε(·|XT , w)

]
e−εw2−2iεwz dw dz

(a)
=

T∑
s=1

1

2π

∫ ∞

−∞

∫ ∞

−∞
E

[
T∏
t=1

f(w,Xt, z) p(xsw)p(−xsw)x
2
s

]
e−εw2−2iεwz dw dz

+
2ε

2π

∫ ∞

−∞

∫ ∞

−∞
E

[
T∏
t=1

f(w,Xt, z)

]
e−εw2−2iεwz dw dz

=
T

2π

∫ ∞

−∞

∫ ∞

−∞
f(w, z)T−1B(z, w)e−εw2−2iεwz dw dz +

2ε

2π

∫ ∞

−∞

∫ ∞

−∞
f(w, z)T e−εw2−2iεwz dw dz,

=: T · J0 + 2ε · J1, (29)
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where B(z, w) abbreviates B(z, w) = E
[
f(w,X, z) p(Xw)p(−Xw)X2

]
and (a) follows by (14).

We start with three technical lemmas regarding f(w, z) with proofs presented in Appendix C.

Lemma 3. Set

B(w) = E
[
p(xw)p(−xw)x2

]
=

1

2

∫ 1

−1

x2

(1 + e−xw)(1 + exw)
dx. (30)

Then we uniformly have B(w) = Θ
(
min(1, |w|−3)

)
and for c1 > 0

f(w, z) = 1−Θ
(
z2min(1, |w|−3)

)
(for |z| ≤ max(1, c1|w|))

= 1− z2

2
B(w) +O

(
z3min(1, |w|−4)

)
= e−

1

2
z2B(w)

(
1 +O

(
z3min(1, |w|−4)

)
+O

(
z4min(1, |w|−6)

))
.

Lemma 4. For |w| ≤ 1 we uniformly have |f(z, w)| ≤ min
(
1, C

|z|

)
and for |w| ≥ 1 we have

|f(z, w)| ≤ min

(
1,

C1√
|wz|

+
C2e

|w|

|wz|

)
.

Lemma 5. Suppose that c1 > 0 is a given constant. Then there exists c2 > 0 such that∣∣f(z, w)∣∣ ≤ 1− c2
|w|

uniformly for |z| ≥ c1|w|.

Granted these lemmas, we now prove our main result for ESε(X
T ) in the case d = 1 which we formulate next.

Proposition 1. Suppose that d = 1 and that X is uniformly distributed on [−1, 1]. Then

ESε(X
T ) =

T 1/2

√
2π

∫ ∞

−∞
B(w)

1/2
e−εw2−2ε2w2/(TB(w)) dw +O (log T )

provided that ε ≫ T−1/2, where B(w) is given in (30).

Note that ∫ ∞

−∞
B(w)

1/2
e−εw2−2ε2w2/(TB(w)) dw =

∫ ∞

−∞
B(w)

1/2
e−εw2

dw +O
(
T−1/10

)
=

∫ ∞

−∞
B(w)

1/2
dw +O

(
ε1/4 + T−1/10

)
(31)

as long as ε → 0 such that ε ≫ T−1/2. Thus, the integral in Proposition 1 can be replaced by the integral∫ ∞

−∞
B(w)

1/2
e−εw2

dw.

The rest of this subsection is devoted to the proof of the Proposition 1. We recall from (29) the representation
ESε(X

T ) = T · J0 + 2ε · J1, where

J1 =
1

2π

∫
R2

f(w, z)T e−εw2−2iεwz dw dz, J0 =
1

2π

∫
R2

B(z, w)f(w, z)T−1e−εw2−2iεwz dw dz.

The main challenge in the computation of the integral(s) J0 and J1 are the parts that correspond to large w. We
only discuss the integral J1 in detail. For any constant C3 > 0, we consider the following cases:

A: The case |w| ≤ C3. If |w| ≤ C3 then we have the uniform bound |f(z, w)| ≤ C/|z| by Lemma 4. We first
look at the case, where |z| ≤ 2C. Here we certainly have the uniform representation (see Lemma 3) f(z, w) =
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e−
z2

2
B(w)

(
1 +O(z3)

)
and by continuity |f(z, w)| ≤ e−c1z2

for some constant c1 > 0. If |z| ≥ 2C then we have
the trivial estimate |f(z, w)| ≤ C/|z| ≤ 1/2 (see Lemma 4). Consequently,

I1 =
1

2π

∫ ∞

−∞

∫ C3

−C3

f(w, z)T e−εw2−2iεwz dw dz

=
1

2π

∫ C3

−C3

∫
|z|≤T−1/3

e−TB(w) z2

2

(
1 +O(Tz3)

)
e−εw2−2iεwz dz dw

+
1

2π

∫ C3

−C3

∫
T−1/3≤|z|≤2C

O
(
e−c1Tz2

)
e−εw2

dz dw +
1

2π

∫ C3

−C3

∫
|z|≥2C

(C/|z|)T e−εw2

dz dw

=

∫ C3

−C3

1√
2πTB(w)

e−2ε2w2/(TB(w))e−εw2

dw +O
(
T−1

)
+O

(
e−c1T 1/3

)
+O(2−T )

=
1√
2πT

∫ C3

−C3

B(w)−1/2e−εw2

dw +O
(
T−1

)
.

B: The case C3 ≤ |w| ≤ ηT where η = η(T ) → 0. Furthermore we divide the integral over z into several parts.
The first part is the interval |z| ≤ z1 = |w|3/2T−1/2η−1/6, where we use Lemma 3

f(z, w)T = e−TB(w) z2

2
+O(T |z3/w4|)+O(T |z4/w6|) = e−TB(w) z2

2

(
1 +O(T |z3/w4|) +O(T |z4/w6|)

)
.

By using the substitution v = z
√

TB(w) = Θ
(
zT 1/2w−3/2

)
we have (with v1 = z1

√
TB(w) = Θ(η−1/6))∫

|z|≤z1

e−TB(w) z2

2
−2iεwz dz =

√
2π√

TB(w)
e−2ε2w2/(TB(w)) +O

(
|w|3/2η1/6

T 1/2
e−cη−1/3

)
for some c > 0. Similarly we obtain∫

|z|≤z1

e−TB(w) z2

2 T |z3/w4| dz = O

(
|w|1/2

T

)
,

∫
|z|≤z1

e−TB(w) z2

2 T |z4/w6| dz = O

(
|w|3/2

T 3/2

)
.

Summing up we find

I21 =
1

2π

∫
|z|≤z1

∫
C3≤|w|≤ηT

f(w, z)T e−εw2−2iεwz dw dz

=
1√
2πT

∫
|w|≥C3

B(w)−1/2e−2ε2w2/(TB(w))e−εw2

dw +O

(
ε−5/4T 3/2e−εη2T 2

+
ε−3/4

T
+

ε−5/4

T 2

)
.

Next suppose that z1 = |w|3/2T−1/2η−1/6 ≤ |z| ≤ c1|w|, where c1 sufficiently small which ensures that (see
Lemma 3)

B(w)
z2

2
≥ C

(
|z|3

|w|4
+

|z|4

|w|6

)
.

Recall that B(w) = Θ(|w|−3) for |w| ≥ 1. Hence, there exists a constant c > 0 such that |f(z, w)| ≤ e−cz2/|w|3

uniformly for z1 ≤ |z| ≤ c1|w|. This implies that the corresponding integral is upper bounded by

I22 =
1

2π

∫
z1≤|z|≤c1|w|

∫
C3≤|w|≤ηT

f(w, z)T e−εw2−2iεwz dw dz

= O

(
η1/6e−cη−1/3

T 1/2

∫
C3≤|w|≤ηT

w3/2e−εw2

dw

)
= O

(
η1/6e−cη−1/3

ε5/4T 1/2

)
.
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Next suppose that c1|w| ≤ |z| ≤ c3e
|w| for an arbitrary constant c3 > 0. Here we have the upper bound

|f(z, w)| ≤ 1− c2/|w| ≤ e−c2/|w| (see Lemma 5) and provided that ε ≫ T−1/2 we have

I23 =
1

2π

∫
c1|w|≤|z|≤c3e|w|

∫
C3≤|w|≤ηT

f(w, z)T e−εw2−2iεwz dw dz = O

(∫
C3≤|w|≤ηT

e−c2T/|w|+|w|−εw2

dw

)

= O

(∫
C3≤|w|≤c2

√
T
e−(1−c2)

√
T−εw2

dw

)
+O

(∫
c2
√
T≤|w|≤ηT

e−
ε

2
w2

dw

)

= O
(
ε−1/2e−(1−c2)

√
T + e−

ε

2
c22T
)
= O

(
e−c5

√
T
)
= O

(
1

T

)
.

Finally if |z| ≥ c3e
|w|, where c3 is chosen sufficiently large, we have (for some constant C̃ ≤ C3)

f(z, w) ≤ C̃max

(
1√
|wz|

,
e|w|

|zw|

)
≤ 1

2
.

If c3e|w| ≤ |z| ≤ e2|w|/|w| then the first term 1/
√

|wz| dominates and we find

I24 =
1

2π

∫
c3e|w|≤|z|≤e2|w|/|w|

∫
C3≤|w|≤ηT

f(w, z)T e−εw2−2iεwz dw dz = O

(
1

T

)
.

Similarly we have for |z| ≥ e2|w|/|w|, where the second term dominates

I25 =
1

2π

∫
|z|≥e2|w|/|w|

∫
1≤|w|≤ηT

f(w, z)T e−εw2−2iεwz dw dz = O

(
1

T

)
.

Summing up we have provided that ε ≫ T−1/2

I2 =
1√
2πT

∫
|w|≥C3

B(w)
−1/2

e−εw2−2ε2w2/(TB(w)) dw

+O

(
ε−3/4

T
+

ε−5/4

T 2
+

η1/6e−cη−1/3

ε5/2T 1/2
+ ε−5/4T 3/2e−εη2T 2

)
.

C: The case |w| ≥ ηT . If |z| ≤ e2|w|/|w|, then |f(z, w)| ≤ 1 and obtain for ε ≫ T−1/2

I3 =
1

2π

∫ ∞

−∞

∫
|w|≥ηT

f(w, z)T e−εw2−2iεwz dw dz = O
(
e−η2T

)
.

In conclusion, we arrive at

J1 = I1 + I2 + I3 =
1√
2πT

∫ ∞

−∞
B(w)

−1/2
e−εw2−2ε2w2/(TB(w)) dw +O

(
T−5/8

)
provided that ε ≫ T−1/2 and where η = η(T ) = c6(log T )

−3 for a sufficiently small positive constant c6.

IV. PROOF OF THEOREM 1(I) FOR GENERAL d

Now we present detailed proof of Theorem 1(i) for general d. The proof is very long with many complicated
estimates of multi dimensional integrals. We keep most details in this section for clarity, however, very technical
derivaties we delay till Appendix D.

