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Abstract

There has been significant recent interest in quantum neu-
ral networks (QNNs), along with their applications in diverse
domains. Current solutions for QNNs pose significant chal-
lenges concerning their scalability, ensuring that the postu-
lates of quantum mechanics are satisfied, and that the net-
works are physically realizable. The exponential state space
of QNNs poses challenges for the scalability of training pro-
cedures. The no-cloning principle prohibits making multiple
copies of training samples, and the measurement postulates
lead to non-deterministic loss functions. Consequently, the
physical realizability and efficiency of existing approaches
that rely on repeated measurement of several copies of each
sample for training QNNs is unclear. This paper presents a
new model for QNNs that relies on band-limited Fourier ex-
pansions of transfer functions of quantum perceptrons (QPs)
to design scalable training procedures. This training proce-
dure is augmented with a randomized quantum stochastic gra-
dient descent technique that eliminates the need for sample
replication. We show that this training procedure converges
to the true minima in expectation, even in the presence of
non-determinism due to quantum measurement. Our solution
has a number of important benefits: (i) using QPs with con-
centrated Fourier power spectrum, we show that the train-
ing procedure for QNNs can be made scalable; (ii) it elim-
inates the need for resampling, thus staying consistent with
the no-cloning rule; and (iii) enhanced data efficiency for
the overall training process since each data sample is pro-
cessed once per epoch. We present detailed theoretical foun-
dation for our models and methods’ scalability, accuracy, and
data efficiency. We also validate the utility of our approach
through a series of numerical experiments.

Introduction
With rapid advances in quantum computing, there has been
increasing interest in quantum machine learning models and
circuits. Work at the intersection of deep learning and quan-
tum computing has resulted in the development of quan-
tum analogs of classical neural networks, broadly known
as quantum neural networks (QNNs) (Mitarai et al. 2018;
Farhi and Neven 2018; Schuld et al. 2020; Beer et al.
2020). These networks are comprised of quantum percep-
trons (QPs) (Lewenstein 1994), and the corresponding cir-
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cuits (either layers of QPs or variational circuits) are phys-
ically realized through technologies such as trapped ions,
quantum dots, and molecular magnets. QNNs have been ap-
plied to both classical and quantum data in the context of
diverse applications. They have also inspired the develop-
ment of novel classical neural network architectures (Garg
and Ramakrishnan 2020), which have demonstrated excel-
lent performance in applications such as image understand-
ing and natural language processing.

Our effort focuses on developing QNNs for quantum data
within the constraints of physically realizable quantum mod-
els (e.g., no-cloning, measurement state collapse). Among
many applications, quantum state classification is of signif-
icance (Chen et al. 2018) and has been studied under var-
ious specifications such as separability of quantum states
(Gao et al. 2018; Ma and Yung 2018), integrated quantum
photonics (Kudyshev et al. 2020), and dark matter detection
through classification of polarization state of photons (Dixit
et al. 2021). In yet other applications, it has been shown
that data traditionally viewed in classical settings are bet-
ter modeled in a quantum framework. In an intriguing set
of results, Orus et al. demonstrate how data and processes
from financial systems are best modeled in quantum frame-
works (Orús, Mugel, and Lizaso 2019).

The problem of constructing accurate QNNs for direct
classification of quantum data is a complex one for a number
of reasons: (i) the state of a QNN is exponential in the num-
ber of QPs. For this reason, even relatively small networks
are hard to train in terms of their computation and mem-
ory requirements; (ii) the no cloning postulate of quantum
states implies that the state of an unknown qubit cannot be
replicated into another qubit; (iii) measurement of the state
of a qubit corresponds to a realization of a random process,
and results in state collapse; (iv) the non-deterministic nature
of measurements implies that computation of classical loss
functions itself is non-deterministic; and (v) existing solu-
tions that rely on replicated data and oversampling for prob-
abilistic bounds on convergence suffer greatly from lack of
data efficiency. While there have been past efforts at mod-
eling and training QNNs, one or more of these fundamental
considerations are often overlooked. We present a compre-
hensive solution to designing quantum circuits for QNNs,
along with provably efficient training techniques that satisfy
aforementioned physical constraints.



