The Interplay of Information Theory, Probability, and Statistics

Andrew Barron

Yale University, Department of Statistics

Presentation at Purdue University, February 26, 2007
Outline

• **Information Theory Quantities and Tools** *
 - Entropy, relative entropy
 - Shannon and Fisher information
 - Information capacity

• **Interplay with Statistics** **
 - Information capacity determines fundamental rates for parameter estimation and function estimation

• **Interplay with Probability Theory**
 - Central limit theorem ***
 - Large deviation probability exponents ****
 for Markov chain Monte Carlo and optimization

* Cover & Thomas, Elements of Information Theory, 1990
Outline for Information and Probability

• Central Limit Theorem
 If X_1, X_2, \ldots, X_n are i.i.d. with mean zero and variance 1 and f_n is the density function of $(X_1 + X_2 + \ldots + X_n)/\sqrt{n}$ and ϕ is the standard normal density, then
 \[D(f_n | \phi) \downarrow 0 \]

 if and only if this entropy distance is ever finite

• Large Deviations and Markov Chains
 If $\{X_t\}$ is i.i.d. or reversible Markov and f is bounded then there is an exponent D_ϵ characterized as a relative entropy with which
 \[P\left\{ \frac{1}{n} \sum_{t=1}^{n} f(X_t) \geq E[f] + \epsilon \right\} \leq e^{-nD_\epsilon} \]

 Markov chains based on local moves permit a differential equation which when solved determines the exponent D_ϵ

 Should permit determination of which chains provide accurate Monte Carlo estimates.
Entropy

- For a random variable Y or sequence $\underline{Y} = (Y_1, Y_2, \ldots, Y_N)$ with probability mass or density function $p(y)$, the Shannon entropy is

$$H(\underline{Y}) = E \log \frac{1}{p(\underline{Y})}$$

- It is the shortest expected codelength for \underline{Y}

- It is the exponent of the size of the smallest set that has most of the probability
Relative Entropy

- For distributions P_Y, Q_Y the relative entropy or information divergence is
 \[D(P_Y||Q_Y) = E_P \left[\log \frac{p(Y)}{q(Y)} \right] \]

- It is non-negative: $D(P||Q) \geq 0$ with equality iff $P = Q$

- It is the redundancy, the expected excess of the codelength $\log 1/q(Y)$ beyond the optimal $\log 1/p(Y)$ when $Y \sim P$

- It is the drop in wealth exponent when gambling according to Q on outcomes distributed according to P

- It is the exponent of the smallest Q measure set that has most of the P probability (the exponent of probability of error of the best test): Chernoff

- It is a standard measure of statistical loss for function estimation with normal errors and other statistical models (Kullback, Stein)

 \[D(\theta^*||\theta) = D(P_{Y|\theta^*}||P_{Y|\theta}) \]
Statistics Basics

• Data: \(\underline{Y} = (Y_1, Y_2, \ldots, Y_n) \)

• Likelihood: \(p(\underline{Y} | \theta) = p(Y_1 | \theta) \cdot p(Y_2 | \theta) \cdots p(Y_n | \theta) \)

• Maximum Likelihood Estimator (MLE):
 \[\hat{\theta} = \arg \max_{\theta} p(\underline{Y} | \theta) \]

 Same as \(\arg \min_{\theta} \log \frac{1}{p(\underline{Y} | \theta)} \)

• MLE Consistency Wald 1948
 \[\hat{\theta} = \arg \min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \log \frac{p(Y_i | \theta^*)}{p(Y_i | \theta)} = \arg \min_{\theta} \hat{D}_n(\theta^* || \theta) \]

 Now
 \[\hat{D}_n(\theta^* || \theta) \to D(\theta^* || \theta) \quad \text{as} \quad n \to \infty \]

 and
 \[D(\theta^* || \hat{\theta}_n) \to 0 \]

• Efficiency in smooth families: \(\hat{\theta}_n \) is asymptotically Normal\((\theta, (nI(\theta))^{-1}) \)

• Fisher information:
 \[I(\theta) = E[\nabla \log p(\underline{Y} | \theta) \nabla^T \log p(\underline{Y} | \theta)] \]
Statistics Basics

• Data: \(\overline{Y} = Y^n = (Y_1, Y_2, \ldots, Y_n) \)

• Likelihood: \(p(\overline{Y}|\theta), \quad \theta \in \Theta \)

• Prior: \(p(\theta) = w(\theta) \)