We fix d > 1 and consider first the expected value ESε(X
T ). By using the representation (19) and by expanding

the determinant we obtain (very similarly as in the case d = 1)

ESε(X
T ) =

d∑
j=0

T d−j J̃j(ε),
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where J̃j(ε), j = 0, . . . , d, are proper linear combinations of integrals of the forms similar to J0 and J1 (from the
case d = 1) together with proper powers of ε. In particular the dominant term J̃0 = J0(ε) is given by

J̃0 =
1

(2π)d

∫
Rd

∫
Rd

f(w, z)T−ddet(B(z,w))e−ε∥w∥2−2iε⟨w,z⟩ dw dz,

where
B(z,w) = E [f(w,X,w)p(⟨x,w⟩)p(−⟨x,w⟩)X⊗X] .

For the sake of brevity we will only consider the term J̃0 (the other terms are similar). First, however, in Appendix D
we derive several upper bounds on f(w, z). Granted this, we focus now on estimating J̃0.

We prove the following main technical result of this section.

Proposition 2. We have

J̃0 ∼
1

(2πT )d/2

∫
Rd

√
det
(
B(w)

)
e−ε∥w∥2− 2ε2

T
wτB(w)−1w dw

provided that ε ≫ T−1/2, where B(w) is given by (21).

We recall that
B(z,w) =

∫
Bd

f(w,x, z)p(⟨x,w⟩)p(−⟨x,w⟩)x⊗ x dx

and we note that B(0,w) = B(w). Moreover B(0,w) is a positive matrix and all entries of B(z,w) satisfy

|B(z,w)i,j | ≤ B(w)i,j , 1 ≤ i, j ≤ d.

Furthermore, it is an easy exercise to show (by expanding the determinant and estimating all parts absolutely) that
(see also Lemma 2)

det (B(z,w)) ≤ min
(
1, ∥w∥−d−2

)
.

Furthermore by Taylor expansion (and similar computations) we have

det (B(z,w)) = det
(
B(w)

)
·
(
1 +O

(
∥z∥2min(1, ∥w∥−1)

))
(32)

= det
(
B(w)

)
+O

(
∥z∥2min(1, ∥w∥−d−3)

)
. (33)

As in the case d = 1 we partition the 2d-dimensional integral into several parts.
A: The case ∥w∥ ≤ 1. First suppose that ∥z∥ ≤ T−1/3. By Lemma 11 we have

I11 =
1

(2π)d

∫
∥z∥≤T−1/3

∫
∥w∥≤1

det(B(z,w))f(w, z)T−de−ε∥w∥2−2iε⟨w,z⟩ dw dz

=
1

(2π)d

∫
∥w∥≤1

det(B(w))∫
∥z∥≤T−1/3

e−(T−d) 1

2
zτB(w)z

(
1 +O(T∥z∥3) +O(∥z∥2)

)
e−ε∥w∥2−2iε⟨w,z⟩ dw dz

=
1

(2π)d

∫
∥w∥≤1

det(B(w))e−ε∥w∥2

(∫
Rd

e−(T−d) 1

2
zτB(w)z−2iε⟨w,z⟩ dz+O(e−cT 1/3

)

)
dw

+O

(∫
∥w∥≤1

det(B(w))e−ε∥w∥2

∫
Rd

e−(T−d) 1

2
zτB(w)zT∥z∥3 dz dw

)

+O

(∫
∥w∥≤1

det(B(w))e−ε∥w∥2

∫
Rd

e−(T−d) 1

2
zτB(w)z∥z∥2 dz dw

)
=

1

(2πT )d/2

∫
∥w∥≤1

√
det(B(w))e−ε∥w∥2− 2ε2

T
wτB(w)−1w dw +O

(
e−cT 1/3

+ T− d+1

2 + T− d+2

2

)
=

1

(2πT )d/2

∫
∥w∥≤1

√
det(B(w))e−ε∥w∥2− 2ε2

T
wτB(w)−1w dw +O

(
T− d+1

2

)
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for some constant c > 0.
Next we consider the case T−1/3 ≤ ∥z∥ ≤ C, where C is chosen in a way that C/ logC ≥ 2C1, where C1 is

the constant from the inequality (A-15):

I12 =
1

(2π)d

∫
T−1/3≤∥z∥≤C

∫
∥w∥≤1

det(B(z,w))f(w, z)T−de−ε∥w∥2−2iε⟨w,z⟩ dw dz

= O

(∫
T−1/3≤∥z∥≤C

∫
∥w∥≤1

e−c1T∥z∥2

e−ε∥w∥2

dw dz

)
= O

(
e−c1T 1/3

)
= O

(
T−d

)
for some constant c1 > 0. Finally by Lemma 13 for ∥z∥ ≥ C we have |f(z, w)| ≤ C1 log(∥z∥)/∥z∥ ≤ 1

2 and
consequently

I13 =
1

(2π)d

∫
∥z∥≥C

∫
∥w∥≤1

det(B(z,w))f(w, z)T−de−ε∥w∥2−2iε⟨w,z⟩ dw dz

= O

(∫
∥z∥≥C

(
C1 log(∥z∥)

∥z∥

)T−d

dz

)

= O

(∫ ∞

C
rd−1

(
C1 log r

r

)T−d

dr

)

= O

(
1

T2T

)
= O

(
T−d

)
.

Summing up we have

I1 =
1

(2π)d

∫
Rd

∫
∥w∥≤1

det(B(z,w))f(w, z)T−de−ε∥w∥2−2iε⟨w,z⟩ dw dz

=
1

(2πT )d/2

∫
∥w∥≤1

√
det(B(w))e−ε∥w∥2− 2ε2

T
wτB(w)−1w dw +O

(
T− d+1

2

)
.

B: The case 1 ≤ ∥w∥ ≤ ηT .
We again assume that η = η(T ) = c6(log T )

−3 → 0 for a sufficiently small positive constant c6. We start with
the case ∥z∥ ≤ z1 = ∥w∥3/2T−1/2η−1/6. By Lemma 11 and by (33) we have (by distinguishing between the cases
|φ| ≤ 1/∥w∥ and 1/∥w∥|φ| ≤ π, where φ denote the angle between z and w)∫

∥z∥≤z1

det(B(w, z))f(w, z)T−de−2iε⟨z,w⟩ dz

= det(B(w))

∫
∥z∥≤z1

e−(T−d) 1

2
zτB(w)z−2iε⟨z,w⟩ dz

+O

(
∥w∥−d−3

∫
∥z∥≤z1

∥z∥2f(w, z)T−d dz

)

=

√
det(B(w))

(
2π

T

)d/2

e−
2ε2

T
wτB(w)−1w

+O
(
T− d

2 ∥w∥−
d

2
−1e−cη−1/3

)
+O

(
T− d

2
−1∥w∥−

d

2
+1
)
.
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We consider, for example, the following error term:

∥w∥−d−3

∫
∥z∥≤z1

∥z∥2f(w, z)T−d dz

= ∥w∥−d−3

∫
∥z∥≤z1, |φ|≤1/∥w∥

∥z∥2f(w, z)T−d dz

+ ∥w∥−d−3

∫
∥z∥≤z1, 1/∥w∥≤|φ|≤π

∥z∥2f(w, z)T−d dz

= O

(
∥w∥−d−3

∫ 1/∥w∥

0

∫ ∞

0
φd−2rd+1e−c1Tr2/∥w∥3

dr dφ

)

+O

(
∥w∥−d−3

∫ π

1/∥w∥

∫ ∞

0
φd−2rd+1e−c1Tr2φ2/∥w∥ dr dφ

)
= O

(
T− d

2
−1∥w∥−

d

2
+1
)

where we use the polar coordinates with ∥z∥ = r.
This implies

I21 =
1

(2π)d

∫
1≤∥w∥≤ηT

∫
∥z∥≤z1

det(B(z,w))f(w, z)T−de−ε∥w∥2−2iε⟨z,w⟩ dw dz

=
1

(2πT )d/2

∫
1≤∥w∥≤ηT

√
det(B(w))e−ε∥w∥2− 2ε2

T
wτB(w)−1w) dw

+O

(
ε−

d

4
+ 1

2 e−cη1/3

T d/2

)
+O

(
ε−

d

4
− 1

2

T (d+2)/2

)
=

1

(2πT )d/2

∫
∥w∥≥1

√
det(B(w))e−ε∥w∥2− 2ε2

T
wτB(w)−1w) dw

+O

(
ε−

d

4
+ 1

2 e−cη1/3

T d/2

)
+O

(
ε−

d

4
− 1

2

T (d+2)/2

)
.

Note that the integral is of order

Θ

(
ε−d/4+1/2

T d/2

)
that is certainly asymptotically leading if ε ≫ T−1/2.

Next suppose that z1 = ∥w∥3/2T−1/2η−1/6 ≤ ∥z∥ ≤ c1∥w∥, where c1 sufficiently small. Here we know that (for
a suitable constant c > 0)

|f(z,w)| ≤ e−c(∥z∥2/∥w∥3+∥z∥2φ2/∥w∥)

uniformly for z1 ≤ ∥z∥ ≤ c1∥w∥. This implies that the corresponding integral is upper bounded by

I22 =
1

(2π)d

∫
1≤∥w∥≤ηT

∫
z1≤∥z∥≤c1∥w∥

det(B(z,w))f(w, z)T−de−ε∥w∥2−2iε⟨z,w⟩ dw dz

= O

(∫
1≤∥w∥≤ηT

∥w∥−d−2e−εw2

∫
z1≤∥z∥≤c1∥w∥

e−c(T−d)(∥z∥2/∥w∥3+∥z∥2φ2/∥w∥) dz dw

)

= O

(
η−(d−1)/6e−cη−1/3

T d/2

∫
1≤∥w∥≤ηT

∥w∥−d/2−1e−ε∥w∥2

dw

)

= O

(
η−(d−1)/6e−cη−1/3

T d/2
ε−d/4+1

)
.
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Recall that e−cη−1/3

= e−cc
−1/3
6 log T = T−cc

−1/3
6 , where we can choose c3 arbitrarily small.

In the next step we consider the case c1∥w∥ ≤ ∥z∥ ≤ c′1∥w∥ log2 ∥w∥. Here we have the upper bound
|f(z,w)| ≤ 1− c4/(∥w∥ log2 ∥w∥) and, thus, we find

I23 =
1

(2π)d

∫
1≤∥w∥≤ηT

∫
c1∥w∥≤∥z∥≤c′1∥w∥ log2 ∥w∥

det(B(z,w))f(w, z)T−de−ε∥w∥2−2iε⟨z,w⟩ dw dz

= O

(∫
1≤∥w∥≤ηT

∥w∥−d−2e−ε∥w∥2

∫
c1∥w∥≤∥z∥≤c′1∥w∥ log2 ∥w∥

e−Tc4/(∥w∥ log2 ∥w∥) dz dw

)

= O

(∫
1≤∥w∥≤ηT

(log ∥w∥)2d∥w∥−2e−Tc4/(∥w∥ log2 ∥w∥)−ε∥w∥2

dw

)

= O

(∫ ∞

1
(log r)2drd−3e−c4T/(r log r)−εr2 dr

)
.

We split the integral at r0 = (T/ε)1/3 so that

T

r0 log
2 r0

= 9
(T 2ε)1/3

log2(T/ε)
and εr20 = (T 2ε)1/3.