Main Contributions
In this work, we propose a new QNN circuit, its analyses,
and a training procedure to address key shortcomings of
prior QNNs. We make the following specific contributions:
(i) we present a novel model for a QP whose Fourier spec-
trum is concentrated in a fixed sided band; (ii) we demon-
strate how our QPs can be used to construct QNNs whose
state and state updates can be performed in time linear in
the number of QPs; (iii) we present a new quantum circuit
that integrates gradient updates into the network, obviating
the need for repeated quantum measurements and associated
state collapse; (iv) we demonstrate data efficiency of our
quantum circuit in that it does not need data replication to
deal with stochastic loss functions associated with measure-
ments; and (v) we show that our quantum circuit converges
to the exact gradient in expectation, even in the presence
of the stochastic loss function without data replication. We
present detailed theoretical results, along with simulations
demonstrating our model’s scalability, accuracy, and data ef-
ficiency.

Related Results
Quantum neural networks have received significant recent
research attention since the early work of Toth et al. (Toth
et al. 1996), who proposed an architecture comprised of
quantum dots connected in a cellular structure. Analogous
to conventional neural networks, Lewenstein (Lewenstein
1994) proposed an early model for a quantum perceptron
(QP) along with its corresponding unitary transformation.
Networks of these QPs were used to construct early QNNs,
which were used to classify suitably preprocessed classi-
cal data inputs. Since then, there has been significant re-
search interest in the development of QNNs over the past
two decades (Schuld, Sinayskiy, and Petruccione 2014; Mi-
tarai et al. 2018; Farhi and Neven 2018; Torrontegui and
Garcia-Ripoll 2018; Schuld et al. 2020; Beer et al. 2020).
Massoli et al. (Massoli et al. 2021) provide an excellent sur-
vey and classification of various models and technologies
for QNNs.

QNNs are generally trained using Variational Quantum
Algorithms (Cerezo et al. 2020; Guerreschi and Smelyan-
skiy 2017), which use quantum analogs of QNN parame-
ters, initial qubits state (input data), and trail state (output of
the QNN). These are used in conjunction with optimization
procedures such as gradient descent to update network pa-
rameters. Among the best known of these procedures is the
Quantum Approximate Optimization Algorithm of Farhi et
al. (Farhi, Goldstone, and Gutmann 2014), which prescribes
a circuit and an approximation bound for efficient combi-
natorial optimization. This method was subsequently gener-
alized to continuous non-convex problems, for finding the
ground state of a circuit through a suitably defined evolu-
tion operator. A slew of recent results have used optimizers
such as L-BFGS, Adam, Nestorov, and SGD to train dif-
ferent QNN models. An excellent survey of these methods
and associated tradeoffs is presented by Massoli et al. (Mas-
soli et al. 2021). The basic problem of exponential network
state and associated cost of optimization procedures is not

directly addressed in these results. In contrast, our focus in
this work is on reducing the cost of training QNNs through
flexible and powerful constraints on Fourier expansions of
QPs.

A second issue relating to convergence of these prior
QNNs arises from the stochastic nature of quantum mea-
surements – i.e., measuring the quantum state (in particu-
lar, the trial state) to compute a loss function is inherently
stochastic. For this reason, the convergence of prior QNNs
relies on repeated processing of the same data sample until
the ground state is achieved with prescribed high probabil-
ity. There are two challenges for these prior solutions: (i)
repeated reads of the same state are problematic because of
the no-cloning rule for quantum states; and (ii) the cost of the
training procedure is significantly higher due to more exten-
sive data volumes. In contrast, our method does not require
data resampling, and therefore does not have the aforemen-
tioned drawbacks.

Our work formally demonstrates how we can compute
gradients in effective and efficient procedures (Theorem 1)
and achieve asymptotically faster convergence in terms of
data processing (Theorem 2). These two results provide the
formal basis for our models and methods, as compared to
prior results.

Model
Quantum Machine Learning Model
The focus of this paper is on classification of quantum states.
Following the framework in (Heidari, Padakandla, and Sz-
pankowski 2021), our quantum machine learning model in-
puts a set of n quantum states corresponding to quantum
training data samples, each paired with a classical label
y ∈ Y . We write these training samples as {(ρi, yi)}ni=1.
Each ρi is a density operator acting on the Hilbert space H
of d-qubits, i.e., dim(H) = 2d. The data samples with the
labels are drawn independently from a fixed but unknown
probability distribution D. A quantum learning algorithm
takes training samples as input to construct a predictor for
labels of unseen samples. The prediction is in the form of
a quantum measurement that acts on a quantum state and
outputs ŷ ∈ Y as the predicted label.