• Marginal: \(p(\overline{Y}) = \int p(\overline{Y}|\theta)w(\theta)d\theta \) Bayes mixture

• Posterior: \(p(\theta|\overline{Y}) = w(\theta)p(\overline{Y}|\theta)/p(\overline{Y}) \)

• Parameter loss function: \(\ell(\theta, \hat{\theta}), \text{ for instance squared error } (\theta - \hat{\theta})^2 \)

• Bayes parameter estimator: \(\hat{\theta} \) achieves \(\min_{\hat{\theta}} E[\ell(\theta, \hat{\theta})|\overline{Y}] \)

\[
\hat{\theta} = E[\theta|\overline{Y}] = \int \theta p(\theta|\overline{Y})d\theta
\]

• Density loss function \(\ell(P, Q), \text{ for instance } D(P, Q) \)

• Bayes density estimator: \(\hat{p}(y) = p(y|\overline{Y}) \) achieves \(\min_Q E[\ell(P, Q)|\overline{Y}] \)

\[
\hat{p}(y) = \int p(y|\theta)p(\theta|Y^n)d\theta
\]

• Predictive coherence: Bayes estimator is the predictive density \(p(Y_{n+1}|Y^n) \)

\[\text{evaluated at } Y_{n+1} = y \]

• Other loss functions do not share this property
Chain Rules for Entropy and Relative Entropy

- For joint densities
 \[p(Y_1, Y_2, \ldots, Y_N) = p(Y_1) p(Y_2|Y_1) \cdots p(Y_N|Y_{N-1}, \ldots, Y_1) \]

- Taking the expectation this is
 \[H(Y_1, Y_2, \ldots, Y_N) = H(Y_1) + H(Y_2|Y_1) + \ldots + H(Y_N|Y_{N-1}, \ldots, Y_1) \]

- The joint entropy grows like \(\mathcal{H}N \) for stationary processes

- For the relative entropy between distributions for a string \(\underline{Y} = Y^N = (Y_1, \ldots, Y_N) \) we have the chain rule
 \[D(P_{\underline{Y}}||Q_{\underline{Y}}) = \sum_n E_P D(P_{Y_{n+1}|Y^n}||Q_{Y_{n+1}|Y^n}) \]

- Thus the total divergence is a sum of contributions in which the predictive distributions \(Q_{Y_{n+1}|Y^n} \) based on the previous \(n \) data points is measured for their quality of fit to \(P_{Y_{n+1}|Y^n} \) for each \(n \) less than \(N \)

- With good predictive distributions we can arrange \(D(P_{Y_N}|Q_{Y_N}) \) to grow at rates slower than \(N \) simultaneously for various \(P \)
Tying data compression to statistical learning

• Various plug-in \(\hat{p}_n(y) = p(y|\hat{\theta}_n) \) and Bayes predictive estimators

\[
\hat{p}_n(y) = q(y|Y^n) = \int p(y|\theta)p(\theta|Y^n)\,d\theta
\]

achieve individual risk

\[
D(P_{Y|\theta}||\hat{P}_n) \sim \frac{c}{n}
\]

ideally with asymptotic constant \(c = d/2 \) where \(d \) is the parameter dimension (more on that ideal constant later)

• Successively evaluating the predictive densities \(q(Y_{n+1}|Y^n) \) these piece fit together to give a joint density \(q(Y^n) \) with total divergence

\[
D(P_{Y^n|\theta}||Q_{Y^n}) \sim c \log N
\]

• Conversely from any coding distribution \(Q_{Y^n} \) with good redundancy \(D(P_{Y^n|\theta}||Q_{Y^n}) \) a succession of predictive estimators can be obtained

• Similar conclusions hold for nonparametric function estimation problems
Local Information, Estimation, and Efficiency

- The Fisher information \(I(\theta) = I_{Fisher}(\theta) \) arises naturally in local analysis of Shannon information and related statistics problems.

- In smooth families the relative entropy loss is locally a squared error

\[
D(\theta || \hat{\theta}) \sim \frac{1}{2}(\theta - \hat{\theta})^T I(\theta)(\theta - \hat{\theta})
\]

- Efficient estimates have asymptotic covariance not more than \(I(\theta)^{-1} \)

- If smaller than that at some \(\theta \) the estimator is said to be superefficient

- The expectation of the asymptotic distribution for the right side above is

\[
\frac{d}{2n}
\]

- The set of parameter values with smaller asymptotic covariance is negligible, in the sense that it has zero measure
Efficiency of Estimation via Info Theory Analysis

- **LeCam 1950s**: Efficiency of Bayes and maximum likelihood estimators. Negligibility of superefficiency for bounded loss and any efficient estimator.