Since ε ≫ T 1/2 we obtain the upper bound

I23 = O
(
e−c′′(T 2ε)1/3

)
= O

(
e−c′′′T 1/2

)
for some constants c′′, c′′′ > 0.

Next suppose that c′1∥w∥ log2 ∥w∥ ≤ ∥z∥ ≤ c3e
4∥w∥ for an arbitrary constant c3 > 0. Here we have the upper

bound |f(z,w)| ≤ 1− c2/∥w∥ ≤ e−c2/∥w∥ and consequently

I24 =
1

(2π)d

∫
1≤∥w∥≤ηT

∫
c′1∥w∥ log2 ∥w∥≤∥z∥≤c3e4∥w∥

det(B(z,w))f(w, z)T−de−ε∥w∥2−2iε⟨z,w⟩ dw dz

= O

(∫
1≤∥w∥≤ηT

∥w∥−d−2e−c2T/∥w∥+4d∥w∥−ε∥w∥2

dw

)

= O

(∫
1≤∥w∥≤c2

√
T
∥w∥−d−2e−(1−c2)

√
T−ε∥w∥2

dw +

∫
c2
√
T≤∥w∥≤ηT

∥w∥−d−2e−ε/2∥w∥2

dw

)
= O

(
e−(1−c2)

√
T + e−(c22/2)εT

)
provided that ε ≫ T−1/2.

Finally if ∥z∥ ≥ c3e
4∥w∥, where c3 is chosen sufficiently large, we have

f(z,w) ≤ C̃
max

(
log(∥w∥), log(∥z∥), e∥w∥∥)√

∥w∥ ∥z∥
≤ 1

2
. (34)



18

In particular we assume that C̃/
√
c3 ≤ 1

2 . Thus we find

I25 =
1

(2π)d

∫
1≤∥w∥≤ηT

∫
∥z∥≥c3e4∥w∥

det(B(z,w))f(w, z)T−de−ε∥w∥2−2iε⟨w,z⟩dz dw

= O

(
C̃T−d

∫
1≤∥w∥≤ηT

∥w∥−d−2 (log(∥w∥))T−d

∥w∥(T−d)/2

∫
∥z∥≥c3e4∥w∥

∥z∥−(T−d)/2dz dw

)

+O

(
C̃T−d

∫
1≤∥w∥≤ηT

∥w∥−d−2−(T−d)/2

∫
∥z∥≥c3e4∥w∥

(log(∥z∥))T−d

∥z∥(T−d)/2
dz dw

)

+O

(
C̃T−d

∫
1≤∥w∥≤ηT

∥w∥−d−2−(T−d)/2e(T−d)∥w∥
∫
∥z∥≥c3e4∥w∥

∥z∥−(T−d)/2dz dw

)

= O

(
C̃T

Tc
T/2
3

∫ ∞

1
r

d

2
−3−(T−d)(log r)T−de−2(T−d)r+4r dr

)

+O

(
C̃T

Tc
T/2
3

∫ ∞

1
r

d

2
−3−(T−d)(log

(
c3e

4r
)
)T−de−2(T−d)r+4r dr

)

+O

(
C̃T

Tc
T/2
3

∫ ∞

1
r

d

2
−3−(T−d)e−(T−d)r+4r dr

)

= O

(
1

T2T

)
.

Summing up we have

J2 =
1

(2π)d

∫
Rd

∫
1≤∥w∥≤ηT

det(B(z,w))f(w, z)T−de−ε∥w∥2−2iε⟨w,z⟩ dw dz

= J21 + J22 + J23 + J24 + J25

=
1√
2πT

∫
∥w∥≥1

√
det(B(w))e−

2ε2

T
wτB(w)−1we−ε∥w∥2

dw +O

(
ε−

d

4
− 1

2

T d/2+1

)
.

provided that ε ≫ T−1/2 and the constant c6 is chosen sufficiently small.

C: The case ∥w∥ ≥ ηT . If ∥z∥ ≤ e4∥w∥ then we use the trivial bound |f(z, w)| ≤ 1 and obtain for ε ≫ T−1/2

I31 =
1

(2π)d

∫
∥w∥≥ηT

∫
∥z∥≤e4∥w∥

det(B(z,w))f(w, z)T−de−ε∥w∥2−2iε⟨w,z⟩ dw dz

= O

(∫
∥w∥≥ηT

∥w∥−d−2e4d∥w∥−ε∥w∥2

dw

)

= O

(∫
r≥ηT

e−
ε

2
r2 dr

)
= O

(
1

εηT
e−

ε

2
(ηT )2

)
= O

(
e−η2T

)
.

If ∥z∥ ≥ e4∥w∥ we again use the upper bound (34) and obtain

I32 =
1

(2π)d

∫
∥w∥≥ηT

∫
∥z∥≥e4∥w∥

det(B(z,w))f(w, z)T−de−ε∥w∥2−2iε⟨w,z⟩ dw dz

= O

(
C̃T

∫
|w|≥ηT

∥w∥−d−2−(T−d)/2e(T−d)∥w∥−ε∥w∥2

∫
∥z∥≥e4∥w∥

∥z∥−(T−d)/2 dz dw

)

= O

(
C̃T

T

∫
|w|≥ηT

∥w∥−d−2−(T−d)/2e(T−d)∥w∥e(d−(T−d)/2)4∥w∥ dw

)

= O

(
C̃T

T

∫
r≥ηT

e(3d−T )r

)
= O

(
e−

η

2
T 2
)
.
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Consequently,

I3 =
1

2π

∫
Rd

∫
∥w∥≥ηT

det(B(z,w))f(w, z)T−de−ε∥w|∥2−2iε⟨w,z⟩ dw dz = O
(
e−η2T

)
.

D: The whole range.
Summing up we arrive at

J̃0 =
1

(2πT )d/2

∫
Rd

√
det(B(w)e−ε∥w∥2− 2ε2

T
wτB(w)−1w) dw +O

(
ε−

d

4
− 1

2

T d/2+1

)
provided that ε ≫ T−1/2 and where we have set

η = η(T ) = c6(log T )
−3

for a sufficiently small positive constant c6. This completes the proof.

V. OTHER LOSSES

Finally, let us briefly discuss some other losses for which our methodology may still apply. For example, in [28]
it was studied the case where p(⟨w,x⟩) = ⟨w,x⟩2 and the weight w as well as the feature x are unitary vectors on
the unit circle. Here, p(⟨w,x⟩) = cos(θ − θQ − xt)

2 and q(⟨w,x⟩) = 1− p(⟨w,x⟩) = sin(θ − θQ − xt)
2 where θ

is the argument of w, x an element of x, and θQ the unknown polarization. We still have the expression via Fourier
transform:

S(xT ) =
∑
yT

1

2π

∫ 2π

0
ℓ′′yT (θ)dθ

∫
R
e
−iℓ′

yT (θ)z
dz

and the Hessian is strongly dependent of yT . In fact,

ℓ′′yT (θ) =
∑
yt<0

2

sin(θ − θQ − xt)
2 +

∑
yt>1

2

cos(θ − θQ − xt)
2

and ℓ′yT (θ) = 2
∑

yt>0 tan(θ − θQ − xt) + 2
∑

yt<0 cot(θ − θQ − xt). The terms may be regrouped leading to

S(xT ) =
1

2π

∫ 2π

0

∫
R
ℓ̃′′T (θ, z) exp(LT (θ, z))dθdz

for

ℓ̃T
′′
(θ, z) =

∑
t

2

pt(w, z) + qt(w, z)

(
pt(w, z)

cos(θ − θQ − xt)
2 +

qt(w, z)

sin(θ − θQ − xt)
2

)
and

LT (θ, z) =
∑
t

log(pt(w, z) + qt(w, z))

with
pt(w, z) = p(⟨w|xt⟩) exp(−i tan(θ − θQ − xt)z)
qt(w, z) = q(⟨w|xt⟩) exp(−i cot(θ − θQ − xt)z).

.

Observe that ℓ′′T (θ, z) and LT (θ, z) are both O(T ), so that we can apply the saddle point method. Notice that in
this case there is no need for a normalized regret because x and w are unitary vectors.
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VI. CONCLUSION

In this paper we studied the regularized regret under logarithmic loss for the logistic function with unbounded
d-dimensional weights, via a new complexity named regularized Shtarkov sum. Our main results provide the first
precise characterization of the regularized Shtarkov sum and consequently the regularized regret with unbounded
weights up to second order asymptotics. Furthermore, we also show how the leading asymptotics of the standard
regret can be inferred from the regularized regret. Notably, unlike the d/2 log T regret growth known only for
bounded weights, our result implied that the regularized regret grows as (1/2+α/4)d log T when the regularization
parameter is of order Θ(T−α) for α ≤ 1/2. This provides the first known fine-grained characterization of the
minimax regret with an unbounded weight norm. We accomplish this using tools from analytic combinatorics,
such as multidimensional Fourier, saddle point method, and Mellin transform, which we believe is of independent
interests.

There are several directions for future work. First, we need an extension to non-logistic functions. Next, we may
relax our assumption on ε when it goes to zero. A bigger challenge is to extend our Fourier approach to obtain
second order asymptotics of the regular regret with a hard truncation on the weight norm (unlike our ε-regularized
constraints).
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APPENDIX A
EXISTENCE OF THE INVERSE FOURIER TRANSFORM

In this Appendix we prove the existence of the Fourier and its inverse.

Lemma 6. For every fixed yT , xT , ε > 0 and for all non-negative integers k1, . . . , kd we have

∂k1+···kd

∂ak1

1 · · · ∂akd

d

hyT |xT (a) = O
(
e−

1

4ε
∥a∥2∥a∥k1+···+kd

)
. (A-1)

Furthermore, h̃yT |xT (z) =
∫
Rd hyT |xT (a)e−i⟨a,z⟩ da of hyT |xT (a) exists and satisfies

h̃yT |xT (z) = O
(
|z1|−k1 · · · |zd|−kd

)
(A-2)

for all non-negative integers k1, . . . , kd. Consequently the inverse Fourier transform is given by

hyT |xT (a) =
1

(2π)d

∫
Rd

h̃yT |xT (z)ei⟨a,z⟩ dz.

We start the proof of Lemma 6 with the following result.

Lemma 7. The determinant of the matrix matrix ∇2Lε(y
T |xT ,w) satisfies

det
(
∇2Lε(y

T |xT ,w)
)
≥ (2ε)d.

Proof. By (14) we have for every vector v

〈
∇2Lε(y

T |xT ,w)v,v
〉
=

T∑
t=1

p(⟨xt,w⟩))p(−⟨xt,w⟩))⟨xt,v⟩2 + 2ε∥v∥2

≥ 2ε∥v∥2.

In particular if v is an eigenvector of ∇2Lε(y
T |xT ,w) with eigenvalue λ then

λ∥v∥2 ≥ 2ε∥v∥2.