To test a predictor M := {My : y ∈ Y}, a new sam-
ple (ρtest, ytest) is drawn randomly according to D. With-
out revealing ytest, we measure ρtest withM. In view of the
the postulate of quantum measurements, the outcome of this
predictor is a random variable Ŷ that together with the true
label Y form the joint probability distribution given by

P{Y = ytest, Ŷ = ŷ} = DY (ytest) tr{Mŷρtest},
where DY is the marginal of D. Thus, one can use an exist-
ing loss function ` : Y × Y 7→ R (such as the 0-1 loss or
square loss) to measure the accuracy of the predictors.

Quantum Neural Networks
Figure 1 shows a generic model for QNNs considered in our
work. The QNN consists of a feed-forward network of inter-
connected QPs, each of which is a parametric unitary opera-
tor. At the output of the last layer is a quantum measurement



acting on the readout qubits to produce a classical output as
the label’s prediction.

The input to the QNN (or the first layer) is a state of d′
qubits consisting of the original d-qubit sample ρ padded
with additional auxiliary qubits, say |0〉. The padding allows
the QNN to implement a more general class of operations
(quantum channels) on the samples 1. The input to the lth
layer is the output of the previous layer l − 1.
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Figure 1: A generic feed-forward QNN with one hidden
layer and parametric unitary operators as QPs.

Band Limited QPs
We use an abstraction of a QP that generalizes the model of
Farhi et al. (Farhi and Neven 2018). We consider QPs of the
form U = eiA, where A is a Hermitian operator acting on
a small subsystem of the d′-qubit system, hence it is band-
limited. This notion stems from quantum Fourier expansion
using Pauli operators.
Quantum Fourier Expansion: Tensor products of Pauli op-
erators together with identity have been used to develop a
quantum Fourier expansion (Montanaro and Osborne 2010)
analogous to the Fourier expansion on the Boolean cube
(De Wolf 2008). We denote these operators by {σ0, σ1,
σ2, σ3}. Furthermore, as a shorthand, given any vector
s ∈ {0, 1, 2, 3}d, we denote by σs the tensor product
σs1 ⊗σs2 ⊗ · · ·⊗σsd .With this notation we present the no-
tion of quantum Fourier expansion:

Remark 1. Any bounded operator A on the Hilbert
space of d qubits can be uniquely written as: A =∑

s∈{0,1,2,3}d as σ
s, where as ∈ C are the Fourier coef-

ficients of A and are given by as = 1
2d

tr
{
Aσs

}
. If A is

Hermitian then as ∈ R.

Consider a QP acting on the subsystem corresponding to a
subset of coordinates J ⊆ [d′]. Since A acts on qubits, then
from Remark 1, it decomposes in terms of Pauli operators as

A =
∑

s:sj=0,∀j /∈J

as σ
s.

Note that the Fourier coefficients are zero outside of the co-
ordinate subset J , leading to a band-limited power spectrum

1It is well-known that any quantum channel (CPTP map) is a
partial trace of a unitary operator (Stinespring dilation) in a larger
Hilbert space.

in the Fourier domain. Moreover, these Fourier coefficients
are used to fine-tune the QP. Intuitively, these coefficients
can be viewed as quantum analogs of weights in classical
NNs.

To control the power spectrum of QPs, we bound |J | ≤ k,
where k is a bandwidth parameter. This constraint ensures
that as = 0 for any s with more than k non-zero com-
ponents. In addition, it provides the basis for controlling
the cost of gradient computation and update by limiting the
number of coefficients to optimize over. In this paper, we
typically set k = 2.

Let −→a l,j denote the vector of Fourier coefficients for the
jth QP in the lth layer and Ul,j(

−→a l,j) denote the unitary
operator of this QP. With this setup, each layer consists of
several QPs acting on different subsystems of dim ≤ 2k. By
Ul(
−→a l), denote the overall unitary operator of the lth layer,

which is given by Ul(−→a l) =
∏ml
j=1 Ul,j(

−→a l,j), where ml

is the number of QPs in this layer. Building on this formu-
lation, a QNN with L layers is itself a unitary operator that
factors as:

UQNN (−→a ) = UL(−→a L)UL−1(−→a L−1) · · ·U1(−→a 1),

where −→a is the vector of all the parameters of all the layers.
Since, each layer is characterized by ml4

k coefficients, the
QNN needs at most cQNN = 4km coefficients to be opti-
mized over, where m is the total number of QPs.