- **Hengartner and B. 1998**: Negligibility of superefficiency for any parameter estimator using $ED(\theta||\hat{\theta})$ and any density estimator using $ED(P||\hat{P}_n)$.

- The set of parameter values for which $nED(P_{Y|\theta}||\hat{P}_n)$ has limit not smaller than $d/2$ includes all but a negligible set of θ.

- The proof does not require a Fisher information, yet correspond to the classical conclusion when there is such.

- The efficient level is from coarse covering properties of Euclidean space.

- The core of the proof is the chain rule plus a result of Rissanen.

- **Rissanen 1986**: No choice of joint distribution achieves $D(P_{Y|\theta}||Q_{Y_N})$ better than $(d/2)\log N$ except in a negligible set of θ.

- The proof works also for nonparametric problems.

- Negligibility of superefficiency determined by sparsity of its cover.
We shall need two additional quantities in our discussion of information theory and statistics. These are:

- the Shannon mutual information I
- and the information capacity C
Shannon Mutual Information

• For a family of distributions $P_{Y|U}$ of a random variable Y given an input U distributed according to P_U, the Shannon mutual information is

$$I(Y; U) = D(P_{U,Y} \| P_UP_Y) = E_U D(P_{Y|U} \| P_Y)$$

• In communications, it is the rate, the exponent of the number of input strings U that can be reliably communicated across a channel $P_{Y|U}$

• It is the error probability exponent with which a random U erroneously passes the test of being jointly distributed with a received string Y

• In data compression, $I(Y; \theta)$ is the Bayes average redundancy of the code based on the mixture P_Y when $\theta = U$ is unknown

• In a game with relative entropy loss, it is the Bayes optimal value corresponding to the the Bayes mixture P_Y being the choice of Q_Y achieving

$$I(Y; \theta) = \min_{Q_Y} E_\theta D(P_{Y|\theta} \| Q_Y)$$

• Thus it is the average divergence from the centroid P_Y
Information Capacity

• For a family of distributions $P_Y|U$ the Shannon information capacity is

$$C = \max_{P_U} I(Y; U)$$

• It is the communications capacity, the maximum rate that can be reliably communicated across the channel

• In the relative entropy game it is the \textit{maximin} value

$$C = \max_{P_{\theta}} \min_{Q_Y} E_{P_{\theta}} D(P_Y|_{\theta}||Q_Y)$$

• Accordingly it is also the \textit{minimax} value

$$C = \min_{Q_Y} \max_{\theta} D(P_Y|_{\theta}||Q_Y)$$

• Also known as the information radius of the family $P_Y|_{\theta}$

• In data compression, this means that $C = \max_{P_{\theta}} I(Y; \theta)$ is also the minimax redundancy for the family $P_Y|_{\theta}$ (Gallager; Ryabko; Davisson)

• In recent years the information capacity has been shown to also answer questions in statistics as we shall discuss
Information Asymptotics for Bayes Procedures

• The Bayes mixture density \(p(Y) = \int p(Y|\theta)w(\theta)d\theta \) satisfies in smooth parametric families the Laplace approximation

\[
\log \frac{1}{p(Y)} = \log \frac{1}{p(Y|\hat{\theta})} + \frac{d}{2} \log \frac{N}{2\pi} + \log \frac{|I(\hat{\theta})|^{1/2}}{w(\theta)} + o_p(1)
\]

• Underlies Bayes and description length criteria for model selection

• Clarke & B. 1990 show for \(\theta \) in the interior of the parameter space that

\[
D(P_{Y|\theta}||P_Y) = \frac{d}{2} \log \frac{N}{2\pi e} + \int w(\theta) \log \frac{|I(\theta)|^{1/2}}{w(\theta)} + o(1)
\]

• Likewise, via Clarke & B. 1994, the average with respect to the prior has

\[
I_{Shannon}(Y; \theta) = \frac{d}{2} \log \frac{N}{2\pi e} + \int w(\theta) \log \frac{|I_{Fisher}(\theta)|^{1/2}}{w(\theta)} + o(1)
\]

• Provides capacity of multi-antenna systems (\(d \) input, \(N \) output) as well as minimax asymptotics for data compression and statistical estimation
Minimax Asymptotics in Parametric Families

- We identify the form of prior $w(\theta)$ that equalizes the risk $D(P_{\theta}||P_Y)$ and maximizes the Bayes risk $I(Y; \theta)$. This prior should be proportional to $|I_{Fisher}(\theta)|^{1/2}$, known in statistics and physics as Jeffreys’ prior.

