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Abstract—This paper studies the sample complexity of classical
inference from quantum states under a quantum counterpart of
the well-known agnostic probably approximately correct (PAC)
model. In this model, a learner is trained using n quantum
states with classical labels. The learner’s objective is to find
a quantum measurement that predicts the label of the unseen
samples with high accuracy. The model subsumes well-studied
problems such as state discrimination, quantum property testing,
and classical learning. The learner also presents standard models
such as variational quantum algorithmss (VQAs) and quantum
neural networks (QNNs). Recent works showed that sample
complexity of learning a quantum concept class scales linearly
with the size of the class; whereas for classical (finite) concept
classes, the sample complexity scales with the logarithm of the
concept class size. Therefore, there is a question about the
gap between quantum and classical sample complexity. This
work proposes a new approach to quantum learning that leads
to significant improvements over quantum sample complexity
bounds. For that a new quantum learning algorithm is proposed
for which we derive upper bounds on the sample complexity
of several quantum concept classes. Particularly, we prove that
the quantum sample complexity of a quantum concept class C
grows with O(log |C*|), where C* is defined as the set of extreme
points of the convex closure of C. Consequently, we prove that
for finite quantum concept classes, in the worst case, the bound
grows with O(log [C]) as |C*| < |C|.

I. INTRODUCTION

Quantum learning is one of the leading applications of
quantum computing both for classical and quantum prob-
lems. While some models suggest quantum-enhancements
of classical learning by mapping data into input quantum
states [1]-[6], quantum computers (QCs) have a far greater
capability to learn patterns from inherently quantum data.
This is possible by directly operating on quantum states of
physical systems (e.g., photons or states of matter) or their
qubit representations [7]-[14]. Learning from quantum data
has been studied extensively in recent literature in the context
of diverse applications, including condensed matter for phase-
of-matter detection [7], [15], ground-state search [8], [9], [16],
entanglement detection [10], [11], [17]-[20], and theoretical
chemistry [12]-[14], [21], [22].

The focus of this paper is on the fundamental limits of
quantum learning, particularly the quantum sample complexity
as a measure of the hardness of training a model or tuning a
quantum device. In classical learning theory, limits of learning
have been studied for decades under the well-known PAC
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framework [23], [24]. In this work, we study a quantum
counterpart of this problem under the quantum probably
approximately correct (QPAC) framework [25].

Several models for quantum learning have been introduced
and studied [26]-[29]. A survey on this topic is provided
in [30]. In quantum state discrimination, the objective is to
distinguish an unknown quantum state p from another (known
or unknown) state using measurements on multiple samples
[27], [29], [31]-[36]. In another model, introduced by Bshouty
and Jackson [28], one is interested in solving a classical PAC
problem using a quantum oracle that outputs identical copies
of an associated superposition state [28], [37]-[40].

QPAC is a recent framework that subsumes several models
such as state discrimination, quantum property testing, quan-
tum state classification and classical PAC. It consists of a set
of n labeled quantum states (p;, y;)_, as the training samples.
The samples are randomly generated independent and identi-
cally distributed (i.i.d.) and according to an unknown but fixed
probability distribution. There is no structural assumption
about the states p;, the labeling y;, and the underlying dis-
tribution. Here, predictors are quantum measurements applied
to the quantum states. Thus, one seeks a model training
procedure for finding a quantum measurement to minimize the
prediction loss. The objective is to obtain a loss that is close
to the optimal loss within a library of predictors (a.k.a concept
class). Quantum sample complexity is, then, the minimum
number of samples to guarantee such requirement for all
quantum states, labeling, and the underlying distributions.

Therefore, QPAC is a stronger requirement than the above
models, as it is a distribution-free and state-free condition. It
is also stronger than PAC, as PAC is only distribution-free.
Moreover, QPAC abides by quantum mechanical laws such
as no-cloning, state collapse, and measurement incompatibil-
ity. Such properties prohibit sample reuse and, thus, raise
new challenges for learning in quantum settings. Moreover,
quantum models are significantly richer than classical models.
Hence, given the fragility of quantum samples, the strictness
of QPAC, and the richness of quantum models, one expects
that quantum sample complexity to be significant, if not
exponentially, greater than the classical one.

This paper presents a new bound on quantum sample
complexity which is rather surprising. We show that the
quantum sample complexity could potentially be comparable



to the classical one. We introduce a novel algorithm called
quantum shadow risk minimization (QSRM).