Since ∇2Lε(y
T |xT ,w) is real symmetric, its determinant is just the product of all its eigenvalues. This completes

the proof of the lemma.
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Proof of Lemma 6. We start with the proof of (A-1). By (16) the case k1 = · · · = kd = 0 is already covered. Next
let us consider the first derivatives of e−L(yT |xT ,w):

∇ exp
(
−L(yT |xT , G−1

yT |xT ,ε(a))
)

= − exp
(
−L(yT |xT , G−1

yT |xT ,ε(a))
)
∇L(yT |xT , G−1

yT |xT ,ε(a))∇G−1
yT |xT ,ε(a).

Clearly we have
exp

(
−L(yT |xT , G−1

yT |xT ,ε(a))
)
≤ 1.

Since

∇L(yT |xT ,w) = −
T∑
t=1

p(−yt⟨xt,w⟩) yt xt = O(1)

uniformly for all w ∈ Rd we also have

∇L(yT |xT , G−1
yT |xT ,ε(a)) = O(1).

Finally

∇G−1
yT |xT ,ε(a) =

(
∇2L(yT |xT , G−1

yT |xT ,ε(a))
)−1

.

All entries of the matrix ∇2L(yT |xT ,w) are uniformly bounded as well as the reciprocal of its determinant (see
Lemma 7). This proves that

∇G−1
yT |xT ,ε(a) = O(1)

and hence

∇ exp
(
−Lε(y

T |xT , G−1
yT |xT ,ε(a))

)
= exp

(
−ε∥G−1

yT |xT ,ε(a))∥
2
)
∇ exp

(
−L(yT |xT , G−1

yT |xT ,ε(a))
)

− exp
(
−ε∥G−1

yT |xT ,ε(a))∥
2 − L(yT |xT , G−1

yT |xT ,ε(a))
)
2εG−1

yT |xT ,ε(a))∇G−1
yT |xT ,ε(a)

= O
(
e−

1

4ε
∥a∥2∥a∥

)
as proposed.

In a similar way we can compute higher derivatives. For all non-negative integers k1, . . . kd we find

∂k1+···kd

∂ak1

1 · · · ∂akd

d

exp
(
−L(yT |xT , G−1

yT |xT ,ε(a))
)
= O(1).

The computations follow the same lines as above. It remains to note that

∂k1+···kd

∂ak1

1 · · · ∂akd

d

exp
(
−ε∥G−1

yT |xT ,ε(a))∥
2
)
= O

(
e−

1

4ε
∥a∥2∥a∥k1+···+kd

)
and to apply the product rule. This completes the proof of (A-1).

In a second step we prove (A-2). Since

h̃yT |xT (z) =

∫
Rd

hyT |xT (a)e−i⟨a,z⟩ da

= (iz1)
−k1 · · · (izd)−kd

∫
Rd

∂k1+···kd

∂ak1

1 · · · ∂akd

d

hyT |xT (a)e−i⟨a,z⟩ da.

It follows that the integral ∫
Rd

h̃yT |xT (z)ei⟨a,z⟩ dz

exists. Since all involved functions are continuously differentiable this integral equals (up to the factor (2π)−d) the
original function hyT |xT (a).
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APPENDIX B
EIGENVALUES OF B̄(w)

We recall the notation Bd for a d-dimensional unit ball. The d-dimensional volume vd of Bd is given by

vd =
πd/2

Γ
(
d
2 + 1

) .
We also note that Sd denotes the corresponding sphere that has ((d− 1)-dimensional) surface measure sd = d vd =
2πd/2/Γ

(
d
2

)
.

Lemma 8. (i) Suppose that d ≥ 2 and let u = w/||w|| and set q(x) = p(x)p(−x) = p(x)(1 − p(x)). Then we
have the following expression

B̄(w) = ϕ(w)(Id − u⊗ u) + λ(w)u⊗ u

where Id is the identity operator on Rd (thus Id − u⊗ u is the identity operator on the hyperplane orthogonal to
u) with

λ(w) =
vd−1

vd

∫ π

0
cos(θ)2 sin(θ)dq(cos(θ)∥w∥)dθ (A-3)

and
ϕ(w) =

1

d+ 2

∫ π

0
sin(θ)d+2q(cos(θ)∥w∥)dθ (A-4)

are the eigenvalues of B̄(w) with multiplicity 1 and d− 1.

(ii) The eigenvalue λ(w) is asympotically

λ(w) =
vd−1π

2

3vd
∥w∥−3

(
1 +O(∥w∥−2)

)
whereas the eigenvalue ϕ(w) is asympotically

ϕ(w) =
1

(d+ 2)∥w∥
(
1 +O(∥w∥−2)

)
.

Consequently

detB̄(w) = λ(w)ϕd−1(w) =
vd−1

vd

π2

3(d+ 2)d−1
∥w∥−d−2

(
1 +O(∥w∥−2)

)
.

Note that Lemma 8 is consistent with the case d = 1. Here we have, as w → ∞.

B(w) =

∫ 1

0
q(wx)x2 dx ∼ π2

6
.

Proof. We start with part (i). Let θ be the angle between x and u = w/∥w∥. We have the decomposition
x = cos(θ)u+ b with b ∈ sin θBd−1(u) where Bd−1(u) is the unit hypersphere orthogonal to u. Since x’s have a
spherical symmetry in its distribution, so it is the case for the b’s in sin θBd−1(u) for any given angle θ. Thus

B̄(w) =
1

vd

∫ π

0
q(∥w∥ cos θ) sin θ dθ

∫
sin θBd−1(u)

(b+ cos θu)⊗ (b+ cos θu)db (A-5)

=
1

vd

∫ π

0
q(∥w∥ cos θ) sin θ dθ

∫
sin θBd−1(u)

(b⊗ b+ (cos θ)2u⊗ u)db

+
1

vd

∫ π

0
q(∥w∥ cos θ) sin θ dθ

∫
sin θBd−1(u)

cos θ(b⊗ u+ u⊗ b)db.

Again due to the spherical symmetry of b we also have
∫
sin θBd−1(u)

b = 0 leading to

B̄(w) =
1

vd

∫ π

0
q(∥w∥ cos θ) sin θ dθ

∫
sin θBd−1(u)

(b⊗ b+ (cos θ)2u⊗ udb

=
1

vd

∫ π

0
q(∥w∥ cos θ)(sin θ)ddθ

∫
Bd−1(u)

((sin θ)2b⊗ b+ (cos θ)2u⊗ u)db.
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The (sin θ)d−1 factor and the factor (sin θ)2 arise from the change of integration domain from sin θBd−1(u) to
Bd−1(u).

It is an easy exercise to show that∫
Bd−1(u)

b⊗ bdb =
vd

d+ 2
Id−1(u) =

vd
d+ 2

(Id − u⊗ u). (A-6)

Furthermore we obviously have ∫
Bd−1(u)

u⊗ udb = vd−1u⊗ u (A-7)

which completes the proof of part (i) of the lemma.
Now we move to part (ii) of Lemma 8. Both λ(w) and ϕ(w) are functions of w = ∥w∥. We write λ(w) = λ(∥w∥)

and ϕ(w) = ϕ(∥w∥). To capture the asymptotics of these functions we apply the Mellin transform which is an
effective tool of analytic combinatorics for complex asymptotics. The reader is refereed to [24] and [25] for detailed
discussions.

The Mellin transforms λ∗(s) and ϕ∗(s) of λ(w) and ϕ(w) are defined, respectively, as

λ∗(s) =

∫ ∞

0
λ(w)ws−1dw, ϕ∗(s) =

∫ ∞

0
ϕ(w)ws−1dw.

Observe now that

λ(w) =
2vd−1

vd

∫ π/2

0
q(cos(θ)w) cos2(θ) sind(θ)dθ

=
2vd−1

vd

∫ 1

0
y2(1− y2)(d−1)/2q(yw)dy

via the change of variable y = cos(θ). Thus we find

λ∗(s) =
2vd−1

vd

∫ 1

0
(1− y2)(d−1)/2y2

∫ ∞

0
q(yw)ws−1dy dw

=
2vd−1

vd
q∗(s)

∫ 1

0
(1− y2)(d−1)/2y2−sdy

=
2vd−1

vd
q∗(s)β∗

1(3− s)

where
q∗(s) = Γ(s)ζ(s− 1)(1− 2−(s−2))

is the Mellin transform of q(x) = p(x)(1− p(x)) and

β∗
1(s) =

Γ
(
d+1
2

)
Γ
(
s
2

)
2Γ
(
d+1+s

2

)
is the Mellin transform of the function (1 − y2)(d−1)/2 defined over [0, 1]. Note that Γ(s) is the Euler gamma
function and ζ(s) is the Riemann zeta function. Hence,

λ∗(s) =
vd−1

vd
Γ(s)ζ(s− 1)(1− 2−(s−2))

Γ
(
d+1
2

)
Γ
(
3−s
2

)
Γ
(
d+4−s

2

) .

Note that q∗(s) and β∗
1(s) are analytic for Re(s) > 0. Both functions can be meromorphically continued. The

function q∗(s) has poles on the non-positive integers and the function β∗
1(s) has poles on the non-positive even

integers. Thus, the dominating singularity of λ∗(s) is a simple pole at s = 3 (coming from Γ
(
3−s
2

)
) with residue

res(λ∗, s = 3) = −2vd−1

vd
ζ(2).

This implies that

λ(w) =
2vd−1

vd
ζ(2)w−3(1 +O(w−2)) =

vd−1π
2

3vd
w−3(1 +O(w−2))
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as w → ∞, since s = 5 is the next pole of λ∗(s).
We can make a similar analysis for ϕ∗(s) and we arrive at

ϕ∗(s) =
2

d+ 2
q∗(s)β2(1− s),

where β∗
2(s) is the Mellin transform of the function (1− y2)(d+1)/2. Hence,

ϕ∗(s) =
1

d+ 2
Γ(s)ζ(s− 1)(1− 2−(s−2))

Γ
(
d+3
2

)
Γ
(
1−s
2

)
Γ
(
d+4−s

2

) .

Here the dominating singularity is a simple pole at s = 1 with residue

res(ϕ∗, s = 1) =
−1

d+ 2
.

(Note that ζ(0) = −1
2 .) The next pole is s = 3. Thus, we have

ϕ(w) =
1

(d+ 2)w
(1 +O(w−3)).

This completes the proof of the lemma.

APPENDIX C
PROOF OF LEMMA 3–5

We start with the proof of Lemma 3.

Proof of Lemma 3. We use the representation (28) that we can rewrite to

f(w, z) =

∫ 1

0

(
e−ixz/(1+exw)

1 + e−xw
+

eixz/(1+e−xw)

1 + exw

)
dx.