Computing the Loss
To the output of the final layer, one applies a quantum mea-
surement M = {My : y ∈ Y} to produce the prediction
for the classical label. For a padded sample ρ′ = ρ⊗ |0〉〈0|,
measuring the output qubit of the QNN results in an outcome
ŷ with the following probability:

P(Ŷ = ŷ|−→a , ρ) = tr
{
MŷUQNN (−→a )ρ′U†QNN (−→a )

}
.

Let ` : Y×Y 7→ R be the loss function. Then, conditioned
on a fixed sample (ρ, y), the sample’s expected loss taken
w.r.t. Ŷ is given by

L(−→a , ρ, y) = EŶ [`(Ŷ , y)]

=
∑
ŷ

`(y, ŷ) tr
{
MŷUQNN (−→a )ρ′U†QNN (−→a )

}
. (1)

Taking the expectation over the sample’s distribution D
gives the generalization loss:

L(−→a ) = ED[L(−→a , ρ, Y )].

While it is desirable to minimize the expected loss, this
goal is not feasible, since the underlying distribution D is
unknown. Alternatively, given a sample set Sn = {(ρj ,
yj)}nj=1, one aims to minimize the average per-sample ex-
pected loss:

1

n

∑
j

L(−→a , ρj , yj). (2)

However, unlike classical supervised learning, exact com-
putation of this loss is not possible as ρj’s are unknown in



general. One can approximate this loss, but under the condi-
tion that several exact copies of each sample are available.
Typically, this is infeasible in view of the no-cloning prin-
ciple. This restriction makes training more challenging than
its classical counterpart. We argue that even if several copies
of the samples are available, such a strategy is not desirable
due to its increased data and computational cost. In the next
section, we present our optimization approach based on a
randomized variant of SGD, to address this problem.

Quantum Stochastic Gradient Descent
In this section, we present our approach to training QNNs
using gradient descent. Ideally, if the tth sample’s expected
loss L(−→a , ρt, yt) was known, one would apply a standard
gradient descent method to train the QNN as follows:

−→a (t+1) = −→a (t) − ηt∇L(−→a , ρt, yt).

Typically, L(−→a , ρt, yt) is unknown hence the above update
is not practical. One approach to deal with this issue is to
use several exact copies of each sample, enabling one to ap-
proximate the gradient (Farhi and Neven 2018). The draw-
back of this approach is two-fold: (i) multiple exact copies
of each sample are needed; and (ii) the associated utilization
complexity for training is high. The latter drawback derives
from the fact that approximating the derivative of the sam-
ple’s expected loss with error upto ε requires processing of
O(1/ε2) exact copies. Therefore, training a QNN with the
total of cQNN parameters and using T iterations of SGD re-
quires O(T

cQNN
ε2 ) uses of the QNN.

In this paper, we propose an alternate procedure for per-
forming quantum stochastic gradient descent (QSGD) with-
out the need for exact copies, substantially reducing the uti-
lization complexity to O(TcQNN ). We note here that mini-
mizing the loss without access to exact copies is a more com-
plex problem since even the per-sample loss is unknown due
to the randomness from quantum measurements. In partic-
ular, we introduce a randomized QSGD with the following
update rule:

−→a (t+1) = −→a (t) − ηtZt,

where Zt is a random variable representing the outcome of a
gradient measurement that is designed in the preceding sec-
tion of the paper. We present an analysis for a QNN and as-
sociated convex objective function. We note that non-convex
objective functions associated with deep networks are typi-
cally formulated as convex quadratic approximations within
a trust region, or using cubic regularization.

Unbiased Measurement of the Gradient
We now present a procedure for measuring the derivative of
the expected loss (Figure 2). We start by training a single-
layer QNN. Training multi-layer QNNs with this approach
is done using backpropagation to find (local) minima for
the loss function. The corresponding unitary operator of a
single-layer network is of the form:

UQNN (−→a ) = U1(−→a ) = exp
{
i
∑
s

asσ
s
}
. (3)

ρt

Vs

j+i

Zt

N

yt

yt
QNN layer 1

ρ
out

t

Figure 2: The procedure for measuring the derivative of the
loss consisting of a unitary operator Vs followed by a quan-
tum measurement N with additional classical processing.