In classical learning empirical risk minimization (ERM) is
a brute-force search in a given concept class C to minimize
the empirical loss. With that ERM is an agnostic PAC learner
as long as the training samples are a good representation of
the true distribution which is guaranteed if the sample size
is n = O(log|C|) [41]. Extending this algorithm to quantum
is not straightforward. One could naively propose the same
technique to compute the empirical risk of each quantum
predictor and chose the one with the minimum risk. However,
the no-cloning and measurement incompatibility make this
approach prohibitive. Essentially, the training samples will
be distorted each time we measure the empirical risk of a
predictor. If we use that naively, then we might need fresh
samples for each predictor. That gives a sample complexity
that grows with the size of the class n = O(|C|). There have
been multiple attempts [25], [42]. [25] introduced an algorithm
that measures the risk of compatible predictors together and
hence obtained a better bound that grows with O(log|C|) in
fully compatible scenarios and grows O(|C|) in the worst case
scenario with fully incompatible class. This is clearly larger
than classical. Whether one can reduce it remains the question.
Contributions: We propose a new approach called QSRM
to measure the empirical risk of the predictors in the class
that substantially improves the quantum sample complexity.
Particularly, we prove that the quantum sample complexity of
any measurement concept class C grows with O (E% log @2,
where C* is the set of extreme points of C. Hence, in the
worst case, the bound grows with O(log|C|) if C is finite.
Interestingly, the bound can be much lower than log |C|. This
is surprising especially since sample duplication is prohibited
and measurement incompatibility would lead to an expo-
nentially larger sample complexity with standard methods.
Such bound resembles those via Vapnik—Chervonenkis (VC)
dimension in classical learning. However, whether log |C*|
is the candidate for the quantum counterpart of the VC
dimension remains to be seen.

II. MODEL FORMULATION

Notations: For shorthand, denote [d] as {1,2, ..., d}. For any
d € N, let H4 be the Hilbert space of d-qubits with dim = 29,
The identity operator on H, is denoted by I;. As usual,
a quantum state is defined as a density operator; that is
a Hermitian, unit-trace, and non-negative linear operator. A
quantum measurement M is a positive operator-valued mea-
sure (POVM) represented by a set of operators M := {M,,
v € V}, where V is theset of possible outcomes, M, > 0 for
any v € V, and ZUGV M, = I4. For an operator A, denote

[|A]l; = tr{|A|} as the trace norm, and ||A||, = \/tr{ATA}

as the Hilbert—Schmidt norm.

A. Quantum Learning Model

Before presenting the main results, we formally define our
quantum learning model. In this model [25], the objective is
to distinguish between multiple groups of unknown quantum

states without prior knowledge about the states. Available is
only a training set of quantum states with a classical label
determining their group index. We seek an agnostic procedure
that given enough samples learns the labeling law. The model
is defined more precisely as follows.

Let Y denote the labeling set and H be the underlying
Hilbert space'. Each time, a sample (|¢),,y;),i € [n] is
randomly generated according to an unknown but fixed prob-
ability distribution D. A predictor is a quantum measurement
M = {My: g€ Y} that acts on the quantum states and
outputs y € ) as the predicted label. Note that, unlike classical
learning, the predicted label is random even for a fixed input.
From Born’s rule, g; is generated randomly with probability
(¢i| My, |¢;) . The prediction loss is determined via a loss
function I : ) x Y — [0,00). The risk of a predictor M
is computed by randomly generating a test sample (|¢),..;
Ytest) according to D and measuring |¢), ., with M to get
Utest- Hence, from Born’s rule, the generalization (expected)
loss is calculated as Lp(M) = E[I(Y,Y)], where the ex-
pectation is taken over the sample’s distribution D and the
distribution of Y.

Remark 1. The generalization can be written compactly in
terms of the density operators. Let p, be a mixed state (density
operator) representing the overall state of the system under
label y. We can view p, as the state averaged under the
condition that the label is y. Then, the generalization loss
of M is given by

LpM) =" Dy(@)i(y, 5) tr{Myp,}. (1)

yey gey

The problem in the binary case is simplified. The following
is an example of this setting.

Example 1. As an example, consider a simple setting where
there are only three types of states |1;) , j = 0,1,2 with label
set Y = {0,1}. Each labeled sample is either of the four
possibilities: (1) ,0), (|t1) , 1), (|t2) ,0), and (|3p2) , 1) with
probabilities po o, P1,1,D2,0, and p2 1, respectively. Hence, the
label of |12) is probabilistic. Also consider the 0-1 loss (y,
) := Lgyzqy. Then, the generalization loss of a measurement
M = {My, My} is given by Lo-1(M) = po,o (o|Mi|tbo) +
P11 (1| Mo|vh1)+p2,0 (V2| Molth2) +p2,1 (2| Mol|th2). Hence,
the corresponding density operators are py = po .o |10 )o| +

D2,0 | V2)(W2|, and po = p11 |1 )X Y1| + D21 |2 )(1al.