By differentiation we directly obtain

f(w, 0) =

∫ 1

0

(
1

1 + e−xw
+

1

1 + exw

)
dx =

∫ 1

0
1 dx = 1,

∂f

∂z
(w, z) =

∫ 1

0

(
e−ixz/(1+exw)

1 + e−xw

−ix

1 + exw
+

eixz/(1+e−xw)

1 + exw
ix

1 + e−xw

)
dx,

∂f

∂z
(w, 0) =

∫ 1

0
0 dx = 0,

∂2f

∂z2
(w, z) =

∫ 1

0

(
e−ixz/(1+exw)

1 + e−xw

(
−ix

1 + exw

)2

+
eixz/(1+e−xw)

1 + exw

(
ix

1 + e−xw

)2
)

dx,

∂2f

∂z2
(w, 0) =

∫ 1

0

(
1

1 + e−xw

(
−ix

1 + exw

)2

+
1

1 + exw

(
ix

1 + e−xw

)2
)

dx,

= −
∫ 1

0

x2

(1 + e−xw)(1 + exw)

(
1

1 + e−xw
+

1

1 + exw

)
dx

= −
∫ 1

0

x2

(1 + e−xw)(1 + exw)
dx = −B(w),

∂3f

∂z3
(w, z) =

∫ 1

0

(
e−ixz/(1+exw)

1 + e−xw

(
−ix

1 + exw

)3

+
eixz/(1+e−xw)

1 + exw

(
ix

1 + e−xw

)3
)

dx.
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Clearly we have

B(w) = Θ

(∫ 1

0
x2e−|xw| dx

)
= Θ

(
1

|w|3

∫ |w|

0
v3e−v dv

)
= Θ

(
min(1, |w|−3)

)
.

Similarly it follows that

∂3f

∂z3
(w, z) = O

(∫ 1

0
x2e−|xw| dx

)
= O

(
min(1, |w|−4)

)
.

Thus, it immediately follows that

f(z, w) = 1− z2

2
B(w) +O

(
z3min(1, |w|−4)

)
and by expanding f(z, w) = elog f(z,w) we obtain the third representation for f(z, w) (where we use z2min(1, |w|−6)
as the order of z2B(w)2).

Finally, if |z| ≤ max(1, c1|w|) (for some sufficiently small constant c1 > 0) it follows that

z2B(w) ≥ z3min(1, |w|−4).

Thus we also get
f(w, z) = 1−Θ

(
z2min(1, |w|−3)

)
.

For the proof of Lemma 4 we need to further properties (that can be found in [29]),

Lemma 9. Let β1, β be real numbers with β1 < β2. Assume that h is continuously differentiable on [β1, β2] and
has a monotone nonvanishing derivative. Then for each continuous function g we have∣∣∣∣∫ β2

β1

g(x)eih(x) dx

∣∣∣∣ ≤ 2
max[β1,β2] |g|+ V β2

β1
(g)

min[β1,β2] |h′|
, (A-8)

where V β
β1
(g) denotes the total variation of g on [β1, β2].

Lemma 10. Let β1, β be real numbers with β1 < β2. Assume that h is twice continuously differentiable on [β1, β2]
such that the second derivative is non-zero. Then for each continuous function g we have∣∣∣∣∫ β2

β1

g(x)eih(x) dx

∣∣∣∣ ≤ 8
max[β1,β2] |g|+ V β2

β1
(g)

min[β1,β2]

√
|h′′|

. (A-9)

The proof of Lemma 4 runs as follows.

Proof of Lemma 4. We consider the function

h(x) =
xz

1 + e−xw
= xzp(xw)

that satisfies
h′(x) = z

1 + e−xw + xwe−xw

(1 + e−xw)2
= z

1 + e−u + ue−u

(1 + e−u)2

and

h′′(x) = z

(
2

we−xw

(1 + e−xw)2
+ w2xe−xw 1− e−xw

(1 + e−xw)3

)
=

zue−u

x

2(1 + e−u) + u(1− e−u)

(1 + e−u)3
,
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where u abbreviates u = xw. Note that

f(x,w) =

∫ 1

0
p(−xw)eih(x) dx+

∫ 1

0
p(xw)eih(−x) dx.

First we consider the case w ≥ 0 (so that u = xw ≥ 0). Here we certainly have

|h′(x)| ≥ |z|
4

(A-10)

and that h′′(x) has the same sign as z. Hence, by a direct application of Lemma 9 we obtain∣∣∣∣∫ 1

0
p(−xw)eih(x) dx

∣∣∣∣ ≤ 8

|z|
. (A-11)

Note that the function p(−xw) is monotone and bounded by 1.
Next observe that there is u0 < −1 such that 1 + e−u + ue−u. Furthermore we also have that

2(1 + e−u) + u(1− e−u) ≥ 2− e−1 > 0

for u ≤ 0. Thus, if 0 ≤ w ≤ 1 and 0 ≤ x ≤ 1 we have

|h′(−x)| ≥ |z|
(1 + e)2

(A-12)

and consequently we get ∣∣∣∣∫ 1

0
p(xw)eih(−x) dx

∣∣∣∣ ≤ 2(1 + e)2

|z|
which implies

f(z, w) = O

(
1

|z|

)
.

Trivially we have |f(z, w)| ≤ 1. The case −1 ≤ w < 0 can be handled in completely the same way. Thus, we have
completed the case |w| ≤ 1.

If |w| ≥ 1 we have to be more careful. First we again have (A-10) which implies (A-11).
However, for the second integral we have to distinguish between three ranges. If 0 ≤ x ≤ 1/w then we get again

(A-12) and, thus, ∣∣∣∣∣
∫ 1/w

0
p(xw)eih(−x) dx

∣∣∣∣∣ ≤ 2(1 + e)2

|z|

Secondly we consider the interval 1/w ≤ x ≤ (|u0|+ κ)/w (for some κ > 0) then h′(−x) is very close to 0 (and
actually equal to 0 for x = |u0|/w). So instead of Lemma 9 we apply Lemma 10 and obtain∣∣∣∣∣

∫ (|u0|+κ)/w

1/w
p(xw)eih(−x) dx

∣∣∣∣∣ = O

(
1√
|zw|

)
since

|h′′(x)| = Θ

(
|z|
x

)
= Θ(|zw|)

in this range.
Finally if (|u0|+ κ)/w ≤ x ≤ 1 we again apply Lemma 9. In this range we have

|h′(x)| ≥ c|z| w
ew

(for a proper constant c > 0) which gives∣∣∣∣∣
∫ 1

(|u0|+κ)/w
p(xw)eih(−x) dx

∣∣∣∣∣ = O

(
ew

|zw|

)
.

This completes the proof of the lemma since the case w < −1 can be handled in completely the same way.
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Finally we give a proof of Lemma 5.

Proof of Lemma 5. We consider first the case |x| ≥ c′1|w|, where c′1 will be chosen sufficiently large. As in the
proof of Lemma 3 it follows (if w ≥ 0)∣∣∣∣∫ 1

0
p(−xw)eih(x) dx

∣∣∣∣ = O

(
1

|z|

)
and ∣∣∣∣∫ 1

0
p(xw)eih(−x) dx

∣∣∣∣ =
∣∣∣∣∣
(∫ 1/w

0
+

∫ (|u0|+η)/w

1/w
+

∫ 1

(|u0|+η)/w

)
p(xw)eih(−x) dx

∣∣∣∣∣
≤ 1− |u0|+ η

w
+O

(
1

|z|
+

1√
|zw|

)
.

Thus, if |z| ≥ c′1w for a sufficiently large constant c′1 we have∣∣∣∣∫ 1

0

(
p(−xw)eih(x) + p(xw)eih(−x)

)
dx

∣∣∣∣ ≤ 1− c2
w
.

Next we consider the interval c1w ≤ |z| ≤ c′1w. With c = z/w we have

f(z, w) =

∫ 1

0

(
p(−xw)e−ixzp(xw) + p(xw)eixzp(−xw)

)
dx

=
1

w

∫ w

0

(
p(−v)e−icvp(v) + p(v)eicvp(−v)

)
dv.

By continuity it follows that uniformly for c1 ≤ c ≤ c′1∣∣∣∣∫ 1

0
p(−v)e−icvp(v) dv

∣∣∣∣ ≤ ∫ 1

0
p(−v) dv − c2

for some constant c2 > 0. Hence

|f(z, w)| ≤ 1

w

∫ w

0
(p(−v) + p(v)) dv − c2

w
= 1− c2

w
,

as proposed. (The case w < 0 is completely similar.)

APPENDIX D
UPPER BOUNDS FOR f(w, z)

We need analogous for Lemmas 3–5 for d > 1. Actually the situation is slightly more difficult.

Lemma 11. We have uniformly for z ∈ Rd for some τ > 0

zτB(w)z ≥

{
c1∥z∥2 for ∥w∥ ≤ 1,
c2

∥z∥2

∥w∥3 (| cosφ|+ ∥w∥| sinφ|)2 for ∥w∥ > 1

for proper constants c1, c2 > 0, where φ denotes the angle between w and z, that is cosφ = ⟨w, z⟩/(∥w∥ ∥z∥).
Furthermore

log f(w, z) = −1

2
zτB(w)z

+

{
O(∥z∥3 + ∥z∥4) for ∥w∥ ≤ 1,

O
(

∥z∥3

∥w∥4 + ∥z∥2| sinφ|2
∥w∥

)
for ∥w∥ > 1.

In particular if ∥z∥ ≤ c∥w∥ for a sufficiently small constant c > 0 and if ∥w∥ > 1 we uniformly have

Re
(
log f(w, z)

)
≤ −C

(
∥z∥2

∥w∥3
+

∥z∥2| sinφ|2

∥w∥

)
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for a proper constant C > 0.

Proof. The case ∥w∥ ≤ 1 is easy to handle. We just use Taylor expansion and the property that (for proper constants
c3, c4 > 0)

zτB(w)z = E
[
p(⟨X,w⟩)p(−⟨X,w⟩)⟨X, z⟩2

]
≥ c3E

[
⟨X, z⟩2

]
≥ c4∥z∥2.

In the case ∥w∥ > 1 we have to be more careful. Let w0 = w/∥w∥ and w1 = w̃/∥w̃∥, where w̃ =
z− ⟨z,w⟩/∥w∥2w is orthogonal to w. We now represent x as x = x1w0 + x2w1 + x3, where x3 is orthogonal to
w and z. With the help of this notation we have

⟨x, z⟩ = x1
⟨z,w⟩
∥w∥2

+ x2∥w̃∥.

We also note that
A =

⟨z,w⟩
∥w∥

= ∥z∥ cosφ and B = ∥w̃∥ = ∥z∥ | sinφ|.

and that

zτB(w)z = E
[
p(⟨X,w⟩)p(−⟨X,w⟩)⟨X, z⟩2

]
E
[
p(x1∥w∥)p(−x1∥w∥)(Ax1 +Bx2)

2
]

is a positive definite quadratic form in A,B. Thus, we get the lower bound

zτB(w)z ≥ c5A
2E
[
p(x1∥w∥)p(−x1∥w∥)x21

]
+B2E

[
p(x1∥w∥)p(−x1∥w∥)x22

]
≥ c6

A2

∥w∥3
+

B2

∥w∥
≥ c7

∥z∥2

∥w∥3
(| cosφ|+ ∥w∥| sinφ|)2

(for proper constants c5, c5, c7 > 0) as proposed.
The second part of the lemma follows by applying first Taylor expansion for f(w, z) and then by taking the

logarithm. However, the computations are more involved. For the third derivative we obtain

∂3f(w, z)

∂zj∂zk∂zℓ
= iE

[
XjXkXℓp(⟨X,w⟩)p(−⟨X,w⟩)

(
p(−⟨X,w⟩)2e−i⟨X,z⟩p(−⟨X,w⟩) − p(⟨X,w⟩)2ei⟨X,z⟩p(⟨X,w⟩)

)]
which gives

∂3f(w, θz)

∂θ3
= iE

[
p(⟨X,w⟩)p(−⟨X,w⟩)

(
p(−⟨X,w⟩)2e−i⟨X,θz⟩p(−⟨X,w⟩) − p(⟨X,w⟩)2ei⟨X,θz⟩p(⟨X,w⟩)

)
⟨X, z⟩3

]
.