In what follows, we intend to measure the derivative of the
loss w.r.t. as for a given s appearing in the summation above.
In our method, at each time t, we apply the QNN on the tth
sample ρt, which produces ρoutt . Next, we add an auxiliary
qubit to ρoutt , which creates the following state:

ρ̃t = ρoutt ⊗ |+〉〈+|E , (4)

where |+〉E = 1√
2
(|0〉E + |1〉E), and E represents the aux-

iliary Hilbert space. Then, we apply the following unitary
operator on ρ̃t:

Vs = ei
π
4 σ

s

⊗ |0〉〈0|E + e−i
π
4 σ

s

⊗ |1〉〈1|E . (5)

Next, we measure the state by a quantum measurement
N := {Λb,ŷ : ŷ ∈ Y, b ∈ {0, 1}} with outcomes in Y × {0,
1} and operators:

Λb,ŷ = Mŷ ⊗ |b〉〈b|E , ∀ŷ ∈ Y, b = 0, 1. (6)

Finally, if the outcome of this measurement is (ŷ, b), we
compute zt = −2(−1)b`(y, ŷ) as the measured gradient,
where `(·, ·) is the loss function. Note that Zt is a random
variable depending on the current parameters of the network
and the input sample (ρt, yt). The following lemma, shows
that Zt is an unbiased measure of the derivative of loss with
respect to as.
Lemma 1. Let Zt be the output of the procedure shown in
Figure 2 applied on the tth sample. Then Zt is an unbi-
ased estimate of the derivative of the loss. More precisely,
E[Zt|yt, ρt] = ∂L(−→a ,y1)

∂as
.

Proof. We start by taking the derivative of the sample’s ex-
pected loss w.r.t. as. Instead of the finite difference method,
we compute the derivative directly. Using (3), for the tth
sample, we can write:

∂L(−→a , ρt, yt)
∂as

=
∑
ŷ

i`(yt, ŷ) tr
{
Mŷ

(
σsUQNN (−→a )ρtU

t
QNN (−→a )− UQNN (−→a )ρtU

t
QNN (−→a )σs

)}
.

Denote ρoutt = UQNN (−→a )ρtU
†
QNN (−→a ) as the output state.

Hence, the derivative is given by:

∂L(−→a , ρt, yt)
∂as

=
∑
ŷ

i`(yt, ŷ) tr
{
Mŷ

[
σs, ρoutt

]}
, (7)



where [·, ·] is the commutator. Note that
[
σs, ρoutt

]
might not

be measurable directly. However, as σs is a product of Pauli
operators, as shown in (Mitarai et al. 2018), we have that:[
σs, ρoutt

]
= i
(
e−i

π
4 σ

s

ρoutt ei
π
4 σ

s

− eiπ4 σ
s

ρoutt e−i
π
4 σ

s
)
.

With this relation, the derivative of the loss equals:

∂L(−→a , ρt, yt)
∂as

= −
∑
ŷ

`(yt, ŷ) tr
{
Mŷ

(
e−i

π
4 σ

s

ρoutt ei
π
4 σ

s

− eiπ4 σ
s

ρoutt e−i
π
4 σ

s
)}
.

Next, we show that the procedure in Figure 2 measures this
derivative. With the definition of Vs in (5) and ρ̃t in (4), we
have that

Vsρ̃tV
†
s =

1

2

(
ei
π
4 σ

s

ρoutt e−i
π
4 σ

s

⊗ |0〉〈0|

+ ei
π
4 σ

s

ρoutt ei
π
4 σ

s

⊗ |0〉〈1|
+ e−i

π
4 σ

s

ρoutt e−i
π
4 σ

s

⊗ |1〉〈0|

+ e−i
π
4 σ

s

ρoutt ei
π
4 σ

s

⊗ |1〉〈1|
)
.