The generalization loss is compared to the optimal value
within a concept class which is a collection C of quantum
predictor measurements. With this setup, a quantum learning
algorithm processes the training samples and finds a predictor
M which may or may not belong to C. Let opt be the
minimum loss among all the predictors in C.

Definition 1 (QPAC). A quantum learning algorithm agnos-
tically QPAC learns a measurement class C if there exists

'For presentation simplicity, we assume ) is finite and # is finite-
dimensional.



a function ne : (0,1)? — N such that for every €,6 € [0,
1] and given n > nc(e,d) samples drawn i.id. according
to any probability distributions D and any unknown states
|¢);,i € [n], the algorithm outputs, with probability of
at least (1 — 0), a measurement whose loss is less than
opte = infpec Lp(M) + e’

The quantum sample complexity of a concept class C is the
minimum of n¢ for which there exists a QPAC algorithm.

Note that the state discrimination problem is a special
case in which samples are identical and are either of two
a priori known states. Also, note that QPAC also subsumes
classical PAC as classical samples can be embedded into pure
and orthogonal states, and functions can be considered as a
special form of quantum measurements. Therefore, QPAC is
a stronger requirement than PAC and other methods. It is a
agnostic, distribution-free and state-free condition; whereas
PAC is only distribution-free. In addition, principles such as
the no-cloning and state collapse after measurements, indicate
that quantum samples are more fragile than classical ones.

B. Related Works on QERM

It is known that classical ERM PAC learns any (classical)
finite concept class C with sample complexity that scales with
(9(}2 log %) In quantum settings, there have been various
attempts in developing counterparts of ERM algorithm. Due
to the no-cloning theorem, the straightforward quantum exten-
sion of ERM results in a sample complexity of (9(% log %) ,
see [25] for more details. This is problematic as the sample
complexity grows linearly with the size of the concept class.

In [25], a new ERM-type algorithm is introduced to improve
this bound. The new bound depends on the measurement
incompatibility structure of the concept class. Incompatible
measurements cannot be measured simultaneously (for more
details see [43]). On one extreme, all the measurements in the
concept class are mutually compatible; on another extreme,
there is no pair of compatible measurements. Based on this,
an improved bound on sample complexity is as follows.

Fact 1 ( [25]). Quantum sample complexity of any finite
concept class C is upper bounded as

m
8 2m|C,|
° 1
C,Comp. partition z; "62 o8 1) ’

min
r—

ne(e, d) <

where the minimization is taken over all compatibility parti-
tioning of C. This bound ranges from (9(6% log %), for fully
i

compatible class, to (’)( = log %) for fully incompatible class.

In [42], this result was extended to infinite concept classes
through an e-netting argument. In this paper, we propose a new
quantum ERM that substantially improves the above bounds
to one that, in the worst case, grows with O (E% log %) even

for fully incompatible concept classes.

2Naturally, we are interested in efficient learning with nc being at most
polynomial in €, and dim(H).

III. MAIN RESULTS

In this section, we present the main results of the paper
on the sample complexity. We prove the upper bound by
proposing a quantum shadow risk minimization (QSRM).

A. Measuring the Empirical Loss

We start with defining the loss measurement for each pre-
dictor M. Without loss of generality, assume [ : ) x ) +— [0,
1]. Let Z be the image set of [. Since ) is a finite set,
then so is Z. With that, the loss observable for any predictor
M = {My:9 €Y} is given by Ly = {LM :2¢€ Z},
where

Liu = Z l{l(y,g):z}M@ & |y><y‘ )
y,9€Y

VzEZ. ()

Therefore, the loss of M for predicting y from a given
pz is obtained by applying Lp; on p, ® |y)Xy|. The result
is a random variable Z = E(y,f/) taking values from Z
as in (2). With this formulation the expected loss of M
equals to Lp(M) = (Lar),yy-Now given a set of samples
Sn = {(|¢i) ,y:) = i € [n]} the empirical expected loss of M
over the samples is

1
A
Ls,(M) = gz (D yil Larlis yi)

i
where z(i) is the outcome of the measurement L, on the
ith sample. Note that, unlike classical learning, even for fixed
samples the empirical loss is not fixed.