If ∥w∥| sinφ| ≤ 1 it is easy (by using the methods from above) to obtain an upper bound for this integral of the
form O(∥z∥3/∥w∥4).

However, if ∥w∥| sinφ| ≥ 1 we have to be more careful. By using the parametrization from above and the integral
representation of the remainder term in Taylor’s theorem it turns out that the error term is essentially bounded above
by the integral

Ĩ = ∥z∥3
∫ 1

0

∫∫
x2
1+x2

2≤1

p(x1∥w∥)3p(−x1∥w∥)eiθ∥z∥p(x1∥w∥)(x1 cosφ+x2 sinφ)(sinφ)3x32(1− θ)2 dx1 dx2 dθ.

The integral with respect to x2 can be upper bounded by

O

(
1

1 + θ∥z∥p(x1∥w∥)| sinφ|

)
.

Furthermore we have (uniformly for A > 0)∫ 1

0

1

1 +Aθ
(1− θ)2 dθ = O

(
1

A2
+

log(1 +A)

A

)
.
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By simple computations this leads to an upper bound for Ĩ of the form

Ĩ = O

(
∥z∥2| sinφ|2

∥w∥

)
as proposed.

Note that the lower bound for 1
2z

τB(w)z and the upper bound for the error term are of the same order, namely
∥z∥2| sinφ|2/∥w∥. Finally a slightly more careful analysis shows that the constant in the lower bound for 1

2z
τB(w)z

is bigger than the constant of the upper bound of the error term. Thus, we finally find

Re
(
log f(w, z)

)
≤ −C

(
∥z∥2

∥w∥3
+

∥z∥2| sinφ|2

∥w∥

)
for a proper constant C > 0.

We recall that X is uniformly distributed on the unit ball Bd. The idea is to parametrise the unit ball with the
help of spherical coordinates

x1 = t cos(ϕ1)

x2 = t sin(ϕ1) cos(ϕ2)

x3 = t sin(ϕ1) sin(ϕ2) cos(ϕ3)

...

xd−1 = t sin(ϕ1) · · · sin(ϕd−2) cos(ϕd−1)

xd = r sin(ϕ1) · · · sin(ϕd−2) sin(ϕd−1),

where 0 ≤ t ≤ 1, 0 ≤ ϕj ≤ π (1 ≤ j ≤ d− 2), ≤ ϕd−1 ≤ 2π, and the determinant of the Jacobian is given by

td−1 ·
d−1∏
k=2

(sin(ϕd−k))
k−1 .

Note that for t = 1 we also get a parametrisation of the sphere Sd.
We start with a simple lemma.

Lemma 12. Suppose that x ∈ Sd, that is ∥x∥ = 1. If |⟨x,w⟩| ≤ 1 then∫ 1

0
td−1f(w, tx, z) dt = O

(
1

|⟨x, z⟩|

)
(A-13)

whereas if |⟨x,w⟩| ≥ 1 we find∫ 1

0
td−1f(w, tx, z) dt = O

(
1√

|⟨x, z⟩⟨x,w⟩|
+

e|⟨x,w⟩|

|⟨x, z⟩⟨x,w⟩|

)
. (A-14)

Proof. The proof follows that same lines as the proof of Lemma 4. We just use the (auxiliary) function

h(t) = p(⟨tx,w⟩)⟨tx, z⟩

that satisfies

h′(t) = ⟨x, z⟩1 + e−⟨tx,w⟩ + ⟨tx,w⟩e−⟨tx,w⟩

(1 + e−⟨tx,w⟩)2

and

h′′(t) = ⟨x, z⟩⟨x,w⟩e−⟨tx,w⟩ 2(1 + e−⟨tx,w⟩) + ⟨tx,w⟩(e−⟨tx,w⟩ − 1)

(1 + e−⟨tx,w⟩)3

as needed.

As a corollary we obtain the following upper bounds for f(z,w).



30

Lemma 13. If ∥w∥ ≤ 1 then we have

|f(z,w)| ≤ min

(
1, C1

log(∥z∥)
∥z∥

)
(A-15)

for some constant C1 > 0, whereas if ∥w∥ ≥ 1 we obtain

|f(z,w)| ≤ min

(
1, C2

log(∥z∥ ∥w∥) + e ∥w∥√
∥z∥ ∥w∥

)
. (A-16)

for some constant C2 > 0.

Proof. We start with the case ∥w∥ ≤ 1. Note that ∥w∥ ≤ 1 implies |⟨x,w⟩| ≤ 1 for all x ∈ Sd. By Lemma 12

f(z,w) = O

(∫
Sd

min

(
1,

1

|⟨x, z⟩|

)
dx

)
,

where the integral is considered as an (d− 1)-dimensional integral. Due to rotation symmetry we can assume that z
is parallel to the first axis. Thus, we have ⟨x, z⟩ = x1∥z∥ and consequently

f(z,w) = O

(∫ 1

−1
(1− x21)

d−3

2 min

(
1,

1

|x1| ∥z∥

)
dx1

)
= O

(
1

∥z∥
+

1

∥z∥

∫ 1

1/∥z∥
(1− x21)

d−3

2 dx1

)

= O

(
log(∥z∥)

∥z∥

)
as proposed.

Now suppose that ∥w∥ ≥ 1. Then either (A-13) or (A-14) holds. But since ∥w∥ ≥ 1 then (A-13) implies (A-14).
Thus we have (A-14) in all cases. To complete have to consider the two ((d− 1)-dimensional) integrals

K1 =

∫
Sd

min

(
1,

1√
|⟨x, z⟩⟨x,w⟩|

)
dx

and

K2 =

∫
Sd

min

(
1,

e∥w∥

|⟨x, z⟩⟨x,w⟩|

)
dx.

Note that |⟨x,w⟩| ≤ ∥w∥ if x ∈ Sd.
We start with K1 and suppose first that z and w are parallel. Then we are in the same situation as in the previous

case and, thus, we obtain

K1 = O

(
log(∥z∥ ∥w∥)√

∥z∥ ∥w∥

)
.

In general we distinguish between the cases

|⟨x, z⟩|
∥z∥

≤ |⟨x,w⟩|
∥w∥

and
|⟨x, z⟩|
∥z∥

>
|⟨x,w⟩|
∥w∥

and obtain
1√

|⟨x, z⟩⟨x,w⟩|
≤ 1

|⟨x, z⟩|

√
∥z∥
∥w∥

+
1

|⟨x,w⟩|

√
∥w∥
∥z∥

.
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Thus, we get (with proper constants C ′, C ′′ > 0)

K1 ≤ C ′
∫
Sd−1

min

(
1,

1

|⟨x, z⟩|

√
∥z∥
∥w∥

)
dx+ C ′

∫
Sd

min

(
1,

1

|⟨x,w⟩|

√
∥w∥
∥z∥

)
dx

≤ C ′′
∫ 1

−1
(1− x21)

d−3

2 min

(
1,

1

|x1|
√

∥w∥ ∥z∥

)
dx1

= O

(
log(∥z∥ ∥w∥)√

∥z∥ ∥w∥

)
as proposed.

Finally we consider the integral K2, where we use the inequality

1

|⟨x, z⟩⟨x,w⟩|
≤ 1

|⟨x, z⟩|2
∥z∥
∥w∥

+
1

|⟨x,w⟩|2
∥w∥
∥z∥

and use the property ∫ 1

−1
(1− x21)

d−3

2 min

(
1,

1

|x1|2∥w∥ ∥z∥

)
dx1

1√
∥z∥ ∥w∥

.

This completes the proof of the lemma.

Lemma 14. There exist constants c1 > 0 and c2 > 0 such that

|f(z,w)| ≤ 1− c2
∥w∥

(A-17)

uniformly for ∥z∥ ≥ c1∥w∥ log2 ∥w∥.

Proof. We consider first the integral
∫ 1
0 td−1f(w, tx, z)dt and assume that |⟨x,w⟩| > |u0| + η. we split up the

integral into three intervals of the form (compare also with the proofs of Lemma 4 and 5):

[0, 1/|⟨x,w⟩|], [1/|⟨x,w⟩|, (|u0|+ η)/|⟨x,w⟩|], [(|u0|+ η)/|⟨x,w⟩|, 1]

and obtain (for some constant C ′ > 0)∣∣∣∣∫ 1

0
td−1f(w, tx, z)dt

∣∣∣∣ ≤ C ′max

(
1,

1√
|⟨x,w⟩ ⟨x, z⟩|

)
+

1

d

(
1−

(
|u0|+ η

|⟨x,w⟩|

)d
)
.

Note that we used a the trivial bound |f(w, tx, z)| ≤ 1 in the third interval.
We already observed that∫

Sd

max

(
1,

1√
|⟨x,w⟩ ⟨x, z⟩|

)
x = O

(
log(∥z∥ ∥w∥)√

∥z∥ ∥w∥

)
.

Furthermore we have (for proper constants C ′, C ′′ > 0)∫
Sd,|⟨x,w⟩|>|u0|+η

|⟨x,w⟩|−d dx ≥ C ′
∫ 1

(|u0|+η)/∥w∥
(x1∥w∥)−d(1− x21)

d−3

2 dx1

≥ C ′′ 1

∥w∥
.

This directly leads to

|f(z,w)| ≤ 1− d1
∥w∥

+
d2 log(∥z∥ ∥w∥)√

∥z∥ ∥w∥

for proper constants d1, d2 > 0. Clearly if ∥z∥ ≥ c1∥w∥ log2 ∥w∥ for a properly chosen constant c1 > 0 we obtain
(A-17) for some constant c2 > 0.
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Lemma 15. Suppose that c3 > 0 is a given constant. Then there exists c4 > 0 such that

|f(z,w)| ≤ 1− c4
∥z∥

(A-18)

uniformly for ∥z∥ ≥ c3∥w∥. In particular it follows that

|f(z,w)| ≤ 1− c5

(∥w∥ log2 ∥w∥)

uniformly for c3∥w∥ ≤ ∥z∥ ≤ c1∥w∥ log2 ∥w∥.

Proof. The idea is to show that for some constant c > 0 we have∫
U
p(⟨x,w⟩)e−ip(−⟨x,w⟩)⟨x,z⟩ dx ≤ (1− c)

∫
U
p(⟨x,w⟩) dx (A-19)

uniformly for all z with ∥z∥ ≥ c3∥w∥, and where

U = {x = (x1, . . . , xd) ∈ Sd : |x1| ≤ 1/∥z∥, |x2| ≤ 1/2}

is a subset of Sd of measure ≥ c′/∥z∥ (for a proper constant c′ > 0). Clearly (A-19) implies (A-18).
We set w0 =

1
∥z∥w and represent z and x in the form z = z1w0 + z2 and x = x1w0 + x2z2,0 + x3, where z2 is

orthogonal to w0, w2,0 =
1

∥w2∥w2, and x3 is orthogonal to w and z2,0. With the help of these representations we
have

⟨x,w⟩ = x1 ∥w∥ and ⟨x, z⟩ = x1z1 + x2∥z2∥.