- This prior gives equal weight to small equal-radius relative entropy balls.

- Clark and B. 1994: on any compact K in the interior of Θ, the information capacity C_N (and minimax redundancy) satisfies

$$C_N = \frac{d}{2} \log \frac{N}{2\pi e} + \log \int_K |I_{Fisher}(\theta)|^{1/2}d\theta + o(1)$$

- Asymptotically maximin priors and corresponding asymptotically minimax procedure are obtained by using boundary modifications of Jeffreys’ prior.

- Liang and B. 2004 show exact minimaxity for finite sample size in families with group structure such as location & scale problems, conditional on initial observations to make the minimax answer finite.
Minimax Asymptotics for Function Estimation

• Let \mathcal{F} be a function class and let data Y with sample size n come independently from a distribution $P_{Y|f}$ with $f \in \mathcal{F}$

• Thus f can be a density function, a regression function, a discriminant function or an intensity function depending in the nature of the model

• Let \mathcal{F} be endowed with a metric $d(f, g)$ such as L_2 or Hellinger distance

• The Kolmogorov metric entropy or ϵ—entropy, denoted $H(\epsilon)$ is the log of the size of the smallest cover of \mathcal{F} by finitely many functions, such that every f in \mathcal{F} is within ϵ of one of the functions in the cover

• The metric entropy rate is obtained by matching

$$\frac{H(\epsilon_n)}{n} = \epsilon_n^2$$

• The minimax rate of function estimation is

$$r_n = \min_{\hat{f}_n} \max_{f \in \mathcal{F}} Ed^2(f, \hat{f}_n)$$

• The information capacity rate of $\{P_{Y|f}, f \in \mathcal{F}\}$ is

$$C_n = \frac{1}{n} \sup_{P_f} I(Y; f)$$
Minimax Asymptotics for Function Estimation

• Suppose $D(P_{Y|f}||P_{Y|g})$ is equivalent to the squared metric $d^2(f, g)$ in \mathcal{F} in that their ratio is bounded above and below by positive constants.

• Theorem: (Yang & B. 1998) The minimax rate of function estimation, the metric entropy rate, and the information capacity rate are the same:

$$r_n \sim C_n \sim \epsilon_n^2$$

• The proof in one direction uses the chain rule and bounds the cumulative risk of a Bayes procedure using the uniform prior on an optimal cover.

• The other direction is based on use of Fano’s inequality.

• Typical function classes constrain the smoothness s of the function, e.g. s may be number of bounded derivatives, and have

$$H(\epsilon) \sim (1/\epsilon)^{1/s}$$

• Accordingly

$$r_n \sim \epsilon_n^2 \sim n^{-2s/(2s+1)}$$

• Analogous results in Haussler and Opper 1997.

• Precursors were in work by Pinsker, by Hasminskii, and by Birge.
Outline for Information and Probability

- Central Limit Theorem
 If \(X_1, X_2, \ldots, X_n \) are i.i.d. with mean zero and variance 1 and \(f_n \) is the density function of \((X_1 + X_2 + \ldots + X_n)/\sqrt{n} \) and \(\phi \) is the standard normal density, then
 \[
 D(f_n|\phi) \xrightarrow{\downarrow} 0
 \]
 if and only if this entropy distance is ever finite

- Large Deviations and Markov Chains
 If \(\{X_t\} \) is i.i.d. or reversible Markov and \(f \) is bounded then there is an exponent \(D_\epsilon \) characterized as a relative entropy with which
 \[
P\left\{ \frac{1}{n} \sum_{t=1}^{n} f(X_t) \geq E[f] + \epsilon \right\} \leq e^{-nD_\epsilon}
 \]
 Markov chains based on local moves permit a differential equation which when solved provides approximately the exponent \(D_\epsilon \).
 Should permit determination of which chains provide accurate Monte Carlo estimates.
Outline for Information and CLT

• Entropy and the Central Limit Problem
• Entropy Power Inequality (EPI)
• Monotonicity of Entropy and new subset sum EPI
• Variance Drop Lemma
• Projection and Fisher Information
• Rates of Convergence in the CLT
Entropy Basics