B. Joint Estimation of Empirical Loss

The main challenge in the quantum setting is to measure
the empirical loss for all the measurements in the class. This
however is impossible due to the no-cloning and measurement
incompatibility. The loss measurements £, might be incom-
patible for different M € C — hence impossible to be mea-
sured simultaneously. In [25] it was proposed to partition C
into mutually compatible subsets. With that approach bounds
on the sample complexity were introduced. Unfortunately, in
the worst-case scenario, the bounds could grow with |C|. In
what follows, we introduce a new approach that, in the worst-
case, grows with log|C|.

Our approach is inspired by Shadow Tomography [44], [45]
that is applied to identical copies of quantum states. In what
follows we explain this procedure. We perform the following
procedure for each sample (p;,y;),¢ € [n] and then explain
our approach.

First, we generate a unitary operator U; randomly and
uniformly from the space of all unitary operators on the
underlying Hilbert space H. We rotate p; by applying U,
resulting the state UlTpiUi. Let {|j),j=1,2,...,dimy} be
a basis on H. We measure the rotated state on this basis.
From Born’s rule the probability of getting the output j
is P; = <j|Uisz-Ui|j>. Suppose the outcome for the ith
sample is j; € [dimy]. Then, the following state is prepared
w; = U; |7:)(i] Uj . As a result, the expected state w; over the
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Fig. 1. The process for estimating the empirical loss of each measurement.

measurement randomness (P;) and the choice of unitary U;
equals to I'[p;], where I" is a mapping defined as

Eo[ Y Glutoul Uliiut,

J€([dimy]

T[0] := 3)

for any any operator O on H. Observe that I' is a linear
mapping on B(#) with its inverse, denoted as I'"!, also a
linear mapping. We apply I'"! on w; resulting in the following
final state

pi =T [U; i)l U] @

This state is the classical “shadow” of p; that is stored in a
classical computer.

Fact 2 ( [45]). p; is an unbiased estimate of p;, that is
Eu, 5.[pi] = pi, where the expectation is taken over the
rotation U and measurement randomness.

Now, we compute the expected loss per each shadow as

Zl v, 9) tr{ My, }.

Next, we average it over all the shadows to find
1 n R
- 23 L
s

where here S, represents the set of all the shadows p; with
their labels y;. Therefore, Lg is different from Ls, which
is based on the true samples. Th1s process is demonstrated in
Figure 1.

C. Shadow Norm

Theorem 1 of [45] gives a bound on the complexity of
the median of means estimator for predicting the expectation
of m arbitrary observables. The bound scales with logm
and the maximum shadow norm of the observables. In what
follows, we prove a similar result but for the empirical average
estimator.

(&)

Definition 2. The shadow norm of any operator O on H is

]l

max

shadow * oc€D[H]

J€E[dimyy]

Shadow norm for Clifford groups is bounded as

||O||shadow — V 3tI‘{O2}

(X ulwteuly Glrtowtn?)”

For k-local measurements is bounded as
Ol 101

Our first result is as follows.

< ok

shadow —

Theorem 1. Let p;,i € [n] be the classical shadows of n
copies of a mixed state p, as in (4). Then, given 6 € (0,1) and
m arbitrary observables Oy, -+, Oy, the empirical average
6; = 1 3°.tr{O;p;} satisfies the additive error e given that

1 m tr{O;} |I”
"= O<€2 10g<§> mlax iy, ! shadoW> '

dim;.[

The the objective of QSRM is to find miny L g . However,
the upper bound in the above theorem becomes Toose when
the concept class is large, for example when |C| is infinite.
We argue that only the extreme points of C are relevant.

O; —

D. Extreme points of a concept class

Let C denote the convex closure (envelope) of C. When C
is finite, then C is the set of all POVMs that can be written as
a convex combination of measurements in C. More precisely,

POVMs of the form M = {My,§ € Y} such that

k
r. — AT
My =" a;M],
j=1

where each M7 = {M;, 7€ y} belongs to C, and «; € [0,
1] with 3=, a; = 1. By definition C is a convex set.

Vg e,

Definition 3. Given any concept class C, by C* denote the
extreme points of its convex closure.

The following Algorithm 1 and its performance discussed
in Theorem 2 are the main contribution of this paper.

Algorithm 1: QSRM
Input: C* of the concept class and n training samples.
1 fori=1tondo
Generate a unitary U; randomly.
Apply U; on p; as in Figure 1.
Measure along {|j)},j € [dimy]} to get j;.
for /=1to |C*| do
Prepare the state p; as in (4).
Measure p; by M, to get g .
Calculate the incurred loss z; ¢ = [(y;, §i.¢)-

® N U AR W N

9 Compute the estimated empirical loss for each
measurement as L(M,) = L3 2
10 return M as the measurement with the minimum L.