Furthermore we denote by U(x1) (for |x1| ≤≤ 1/∥z∥) and U(x1, x2) (for |x1| ≤≤ 1/∥z∥ and x2 ≤ 1/2) the sets

U(x1) = {(x2,x3) : |x2| ≤ 1/2, ∥(x1, x2,x3)∥ ≤ 1} ∈ Rd−1

and
U(x1, x2) = {x3 : ∥(x1, x2,x3)∥ ≤ 1} ∈ Rd−2.

It is easy to show that
Vold−1(U(x1)) → C1 and Vold−2(U(x1, x2)) → C2

as x1 → 0 for proper constants C1 > 0, C2 > 0.
We now have ∫

U
p(⟨x,w⟩) dx =

∫
|x1|≤1/∥z∥

p(x1∥w∥)Vold−1(U(x1)) dx1

=

∫
|x1|≤1/∥z∥

∫ 1/2

−1/2
p(x1 ∥w∥)Vold−2(U(x1, x2)) dx2 dx1

and

R :=

∫
U
p(⟨x,w⟩)e−ip(−⟨x,w⟩)⟨x,z⟩ dx

=

∫
|x1|≤1/∥z∥

∫ 1/2

−1/2
p(x1 ∥w∥)e−ip(−x1∥w∥)(x1z1+x2∥z2∥)Vold−2(U(x1, x2)) dx2 dx1.

First suppose that ∥z2∥ ≥ 1. By assumption we have |x1|∥w∥ ≤ ∥w∥/∥z∥ ≤ 1/c3 which implies that A =
p(−x1∥w∥)∥z2∥ satisfies

|A| = p(−x1∥w∥)∥z2∥ ≥ c′′
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uniformly for some constant c′′ > 0. Thus, the following integral satisfies∣∣∣∣∣
∫ 1/2

−1/2
e−ip(−x1∥w∥)∥z2∥x2 dx2

∣∣∣∣∣ =
∣∣∣∣∣
∫ 1/2

−1/2
e−Ax2 dx2

∣∣∣∣∣
=

∣∣∣∣sin(A/2)A/2

∣∣∣∣ ≤ 1− c

for some constant c > 0 (provided that |A| ≥ c′′). Consequently (A-19) follows in this case.
If ∥z2∥ ≥ 1 we can use a continuity and a compactness argument. We rewrite the integral R as

R =
1

∥z∥

∫
|u|≤1

∫ 1/2

−1/2
p(u ∥w∥/∥z∥)e−ip(−u∥w∥/∥z∥)(uz1/∥z∥+x2∥z2∥)Vold−2(U(x1, x2)) dx2 dx1

and recall that 0 ≤ ∥w∥/∥z∥ ≤ 1/c2, −1 ≤ z1/∥z∥ ≤ 1, and ∥z2∥ ≥ 1 vary in a compact set. Thus, we certainly
have uniformly in that range

J ≤ 1− c

∥z∥

∫
|u|≤1

∫ 1/2

−1/2
p(u ∥w∥/∥z∥)Vold−2(U(x1, x2)) dx2 dx1

for some constant c > 0, and we are done.

APPENDIX E
PROOF OF THEOREM 1(II) FOR d = 1

The proof of Theorem 1(ii) runs along similar lines as that of Theorem 1(i) but it is more technical. We first note
that the second moment E[Sε(x

T )2] cannot be explicitly represented as a convergent multi-dimensional integral as
it is the case for the first moment. We use a regularized version of Sε(x

T ) of the form

Sη
ε (x

T ) =
1

2π

∫
R

∫
R

T∏
t=1

f(w, xt, z) e
−εw2−2iεwz∇2Lε(·|xT , w)e−ηz2

dw dz (A-20)

that is absolutely convergent as a double integral if η > 0 and has the property that

Sε(x
T ) = lim

η→0
Sη
ε (x

T ).

Actually we can be more explicit. By slightly extending the computations of Appendix A, that is, by using the
more precise relation a = 2εw +O(T ) that holds uniformly in yT , xT and T , where w = G−1

yT |xT (a) and by using
(a+O(T ))2 ≥ 1

2a
2 +O(T 2) and 2T = O(eO(T 2/ε)) it follows that∑

yT

hyT |xT (a) = O
(
e−

1

8ε
(a2+O(T 2)

)
and ∑

yT

hyT |xT (a)′′ = O

(
T 2 + a2

ε3
e−

1

8ε
(a2+O(T 2)

)
.

Consequently we have ∑
yT

h̃yT |xt(z) =
1

2π

∫
R

∑
yT

hyT |xT (a)e−iaz

=
−1

2πz2

∫
R

∑
yT

hyT |xT (a)′′e−iaz

= O

(
ε−

1

2 min

(
1,

1

εz2

)
eO(T 2/ε)

)
.
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In other words,∣∣∣∣∣
∫
R

T∏
t=1

f(w, xt, z) e
−εw2−2iεwz∇2Lε(·|xT , w) dw

∣∣∣∣∣ = O

(
ε−

1

2 min

(
1,

1

εz2

)
eO(T 2/ε)

)
.

This upper bound immediately implies∣∣Sε(x
T )− Sη

ε (x
T )
∣∣ = O

((
η

ε2
+

η
1

2

ε
3

2

)
eO(T 2/ε)

)
and consequently (since Sε(x

T ) = O(2T ) = eO(T 2/ε) )∣∣E[Sε(x
T )2]− E[Sη

ε (x
T )2]

∣∣ = O

((
η

ε2
+

η
1

2

ε
3

2

)
eO(T 2/ε)

)
.

In particular, if we choose
η = e−C T 2/ε > 0 (A-21)

for a sufficiently large constant C we find∣∣E[Sε(x
T )2]− E[Sη

ε (x
T )2]

∣∣ = O
(
ε−2e−C′T 2/ε

)
= O

(
Te−C′T 3/2

)
if ε ≫ T−1/2.

Thus, it suffices to compute E[Sη
ε (xT )2]. Since η > 0, we know that Sη

ε (xT ) is represented as an absolute
convergent double integral (A-20), by dominated convergence we obtain

E[Sη
ε (x

T )2] =
1

(2π)2

∫
R4

E

[
T∏
t=1

(
f(w1, xt, z1)f(w2, xt, z2)

)
∇2Lε(·|xT , w1)∇2Lε(·|xT , w2)

]
× e−ε(w2

1+w2
2)−2iε(w1z1−w2z2)e−η(z2

1+z2
2) dw1 dw2 dz1 dz2

=
T 2 − T

(2π)2

∫
R4

f(w1, w2, z1, z2)
T−1B(z1, w1)B(z2, w2)e

−ε(w2
1+w2

2)−2iε(w1z1−w2z2)e−η(z2
1+z2

2) dw1 dw2 dz1 dz2

+
T

(2π)2

∫
R4

f(w1, w2, z1, z2)
T−1B2(z1, z2, w1, w2)e

−ε(w2
1+w2

2)−2iε(w1z1−w2z2)e−η(z2
1+z2

2) dw1 dw2 dz1 dz2

+ 2
2εT

(2π)2

∫
R4

f(w1, w2, z1, z2)
T−1f(w1, z1)B(z2, w2)e

−ε(w2
1+w2

2)−2iε(w1z1−w2z2)e−η(z2
1+z2

2) dw1 dw2 dz1 dz2

+
(2ε)2

(2π)2

∫
R4

f(w1, w2, z1, z2)
T e−ε(w2

1+w2
2)−2iε(w1z1−w2z2)e−η(z2

1+z2
2) dw1 dw2 dz1 dz2

= (T 2 − T ) · Jη
0 + T · Jη

0,2 + 2εT · Jη
1 + (2ε)2J

η
2,

where

f(w1, w2, z1, z2) = E
[
f(w1, X, z1)f(w2, X, z2)

]
=

1

2

∫ 1

−1

(
e−ixz1/(1+exw1 )

1 + e−xw1
+

eixz1/(1+e−xw1 )

1 + exw2

)(
eixz2/(1+exw2 )

1 + e−xw2
+

e−ixz2/(1+e−xw2 )

1 + exw2

)
dx

and
B2(z1, z2, w1, w2) = E

[
f(w1, X, z1)f(w2, X, z2)p(Xw1)p(−Xw1)p(Xw2)p(−Xw2)X

4
]
.

For the sake of simplicity we only consider (as in Section III) the integral

J
η
2 :=

∫
R2

∫
R2

f(w1, w2, z1, z2)
T e−ε(w2

1+w2
2)−2iε(w1z1−w2z2)e−η(z2

1+z2
2)dw1 dw2 dz1 dz2.

We will show that
J
η
2 = J2

1 (1 +O(T−β)) +O((1− κ)T log η−1) (A-22)
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for some β > 0 and for some κ > 0. By applying the same kind of calculations to the other parts of the integral we
find in particular for the asmyptotically leading terms

J
η
0 = J2

0 (1 +O(T−β)) +O((1− κ)T log η−1)

(and similar properties for Jη
0,2 and J

η
1).

By setting η = exp
(
−CT 2/ε

)
, see (A-21), we thus obtain

E[Sη
ε (x

T )2] = E[Sε(x
T )]2(1 +O(T−β))

and consequently
E[Sε(x

T )2] = E[Sε(x
T )]2(1 +O(T−β)). (A-23)

which proves (22) of Theorem 1.

For the proof of (A-22) we need some information on f(w1, w2, z1, z2). The first property is a direct extension
of Lemma 3.

Lemma 16. We have uniformly for |z1| ≤ max(1, c1|w1|) and |z2| ≤ max(1, c1|w2|)

f(w1, w2, z1, z2) = e−
1

2
z2
1B(w1)− 1

2
z2
2B(w2)

(
1 +O

(
z31 min(1, |w1|−4)

)
+O

(
z41 min(1, |w1|−6)

)
+O

(
z32 min(1, |w2|−4)

)
+O

(
z42 min(1, |w2|−6)

))
.

The next two lemmas require some more work.

Lemma 17. Suppose that |w1| ≤ C1 and |w2| ≤ C1 (for a proper constant C1 > 0) and z1 ̸= z2. Then we have
(for some constant C > 0).∣∣∣f(w1, w2, z1, z2)

∣∣∣ ≤ min

(
1,

C√
|z1 − z2|+ |z2||w1 − w2|

)
.

If |w1| ≤ C1 and |w2| ≤ C1 then∣∣∣f(w1, w2, z1, z2)
∣∣∣ ≤ min

(
1,

C√
|z1|+ |z2w2|e−|w2|

)
.