- For a mean zero random variable X with density $f(x)$ and finite variance $\sigma^2 = 1$,

 the differential entropy is $H(X) = E[\log \frac{1}{f(X)}]$

 the entropy power of X is $e^{2H(X)}/2\pi e$

- For a Normal$(0, \sigma^2)$ random variable Z, with density function ϕ,

 the differential entropy is $H(Z) = (1/2) \log(2\pi e \sigma^2)$

 the entropy power of Z is σ^2

- The relative entropy is $D(f||\phi) = \int f(x) \log \frac{f(x)}{\phi(x)} dx$

 it is non-negative: $D(f||\phi) \geq 0$ with equality iff $f = \phi$

 it is larger than $(1/2)||f - \phi||_1^2$
Maximum entropy property

Boltzmann, Jaynes, Shannon

Let Z be a normal random variable with the same mean and variance as a random variable X, then $H(X) \leq H(Z)$ with equality iff X is normal.

The relative entropy quantifies the entropy gap

$$H(Z) - H(X) = D(f || \phi)$$
Maximum entropy property

Boltzmann, Jaynes, Shannon

Let Z be a normal random variable with the same mean and variance as a random variable X, then $H(X) \leq H(Z)$ with equality iff X is normal.

The relative entropy quantifies the entropy gap. Indeed, this is Kullback’s proof of the maximum entropy property

$$H(Z) - H(X) = \int \phi(x) \log \frac{1}{\phi(x)} dx - \int f(x) \log \frac{1}{f(x)} dx$$

$$= \int f(x) \log \frac{1}{\phi(x)} dx - \int f(x) \log \frac{1}{f(x)} dx$$

$$= \int f(x) \log \frac{f(x)}{\phi(x)} dx$$

$$= D(f || \phi)$$

$$\geq 0$$

Here $\log \frac{1}{\phi(x)} = \frac{x^2}{2\sigma^2} \log e + \frac{1}{2} \log 2\pi \sigma^2$ is quadratic in x, so both f and ϕ give it the same expectation, which is $\frac{1}{2} \log 2\pi e \sigma^2$.
Fisher Information Basics

- For a mean zero random variable X with differentiable density $f(x)$ and finite variance $\sigma^2 = 1$,

 the score function is $score(X) = \frac{d}{dx} \log f(x)$

 the Fisher information is $I(X) = E[\text{score}^2(X)]$.

- For a Normal$(0, \sigma^2)$ random variable Z, with density function ϕ,

 the score function is linear $score(Z) = -Z/\sigma^2$

 the Fisher information is $I(Z) = 1/\sigma^2$

- The relative Fisher information is $J(f||\phi) = \int f(x) \left(\frac{d}{dx} \log \frac{f(x)}{\phi(x)}\right)^2 dx$

 it is non-negative

 it is larger than $D(f||\phi)$

- Minimum Fisher info property (Cramer-Rao ineq): $I(X) \geq 1/\sigma^2$

 equality iff Normal

- The information gap satisfies: $I(X) - I(Z) = J(f||\phi)$
The Central Limit Problem

For independent identically distributed random variables X_1, X_2, \ldots, X_n, with $E[X] = 0$ and $VAR[X] = \sigma^2 = 1$, consider the standardized sum

$$\frac{X_1 + X_2 + \ldots + X_n}{\sqrt{n}}.$$

Let its density function be f_n and its distribution function F_n.
Let the standard normal density be ϕ and its distribution function Φ.

Natural questions:

• In what sense do we have convergence to the normal?
• Do we come closer to the normal with each step?
• Can we give clean bounds on the “distance” from the normal and a corresponding rate of convergence?
Convergence

- **In distribution:** $F_n(x) \to \Phi(x)$
 Classical via Fourier methods or expansions of expectations of smooth functions.
 Linnick 59, Brown 82 via info measures applied to smoothed distributions.

- **In density:** $f_n(x) \to \phi(x)$
 Prohorov 52 showed $\| f_n - \phi \|_1 \to 0$ iff f_n exists eventually.
 Kolmogorov & Gnedenko 54 $\| f_n - \phi \|_\infty \to 0$ iff f_n bounded eventually.

- **In Shannon Information:** $H(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_i) \to H(Z)$
 Barron 86 shows $D(f_n \| \phi) \to 0$ iff it is eventually finite.

- **In Fisher Information:** $I(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_i) \to 1/\sigma^2$
 Johnson & Barron 04 shows $J(f_n \| \phi) \to 0$ iff it is eventually finite.
Original Entropy Power Inequality

Shannon 48, Stam 59: For independent random variables with densities,

\[e^{2H(X_1 + X_2)} \geq e^{2H(X_1)} + e^{2H(X_2)} \]

where equality holds if and only if the \(X_i \) are normal.