Next, we apply the measurementN . Then, with (ŷ, b) as the
outcome, we output zt = −2(−1)b`(yt, ŷ). It is not difficult
to verify that conditioned on a fixed ŷ, the expected outcome
of (−1)b equals:

tr
{

(Λ0,ŷ − Λ1,ŷ)Vsρ̃tV
†
s

}
=

1

2
tr
{
Mŷ e

iπ4 σ
s

ρoutt e−i
π
4 σ

s
}

− 1

2
tr
{
Mŷ e

−iπ4 σ
s

ρoutt ei
π
4 σ

s
}
.

Therefore, the expectation of Zt is obtained by taking the
expectation over Ŷ and equals to

E[Zt|yt, ρt] = −2
∑
ŷ,b

(−1)b`(yt, ŷ) tr
{

Λb,ŷVsρ̃tV
†
s

}
= −

∑
ŷ

`(yt, ŷ) tr
{
Mŷ

(
ei
π
4 σ

s

ρoutt e−i
π
4 σ

s

− e−iπ4 σ
s

ρoutt ei
π
4 σ

s
)}

=
∂L(−→a , ρt, yt)

∂as
.

With that the proof is completed.

Measuring the gradient with randomization: We have,
thus far, presented a method to measure the derivative of the
loss without sample reuse. Next, we present a randomized
approach to measure the gradient with respect to all parame-
ters−→a . At each step, we randomly select a s as a component
of −→a and measure the derivative of the loss with respect to
it. Conditioned on a selected s, we create a vector

−→
Z t whose

components are zeros except at the sth component, which is
the outcome of measuring the derivative with respect to as.
Consequently, by randomly selecting s and measuring the
derivative with respect to it, we obtain an unbiased measure
of the gradient. This procedure is summarized in Algorithm
1. With this argument and Lemma 1, we get the desired re-
sult which is formally stated below.

Algorithm 1: Randomized QSGD
Input: Training data {(ρt, yt)}nt=1, Learning rate ηt
Output: Finial parameters of QNN: −→a

1 Initialize the parameter −→a with each component
selected with uniform distribution over [−1, 1].

2 for t = 1 to n do
3 Randomly select a QP in the network. Let it be

the jth QP of layer l.
4 Pass ρt through the previous layers and let ρl−1t

be the output of the layer (l − 1).
5 Randomly select a component al,j,s of −→a l,j .
6 Apply Vs as in (5) on ρl−1t ⊗ |+〉〈+| and measure

the resulting state with N as in (6).
7 With (ŷ, b) being the outcome, compute the

measured derivative as zt = −2(−1)b`(y, ŷ).
8 Update the sth component of −→a l,j as

al,j,s ← al,j,s − ηtzt.
9 return −→a

Theorem 1. Given a QNN with cQNN parameters (com-
ponents) in −→a . Randomized Quantum SGD in Algorithm 1
outputs a vector

−→
Z t, whose expectation conditioned on the

tth sample satisfies:

E[
−→
Z t|ρt, yt] =

1

cQNN
∇L(−→a , ρt, yt),

where cQNN is the number of components in −→a .
With this result, we obtain our SGD update rule as

−→a (t+1) = −→a (t) − ηt−→zt ,
where ηt is the learning rate containing the normalization
effect of cQNN .

Discussion and Analysis
Convergence Rate
We now present theoretical analysis of our proposed ap-
proach. Specifically, we show that randomized QSGD con-
verges to the optimal choice of parameters when the un-
derlying objective function is bounded and convex. More-
over, we argue that randomized QSGD is sample efficient as
compared to the other QSGD methods, where the gradient
is approximated using repeated measurements. Specifically,
it has faster convergence rate as function of the number of
samples/ copies. We note here that, similar to the classical
NNs, the convexity requirement is not generally satisfied in
QNNs. However, our analysis with the convexity assump-
tion provides insights on the convergence rate even for non-
convex (DNN) objective functions solved using trust region,
cubic regularization, or related techniques. Our numerical
results in the next section demonstrate the convergence of
randomized QSGD for training QNNs.

With Theorem 1, and the standard techniques for analysis
of the convergence rate of classical SGD (Shalev-Shwartz
and Ben-David 2014), we obtain the following result:



Theorem 2. Suppose the loss function `(y, ŷ) is bounded
by γ ∈ R. Suppose also that for any choice of (ρ, y), the
sample’s expected loss L(−→a , ρ, y) is a convex function of−→a
with ‖−→a ‖ = 1. If our randomized SGD (Algorithm 1) is per-
formed for T iterations and η = 1

2γ
√
T

, then the following
inequality is satisfied

E[L(−→a ave, ρ, y)]− L(−→a ∗) ≤ 2γcQNN√
T

,

where −→a ave = 1
T

∑
t
−→a (t), cQNN is the number of param-

eters, and −→a ∗ = arg min−→a :‖−→a ‖=1 L(−→a ).