Theorem 2. Suppose { is a bounded loss function and C is a
measurement class with finite extreme points. Then, QSRM
(Algorithm 1) agnostically QPAC learns C with quantum
sample complexity bounded as

)

nc(675)_0< lo |C(5|




where C* is the set of extreme points as in Definition 3 and

_u{lu(y)}, ’

Vex := max max
MecC* y

’

shadow

where the shadow norm is as in Definition 2.

Note that |[C*| < |C|. Even when C is infinite C* can
be finite. Hence an interesting distinction compared to the
classical is observed. When C is finite, then the bound in
theorem scales at most with (’)(Ei2 log %) Interestingly, in
other scenarios where |C*| < |C| the bound is significantly
lower. However, even though the Hilbert space is finite-
dimensional and ) is finite, there could be infinitely many
extreme points in C. In that case, an e-netting argument will
give a bound on the sample complexity.

IV. PROOF OF THE MAIN RESULTS
A. Proof of Theorem 1

The proof of the theorem follows from a concentration of
measures for bounded variances. We use the following result
from [46, Theorem 8.2].

Lemma 1 (Method of Bounded Variances). Let X1, ..., X,, be
a set of random variables and let Y,, = f(X1,..., X,,), where
f a function such that E[Y,] < co. Let D; = E[Y,|X"] —
E[Y,,|X*"1] and |D;| < ¢; for some constants ¢; > 0. Also
let, V.= " supyi-1 var(D;|x*~1). Then,

2

IF’{\Y” R, > e} < 2exp{4€V},

2V

max; c;

where € <

Corollary 1. For any O, and small enough € > 0, the shadow
empirical loss in (5) satisfies

—ne?
P{ 6 — tr{O } <2 .
o onll > ey = exp{4maxi var(tr{Oﬁi})}
Proof. The corollary is proved from Lemma 1 with f =6 :=
L5, tr{Op;} implying that

D; = ({04} ~ Eltx{0p:})

Since, p;’s are mutually independent and identically dis-
tributed then

1 . 1 .
V= o ;var(tr{Opi}) < - mlaxvar(tr{Opi}),

which gives the desired statement. O

Applying this result for O = O; in the theorem and a union
bound give max; |6; — tr{O;p}| < ¢ with probability greater

than
—7162
4 e
maxi7jvar(tr{0jp¢})

2m exp{

From [45, Lemma 1], the variance terms are upper bounded
by the shadow norm as follows

_ {05},

2

max
J

0,

shadow

Therefore, by equating the bound on the probability to §
gives the desired result as stated in the theorem.

B. Proof of Theorem 2.

We start with the following lemma:

Lemma 2. Let C be the convex closure of C and C* be
the set of all extreme points of C. Then, opt, = optg =
infpmec+ Lp(M).

Proof. Note that L (M) is linear, and hence convex, in M.
This is due to the linearity of the trace and the definition of
the loss given in (1). As a result, given that C C C and that
optz = inf \ 4z Lp (M) we find that optz = opt,. Moreover,
since the above expression is a convex optimization, then the
optimal values occur at the extreme points of C. Hence the
proof is complete. O

This result implies that QPAC learning of C is reduced to
its extreme points C*.

The proof follows from Theorem | and Lemma 2. For any
fixed y, and M let L,/ (y) be the expected loss when the label
is y. We apply Theorem 1 with O; = Ly (y) for M € C*.
Let

_w{luw)} |

Lu(y) dimy,

Ve := max max
Meer y shadow
Then, the theorem gives the following sample complexity
bound: n = O ( ZCZ 1og<%)).
Now, let M and M™ be the measurements minimizing the
Lg and Lp, respectively. Then, with probability (1 —d) the
following chain of inequalities holds:

Lp(M) < L(M) + g < LM*) + % < Lp(M*) +e

The left-hand side is the loss of the selected predictor by
QSRM (Algorithm 1), and the right-hand side equals opt; +€
and hence the proof is complete.

CONCLUSION

This paper studies the learning of quantum measurement
classes. It introduces a novel quantum algorithm called QSRM
for learning quantum concept classes. Using this algorithm,
a new upper bound on the quantum sample complexity is
derived. It is shown that the quantum sample complexity
grows at most with the logarithm of the size of the extreme
points of the convex closure of the concept class. This is
a significant improvement over prior results. The approach
is based on a novel method to estimate the empirical loss
of the concept class via creating random shadows of the
training samples. With that QSRM algorithm can perform risk
minimization while abiding to no-cloning, state collapse, and
measurement incompatibility.
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