Also

\[e^{2H(X_1 + \ldots + X_n)} \leq \sum_{j=1}^{n} e^{2H(X_j)} \]
Original Entropy Power Inequality

Shannon 48, Stam 59: For independent random variables with densities,

\[e^{2H(X_1 + X_2)} \geq e^{2H(X_1)} + e^{2H(X_2)} \]

where equality holds if and only if the \(X_i \) are normal.

Central Limit Theorem Implication

For \(X_i \) i.i.d., let \(H_n = H\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_i \right) \)

- \(nH_n \) is superadditive

\[H_{n_1+n_2} \geq \frac{n_1}{n_1 + n_2} H_{n_1} + \frac{n_2}{n_1 + n_2} H_{n_2} \]

- monotonicity for doubling sample size

\[H_{2n} \geq H_n \]

- The superadditivity of \(nH_n \) and the monotonicity for the powers of two subsequence are key in the proof of entropy convergence [Barron '86]
Leave-one-out Entropy Power Inequality

Artstein, Ball, Barthe and Naor 2004 (ABBN): For independent X_i

$$e^{2H(X_1+\ldots+X_n)} \geq \frac{1}{n-1} \sum_{i=1}^{n} e^{2H(\sum_{j\neq i} X_j)}$$

Remarks

- This strengthens the original EPI of Shannon and Stam.
- ABBN’s proof is elaborate.
- Our proof (Madiman & Barron 2006) uses familiar and simple tools and proves a more general result, that we present.
- The leave-one-out EPI implies in the iid case that entropy is increasing:

$$H_n \geq H_{n-1}$$

- A related proof of monotonicity is developed contemporaneously in Tulino & Verdú 2006.
- Combining with Barron 1986 the monotonicity implies

$$H_n \nearrow H(\text{Normal}) \quad \text{and} \quad D_n = \int f_n \log \frac{f_n}{\phi} \downarrow 0$$
New Entropy Power Inequality

Subset-sum EPI (Madiman and Barron)

For any collection S of subsets s of indices $\{1, 2, \ldots, n\}$,

$$e^{2H(X_1+\ldots+X_n)} \geq \frac{1}{r(S)} \sum_{s \in S} e^{2H(\text{sum}_s)}$$

where $\text{sum}_s = \sum_{j \in s} X_j$ is the subset-sum

$r(S)$ is the prevalence, the maximum number of subsets in S in which any index i can appear

Examples

- $S=$ singletons, $r(S) = 1$, original EPI
- $S=$ leave-one-out sets, $r(S) = n-1$, ABBN’s EPI
- $S=$ sets of size m, $r(S) = \binom{n-1}{m-1}$, leave $n-m$ out EPI
- $S=$ sets of m consecutive indices, $r(S) = m$
New Entropy Power Inequality

Subset-sum EPI

For any collection S of subsets s of indices $\{1, 2, \ldots, n\}$,

$$e^{2H(X_1+\ldots+X_n)} \geq \frac{1}{r(S)} \sum_{s \in S} e^{2H(\text{sum}_s)}$$

Discriminating and balanced collections S

- **Discriminating** if for any i, j, there is a set in S containing i but not j
- **Balanced** if each index i appears in the same number $r(S)$ of sets in S

Equality in the Subset-sum EPI

For discriminating and balanced S, equality holds in the subset-sum EPI if and only if the X_i are normal

In this case, it becomes

$$\sum_{i=1}^{n} a_i = \frac{1}{r(S)} \sum_{s \in S} \sum_{i \in s} a_i \text{ with } a_i = \text{Var}(X_i)$$
New Entropy Power Inequality

Subset-sum EPI

For any collection \(S \) of subsets \(s \) of indices \(\{1, 2, \ldots, n\} \),

\[
e^{2H(X_1+\ldots+X_n)} \geq \frac{1}{r(S)} \sum_{s \in S} e^{2H(\text{sum}_s)}
\]

CLT Implication

Let \(X_i \) be independent, but not necessarily identically distributed.