As a result, the convergence rate of randomized QSGD
scales with the number of parameters cQNN . Next, we com-
pare this result to the previous methods in which the gradient
is approximated by repeated measurement on several copies
of the samples. First, we bound the number of copies needed
to approximate the gradient of L(−→a , ρ, y) .
Lemma 2. Given ε, δ ∈ (0, 1), with probability (1 − δ),
the gradient of a sample’s expected loss is approximated
with error upto ε and by measuring O( 1

ε2 cQNN log
cQNN
δ )

copies.

Proof Sketch. The proof follows from standard argument
using Hoeffding’s inequality with the difference that each
copy can be used only once. Hence, each component of
the gradient is estimated with a fraction 1

cQNN
of the total

copies. As a result, the probability that at least one compo-
nent is estimated with error greater than ε is bounded by
cQNN exp{−ε2 n

cQNN
α}, where α is a constant depending

on the loss function. We want this probability to be less than
δ. Thus, equating the bound with δ gives the required num-
ber of copies.

Consequently, for a fair comparison with our approach,
we fix the total number of samples/ copies. With T sam-
ples randomized QSGD runs with T iterations; whereas the
prior repeated sample method with gradient approximation
runs with O( Tε2

cQNN log cQNN
) iterations. Therefore, given T

samples/ copies and under the convexity assumption, QSGD
with gradient approximation has the following convergence
rate:

E[L(−→a ave, ρ, y)]− L(−→a ∗) ≤ O

(√
cQNN log cQNN

ε
√
T

)
.

Hence, for QNNs with moderate number of parameters (e.g.,
near term QNNs), randomized SGD converges faster even
when sample duplication is not an issue. Faster convergence
holds as long as log cQNN

cQNN
= O(ε2). For instance, with ε ≈

0.05, the number of parameters can be cQNN ≈ 3000. For
larger networks, one might consider a hybrid approach.

The Expressive Power of QNNs
It is well known that classical neural networks are universal
function approximators. For quantum analogs of this result,
we can show that QNNs implement every quantum measure-
ment on qubits.

Theorem 3. For any quantum measurementM on the space
of d qubits, there is a QNN on the space of d′ > d that
implements M. Moreover, it is sufficient to use QPs with
narrowness of k = 2.

Proof Sketch. It is known that any quantum measurement
with finite number of outcomes can be written as a quantum
channel followed by a measurement in the standard basis on
the readout qubits (Wilde 2013). Hence, from Stinespring’s
dilation theorem (Holevo 2012), such quantum channel can
be written as trE{V (ρ⊗ |e〉〈e|E)V †}, where V is a unitary
operator on the padded space of d′ qubits. In addition, such
unitary operator can be implemented using one perceptron
with k = d′. The second statement follows from the fact
that quantum 2-gates are universal.

Numerical Results
We experimentally assess the performance of our QNNs
trained using randomized QSGD in Algorithm 1. In our
experiments, we focus on binary classification of quantum
states with {−1, 1} as the label set and with conventional
0-1 loss to measure predictor’s accuracy.

Dataset
We use a synthetic dataset from recent efforts (Mohseni,
Steinberg, and Bergou 2004; Chen et al. 2018; Patterson
et al. 2021; Li, Song, and Wang 2021) focused on quantum
state discrimination. In this dataset, for each pair of param-
eters u, v ∈ [0, 1], three input states are defined as follows:

|φu〉 =
√

1− u2 |00〉+ u |10〉 ,

|φ±v〉 = ±
√

1− v2 |01〉+ v |10〉 .
Using these input states, the two quantum states to be clas-
sified are:

ρ1(u) = |φu〉〈φu| ,

ρ2(v) =
1

2

(
|φ+v〉〈φ+v|+ |φ−v〉〈φ−v|

)
.