Finally, if |w1| ≤ C1 and |w2| ≤ C1, then∣∣∣f(w1, w2, z1, z2)
∣∣∣ ≤ min

(
1,

C√
|z1w1|e−|w1| + |z2w2|e−|w2|

)
.

Lemma 18. Suppose that c1 > 0 is a given constant. Then there exists c2 > 0 such that∣∣∣f(w1, w2, z1, z2)
∣∣∣ ≤ 1− c2

max{|w1|, |w2|}
uniformly for (w1, w2, z1, z2) with |w1| ≥ C1, |z1| ≥ c1|w1| or |w2| ≥ C2, |z2| ≥ c1|w3|.

Proof. We give only a detailed proof of the first part of Lemma 17. The proof of the second and third part of
Lemma 17 are then quite similar. Finally, the proof of Lemma 18 is very close to that of Lemma 5.

By definition we see that f(w1, w2, z1, z2) consists of four terms of the form (or of a very similar form)

P :=
1

2

∫ 1

−1
p(−xw1)p(−xw2)e

ih(x),

where
h(x) =

xz1
1 + e−xw1

− xz2
1 + e−xw2

= xz1p(xw1)− xz2p(xw2).
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As in the proof of Lemma 3, we make use of Lemmas 9 and 10. In particular we need the first and second
derivative of h(x) that we represent in the following way:

h′(x) = (p′(xw1)xw1 + p(xw1))(z1 − z2)

+ (p′(xw1)xw1 + p(xw1)− p′(xw2)xw2 − p(xw2))z2,

h′′(x) = (p′′(xw1)xw
2
1 + 2p′(xw1)w1)(z1 − z2)

+ (p′′(xw1)xw
2
1 + 2p′(xw1)w1 − p′′(xw2)xw

2
2 − 2p′(xw2)w2)z2.

It is immediate that h′(x) = O(|z1−z2|+ |w1−w2||z2|) and h′′(x) = O(|z1−z2|+ |w1−w2||z2|). Thus, it remains
that these upper bounds are – more or less – tight.

We suppose (for the sake of simplicity) that x ≥ 0, w1 > 0, and w2 > 0. If

H1(x) = (p′(xw1)xw1 + p(xw1))(z1 − z2)

and
H2(x) = (p′(xw1)xw1 + p(xw1)− p′(xw2)xw2 − p(xw2))z2

then then we trivially get the lower bound |h′(x)| ≥ c|z1−z2| (for some constant c > 0) which proves (by Lemma 9)
that

P = O

(
1

|z1 − z2|

)
= O

(
1

|z1 − z2|+ |w1 − w2||z2|

)
= O

(
1√

|z1 − z2|+ |w1 − w2||z2|

)
.

as proposed. Here we used the fact that H1(x) = Θ(|z1 − z2|) and H2(x) = Θ(x|w1 − w2||z2|). Actually if H1(x)
and H2(x) have different signs and if we have |H1(x)| ≥ 2|H2(x)| for all x ∈ [0, 1] then it also follows that
|h′(x)| ≥ 1

2 |H1(x)| = Θ(|z1 − z2|). Thus, we get the same upper bound. Finally suppose that H1(x) and H2(x)
have different signs and that |H1(x)| ≥ 2|H2(x)| holds only for 0 ≤ x ≤ x1 for some x1 ∈ (0, 1) which means that
|z1−z2| ≤ c′|w1−w2||z2| for some constant c′ > 0. We now consider the second derivative h′′(x) = H ′

1(x)+H ′
2(x).

Here we have H ′
1(x) = Θ(|z1 − z2||w1|) and H ′

2(x) = Θ(|w1 −w2||z2|). Consequently, if |w1| is sufficiently small
then |H ′

2(x)| ≥ 2|H1(x)| for all x ∈ [0, 1] and we find (by Lemma 10)

P = O

(
1√

|w1 − w2||z2|

)
= O

(
1√

|z1 − z2|+ |w1 − w2||z2|

)
.

The other cases can be handled in a very similar way (just with slightly more care) and completes the proof of
the first part of Lemma 17.

We split now the integration over R2 × R2 in the integral Jη
2 into several parts. Actually, with the help of the

above properties (which are all very similar to those that have been used for evaluating the expected value, see
Section III) we can cover all but one region (for the sake of brevity we omit the easy technical calculations in the
first five cases):

• |z1| ≤ max(1, c1|w1|) and |z2| ≤ max(1, c1|w2|). In this case, we apply Lemma 16 and obtain the leading
term by Gaussian approximation. We note that the regularization factor e−ηz2

does not change the leading
term. Since η = e−CT 2/ε is extremely small, we can use the approximation e−ηz2

= 1−O(ηz2) and obtain
(uniformly for ε ≫ T−1/2):

1

2πT

(∫ ∞

−∞
B(w)−1/2e−εw2

dw

)2 (
1 +O

(
T− 1

2

)
+O

(
η ε−1

))
.

Clearly, this leading term matches the square of the leading term of J1.
• |w1| ≥ C1, c1|w1| ≤ |z1| ≤ e|w1| or |w2| ≥ C1, c1|w2| ≤ |z2| ≤ e|w2|.

Here we use Lemma 18 and argue as in Section III This gives an error term of magnitude O(e−c5
√
T ).

• |w1| ≤ C1, |z1| ≥ e|w1| or |w2| ≥ C1, |z2| ≥ e|w2|.
Here we use again Lemma 18 and obtain an error term of magnitude O(T− 3

2 ).
• |w1| ≤ C1, |w2| ≤ C1, |z1| ≤ 1, |z2| ≥ 1 (or the other way round).

Here we use Lemma 17 and obtain (again) an error term of order O(T− 3

2 )
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• |w1| ≤ C1, |w2| ≤ C1, |z1| ≥ 1, |z2| ≥ 1, and |z1 − z2|+ |w1 − w2||z1| ≥ C3 (for C3 sufficiently large).
Here we use the first part of Lemma 17 and get an error term of order O(T− 3

2 ).
• |w1| ≤ C1, |w2| ≤ C1, |z1| ≥ 1, |z2| ≥ 1, and |z1 − z2|+ |w1 − w2||z1| ≤ C3.

In this case we have to argue separately, as mentioned above. The methods from Section III do not apply.
The essential point in the last case is that the corresponding part in the integral J

η
2, when we set η = 0, is

not convergent. So we will need some precise information on f(w1, w2, z1, z2) in this range and then we use the
regularizing factor e−η(z2

1+z2
2) to get convergence and proper upper bounds. This will then complete the proof.

Lemma 19. Suppose that |w1| ≤ C1, |w2| ≤ C1, |z1| ≥ 1, |z2| ≥ 1, and |z1 − z2|+ |w1 − w2||z1| ≤ C3. Then

f(w1, w2, z1, z2) =
1

2
+O(|w1|+ |w2|+ |z1 − z2|+ |w1 − w2||z2|) +O

(
1

|z1|

)
. (A-24)

Proof. We split up f(w1, w2, z1, z2) into four parts:

f1 :=
1

2

∫ 1

−1
p(xw1)p(xw2)e

−ip(−xw1)xz1+ip(−xw2)xz2 dx,

f2 :=
1

2

∫ 1

−1
p(xw1)p(−xw2)e

−ip(−xw1)xz1−ip(xw2)xz2 dx,

f3 :=
1

2

∫ 1

−1
p(−xw1)p(xw2)e

ip(xw1)xz1+ip(−xw2)xz2 dx,

f4 :=
1

2

∫ 1

−1
p(−xw1)p(−xw2)e

ip(xw1)xz1−ip(xw2)xz2 dx.

We first study f1, where we replace p(u) by p(u) = 1
2 + r(u). Note that r(u) = O(u) for u = O(1). In particular

we have

H := −ip(−xw1)xz1 + ip(−xw2)xz2

= − i

2
x(z1 − z2)− ir(−xw1)xz1 + ir(−xw2)xz2

= − i

2
x(z1 − z2)− ix(r(−xw1)− r(−xw2))z2 − ixr(−xw1)(z1 − z2).

By assumption |z1 − z2|+ |w1 − w2||z2| is bounded. Hence, H is bounded, too. We then obtain

f1 =
1

2

∫ 1

−1
p(xw1)p(xw2)e

−ip(−xw1)xz1+ip(−xw2)xz2 dx,

=
1

2

∫ 1

−1

1

4
dx+

1

2

∫ 1

−1
r(xw1)p(xw2)e

iH dx

+
1

2

∫ 1

−1
r(xw2)p(xw1)e

iH dx+
1

2

∫ 1

−1
p(xw1)p(xw2)(e

iH − 1) dx

=
1

4
+O(|w1|+ |w2|+ |z1 − z2|+ |w1 − w2||z2|).

Similarly we find

f4 =
1

4
+O(|w1|+ |w2|+ |z1 − z2|+ |w1 − w2||z2|).

The behavior of f2 and f3 is different. Since

−ip(−xw1)xz1 − ip(xw2)xz2 = −i(1− p(xw1))xz1 − ip(xw2)xz2 = −ixz1 +H

we have

f2 =
1

2

∫ 1

−1
p(xw1)p(−xw2)e

−ixz1+H dx,
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and by applying Lemma 9 we obtain

f2 = O

(
1

|z1|

)
.

Similarly

f3 = O

(
1

|z1|

)
.

Thus (A-24) follows.

It is an immediate consequence of Lemma 19 (together with a simple continuity argument) that∣∣∣f(w1, w2, z1, z2)
∣∣∣ ≤ 1− κ

for some κ > 0 provided that |w1| ≤ C1, |w2| ≤ C1, |z1| ≥ 1, |z2| ≥ 1, and |z1 − z2|+ |w1 − w2||z1| ≤ C3. For
notational convenience, we denote the subset of (w1, w2, z1, z2) satisfying these conditions by R. Furthermore we
denote by R′ the set of (w1, w2, z1) with |w1| ≤ C1, |w2| ≤ C1, |z1| ≥ 1, and |w1 − w2||z1| ≤ C3, and by R′′ the
set of (w, z1) with |w| ≤ 2C1 and |z1| ≥ 1, and |wz1| ≤ C3. Then we get∫∫∫∫

R
f(w1, w2, z1, z2)

T e−ε(w2
1+w2

2)−2iε(w1z1−w2z2)e−η(z2
1+z2

2) dw1 dw2 dz1 dz2

= O

(
(1− κ)T

∫∫∫∫
R
e−ηz2

1 dw1 dw2 dz1 dz2

)
= O

(
(1− κ)T

∫∫∫
R′

e−ηz2
1 dw1 dw2 dz1

)
= O

(
(1− κ)T

∫∫
R′′

e−ηz2
1 dw dz1

)
.

Finally we have ∫∫
R′′

e−ηz2
1 dw dz1 = O

(∫ ∞

1
e−ηz2

1 min

(
1

z
, 2C1

)
dz

)
= O

(∫ η−1/2

1

1

z
dz

)
+O

(∫ ∞

η−1/2

e−ηz2
1
1

z
dz

)
= O

(
log

1

η

)
+O(1).

This implies an upper bound of the form

O

(
(1− κ)T log

1

η

)
.

In summary, we prove (A-22) which implies (22) and completes the proof of Theorem 1.
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