The entropy of variance-standardized sums increases “on average”:

\[
H \left(\frac{\text{sum}_{\text{total}}}{\sigma_{\text{total}}} \right) \geq \sum_{s \in S} \lambda_s \, H \left(\frac{\text{sum}_s}{\sigma_s} \right)
\]

where

- \(\sigma_{\text{total}}^2 \) is the variance of \(\text{sum}_{\text{total}} = \sum_{i=1}^n X_i \) and \(\sigma_s^2 \) is the variance of \(\text{sum}_s = \sum_{j \in s} X_j \)
- The weights \(\lambda_s = \frac{\sigma_s^2}{r(S)\sigma_{\text{total}}^2} \) are proportional to \(\sigma_s^2 \)
- The weights add to 1 for balanced collections \(S \)
New Fisher Information Inequality

For independent X_1, X_2, \ldots, X_n with differentiable densities,

$$
\frac{1}{I(\text{sum}_{\text{total}})} \geq \frac{1}{r(S)} \sum_{s \in S} \frac{1}{I(\text{sum}_s)}
$$

Remarks

• This extends Fisher information inequalities of Stam and ABBN

• Recall from Stam ’59

$$
\frac{1}{I(X_1 + \ldots + X_n)} \geq \frac{1}{I(X_1)} + \ldots + \frac{1}{I(X_n)}
$$

• For discriminating and balanced S, equality holds iff the X_i are normal
New Fisher Information Inequality

For independent X_1, X_2, \ldots, X_n with differentiable densities,

$$\frac{1}{I(\text{sum}_{\text{total}})} \geq \frac{1}{r(S)} \sum_{s \in S} \frac{1}{I(\text{sum}_s)}$$

CLT Implication

- For i.i.d. X_i, let $I_n = I\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_i\right)$

 The Fisher information I_n is a decreasing sequence:

 $$I_n \leq I_{n-1} \quad \text{[ABBN '04]}$$

 Combining with Johnson and Barron '04 implies $I_n \searrow I(\text{Normal})$ and

 $$J(f_n||\phi) \searrow 0$$

- For i.n.i.d. X_i, the Fisher info. of standardized sums decreases on average

 $$I\left(\frac{\text{sum}_{\text{total}}}{\sigma_{\text{total}}}
ight) \leq \sum_{s \in S} \lambda_s I\left(\frac{\text{sum}_s}{\sigma_s}\right)$$
The Link between H and I

Definitions
- Shannon entropy: $H(X) = E[\log \frac{1}{f(X)}]$
- Score function: $\text{score}(X) = \frac{\partial}{\partial x} \log f(X)$
- Fisher information: $I(X) = E[\text{score}^2(X)]$

Relationship
- For a standard normal Z independent of X,
 - Differential version: $\frac{d}{dt}H(X + \sqrt{t}Z) = \frac{1}{2}I(X + \sqrt{t}Z)$ [de Bruijn, see Stam '59]
 - Integrated version: $H(X) = \frac{1}{2} \log (2\pi e) - \frac{1}{2} \int_0^\infty \left[I(X + \sqrt{t}Z) - \frac{1}{1+t} \right] dt$ [Barron '86]
The Projection Tool

For each subset s,

$$\text{score}(\text{sum}_{\text{total}}) = E[\text{score}(\text{sum}_s) \mid \text{sum}_{\text{total}}]$$

Hence, for weights w_s that sum to 1,

$$\text{score}(\text{sum}_{\text{total}}) = E\left[\sum_{s \in S} w_s \text{score}(\text{sum}_s) \mid \text{sum}_{\text{total}} \right]$$

Pythagorean inequality

The Fisher info. of the sum is the mean squared length of the projection

$$I(\text{sum}_{\text{total}}) \leq E \left[\sum_{s \in S} w_s \text{score}(\text{sum}_s) \right]^2$$
The Heart of the Matter

Recall the Pythagorean inequality

\[I(\text{sum}_{\text{total}}) \leq E \left[\sum_{s \in S} w_s \, \text{score}(\text{sum}_s) \right]^2 \]

and apply the variance drop lemma to get

\[I(\text{sum}_{\text{total}}) \leq r(S) \sum_{s \in S} w_s^2 I(\text{sum}_s) \]
The Variance Drop Lemma

Let X_1, X_2, \ldots, X_n be independent. Let $X_s = (X_i : i \in s)$ and $g_s(X_s)$ be some mean-zero function of X_s. Then sums of such functions

$$g(X_1, X_2, \ldots, X_n) = \sum_{s \in S} g_s(X_s)$$

have the variance bound

$$Eg^2 \leq r(S) \sum_{s \in S} Eg_s^2(X_s)$$
The Variance Drop Lemma

Let X_1, X_2, \ldots, X_n be independent. Let $\overline{X}_s = (X_i : i \in s)$ and $g_s(\overline{X}_s)$ be some mean-zero function of \overline{X}_s. Then sums of such functions

$$g(X_1, X_2, \ldots, X_n) = \sum_{s \in S} g_s(\overline{X}_s)$$

have the variance bound

$$E g^2 \leq r(S) \sum_{s \in S} E g_s^2(\overline{X}_s)$$

Remarks

• Note that $r(S) \leq |S|$, hence the “variance drop”