We assign label y = -1 for the first state and y = 1 for
the second state. For each sample, we generate a state ρ1
with probability p = 1/3 and state ρ2 with probability
(1 − p) = 2/3. Furthermore, for each sample, parameters
u and v are selected randomly, independently, and with the
uniform distribution on [0, 1]2. Hence, there are infinitely
many realizations of samples, and no sample replication is
allowed.

QNN Setup
The QNN we use is shown in Figure 3. It has two layers
with two quantum QPs in the first layer and one quantum
QP in the second layer. The input states are padded with
two auxiliary qubits |0〉⊗ |0〉; hence, d = 2 and d′ = 4.
The bandwidth parameter is set to k = 2 for each QP. The
measurement used in the readout qubits has two outcomes
in {−1, 1}, each measured along the computational basis as

M =
{
|00〉〈00|+ |11〉〈11| , |01〉〈01|+ |10〉〈10|

}
.
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Figure 3: The QNN used in the experimental study.

Experimental Results
We train the QNN in Figure 3 using Algorithm 1 and with
ηt = α√

t
and α ≈ 0.77. Our training process has no epochs

in contrast to conventional SGD, since sample replication is
prohibited. Therefore, to show progress during the training
phase, we group samples into multiple batches, each of 100
samples. For each batch, we compute the average empirical
loss of the QNN with updated parameters. Figure 4 shows
the loss during the training phase averaged over each batch.
In addition to the empirical loss, we compute the average of
the sample’s expected loss L(−→a (t), ρt, yt) for all samples in
the batch (as in (2)). Furthermore, we compare the perfor-
mance of the network with the optimal expected loss within
each batch. The following result provides a closed-form ex-
pression for the optimal loss:
Lemma 3. Given a set of m labeled density operators {(ρj ,
yj)}mj=1 with yj ∈ {−1, 1}, the minimum of the expected
sample loss averaged over the m samples as in (2) equals:
1
2

(
1 −

∥∥∥ 1
m

∑
j yjρj

∥∥∥
1

)
, where ‖·‖1 is the trace norm and

the minimum is taken over all measurements applied on each
ρj for predicting yj .

This lemma follows from the Holevo–Helstrom theorem
(Holevo 2012).
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Figure 4: The training loss of the QNN in Figure 3 using
randomized QSGD. The loss is averaged over each batch of
size 100 samples. The figure shows the loss vs. batch number
as the QNN is updated using Algorithm 1. The minimum
expected loss is calculated using Lemma 3.

As seen in Figure 4, training loss converges to its mini-
mum as more batches of samples are used, showing that ran-
domized QSGD converges without the need for exact copies.
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Figure 5: The training loss of the QNN in Figure 3 using
exact computation of the gradient.

To assess the impact of replicated data, we repeat the ex-
periment, this time by allowing unlimited exact copies of
samples. Therefore, instead of randomized QSGD, we train
the QNN by exactly computing the gradient as in (7). Figure
5 shows the training loss for each batch of samples. Compar-
ing results in Figure 5 (unlimited replication) with Figure 4
(no replication), we observe a near-optimal training of the
QNN using the randomized QSGD.

Comparison of Loss Function Values
Once the QNN is trained, we generate a new set of 100 sam-
ples to test the performance of the QNN. Table 1 shows the
resulting accuracy of the network, as compared to the opti-
mal accuracy from Lemma 3 and the variant of the experi-
ment with replicated samples. The resulting accuracy for our
randomized QSGD is observed to be close to optimum.

QNN QNN (gradient comp.) Optimal
Acc. 91%± 1 93.48%± 1 93.51%

Table 1: Validation of accuracy of the trained QNN in Fig-
ure 3 for classifying test samples. The first column is for the
QNN trained with randomized QSGD. The second column
is for the QNN trained using direct computation of the gradi-
ent. The third column is the optimal accuracy derived using
Lemma 3.

Concluding Remarks
In this work, we addressed two key shortcomings of conven-
tional QNNs – the need for replicated data samples for gra-
dient computation and the exponential state space of QNNs.
To address the first problem, we present a novel random-
ized SQGD algorithm, along with detailed theoretical proofs
of correctness and performance. To address the exponential
state space, we propose the use of band-limited QPs, show-
ing that the resulting QNN can be trained in time linear in
the number of QPs. We present detailed theoretical analy-
ses, as well as experimental verification of our results. To
this end, our work represents a major step towards realiz-
able, scalable, and data-efficient QNNs.
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