• Examples:

 - $S =$ singletons has $r = 1$: additivity of variance with independent summands
 - $S =$ leave-one-out sets has $r = n - 1$ as in the study of the jackknife and U-statistics

• Proof is based on ANOVA decomposition \[Hoeffding '48, Efron and Stein '81\]

• Introduced in leave-one-out case to info. inequality analysis by\ ABBN '04
Optimized Form for I

We have, for all weights w_s that sum to 1,

$$I(\text{sum}_{\text{total}}) \leq r(S) \sum_{s \in S} w_s^2 I(\text{sum}_s)$$

Optimizing over w yields the new Fisher information inequality

$$\frac{1}{I(\text{sum}_{\text{total}})} \geq \frac{1}{r(S)} \sum_{s \in S} \frac{1}{I(\text{sum}_s)}$$
Optimized Form for \(H \)

We have (again)

\[
I(\text{sum}_{\text{total}}) \leq r(S) \sum_{s \in S} w_s^2 I(\text{sum}_s)
\]

Equivalently,

\[
I(\text{sum}_{\text{total}}) \leq \sum_{s \in S} w_s I\left(\frac{\text{sum}_s}{\sqrt{r(S)w_s}} \right)
\]

Adding independent normals and integrating,

\[
H(\text{sum}_{\text{total}}) \geq \sum_{s \in S} w_s H\left(\frac{\text{sum}_s}{\sqrt{r(S)w_s}} \right)
\]

Optimizing over \(w \) yields the new Entropy Power Inequality

\[
e^{2H(\text{sum}_{\text{total}})} \geq \frac{1}{r(S)} \sum_{s \in S} e^{2H(\text{sum}_s)}
\]
Fisher information and M.M.S.E. Estimation

Model: \(Y = X + Z \) where \(Z \sim N(0, 1) \) and \(X \) is to be estimated.

Optimal estimate: \(\hat{X} = E[X|Y] \)

Fact: \(\text{score}(Y) = \hat{X} - Y \)

Note: \(\hat{X} - \hat{X} \) and \(\hat{X} - Y \) are orthogonal, and sum to \(-Z\).

Hence: \(I(Y) = E \left((\hat{X} - Y)^2 \right) = 1 - \text{minimal M.S.E.} \)

Thus derivative of entropy can be expressed equivalently in terms of either
\(I(Y) \) or minimal M.S.E.

From L.D. Brown ’70’s [c.f. the text of Lehmann and Casella ’98]

Guo, Shamai and Verdú, 2005 use the minimal M.S.E. interpretation to give a related proof of the EPI and Tulino and Verdú 2006 use this
M.S.E. interpretation to give a related proof of monotonicity in the CLT.
Recap: Subset-sum EPI

For any collection S of subsets s of indices $\{1, 2, \ldots, n\}$,

$$e^{2H(\text{sum}_{\text{total}})} \geq \frac{1}{r(S)} \sum_{s \in S} e^{2H(\text{sum}_s)}$$

- Generalizes original EPI and ABBN’s EPI
- Simple proof using familiar tools
- Equality holds for normal random variables
Comment on CLT rate bounds

For iid X_i let

$$J_n = J(f_n || \phi)$$

and

$$D_n = D(f_n || \phi)$$

Suppose the distribution of the X_i has a finite Poincaré constant R.

Using the pythagorean identity for score projection, Johnson & Barron '04 show:

$$J_n \leq \frac{2R}{n} J_1$$

$$D_n \leq \frac{2R}{n} D_1$$

• Implies a $1/\sqrt{n}$ rate of convergence in distribution, known to hold for random variables with non-zero finite third moment.

• Our finite Poincaré assumption implies finite moments of all orders.

• Do similar bounds on information distance hold assuming only finite initial information distance and finite third moment?
Two ingredients

- score of sum = projection of scores of subset-sums
- variance drop lemma

yield the conclusions

- existing Fisher information and entropy power inequalities
- new such inequalities for arbitrary collections of subset-sums
- monotonicity of I and H in central limit theorems

refinements using the pythagorean identity for the score projection yield

- convergence in information to the Normal
- order $1/n$ bounds on information distance from the Normal