Module 7: Discrete Probability

Theme 1: Elementary Probability Theory

Probability is usually associated with an outcome of an experiment. For example, the experiment may
be a throw of a coin, while the two possible outcomes are “heads” and “tails”. Roughly speaking,
probability will estimate our chance that the next outcome of this experiment is either a head or a tail
(here we assume that tail and head are equally likely, that is, the probability of tossing a head or a tail
is equal ta0.5 or 50%).

An experiment is a procedure that gives a set of possible outcomes. In fact, the akbtpafs-
sible outcomes is called thmample spacde.g., in the experiment with a coin, the sample space
{head tail}). Finally, aneventis a subset of the sample space (e.giead. When there are a finite
number ofequally likelyoutcomes, Laplace suggested the following definition of the probability:

The probability of an eventy C S (which is a subset of a finite sample spafeof

equally likely outcomes is
_ Bl

s
where|E| and|S| are cardinalities of the sefs and S, respectively. We often call the
events ink favorable eventswhile events inS all possible events

P(E)

Example 1 A box has 5 black balls and 7 green balls. What is the probability of selecting a green
ball?

The sample spacg consists ofi2 balls. The evenE = {select a green bglhas seven elements.
ThereforeP(E) = 7/12.

Example 2 Let two dice be rolled (we recall that a die has six sides, and each side has one, or two,
or..., six dots). What is the probability that the sum of the numbers on the two did€is
Let us first build the probability space It consists of pairg:, j) wherel < i,; < 6, so we have
|S| = 36 (since every die has six outcomes, so two of them must havieoutcomes). The event
E = {sum is equal to 1} consists of

E= {(57 6)7 (67 5)}7

therefore,P(E) = 2/36 = 1/18.

The counting problems encountered so far were very simple. Consider now the following prob-
lem.

Example 3 Find the probability that a hand of five cards in poker contains four cards of one kind?



We recall that there ar&2 cards in a deck; there at8 different kinds of cards, with 4 cards of
each kind. These kinds are two's, three’s, tens, jacks, queens, kings, and aces. There are also four
suits: spades, clubs, hearts, and diamonds.

The number of ways to choosecards out of2 is C(52,5) (which is a large number). This is
the cardinality of the sample space. Let us now consider the évémt a hand has four cards of one
kind. By the multiplication rule, a hand of five cards with four cards of the same kind is the number
of ways to pick one kind@(13,1) = 13) and the number of ways to pick the fifth card, which is
C'(48,1) (in words, one in every8). Therefore, by the above definition

13-48
P(E) = C(52.5) ~ 0.00024
since there ar€’(52, 5) possible outcomes ar@(13,1) - C(48, 1) “favorable” outcomes fo&.

Sometimes, we know the probability of everlfg and E'5 and need to know the probability of
combinations of events such &5 U F» (i.e., at least one event occur#); N E5 (both events must
occur), orE = S — E (F doesnotoccur). Let us start with the probability of the complementary
eventE. We claim that

P(E)=1-P(E).
Indeed, sincéFE| = |S| — |E| we obtain
~ _ ISI— 1Bl |5 |E]
P(E)_T_E—E_I—P(E).
Example 4 What is the probability that among five randomly generated bits at least df?e is

This exactly the case when it easier to complitthan £. In this casel = {all bits are 1. Since
there are2’ possible binary strings of length five, only only one (i(®.,0, 0,0, 0)) is the “favorable”
one, we find

_ 1
since there ar@> binary strings of lengtts and there is only one string with dls. Hence
P(E)zl—P(E)zl—Z_Sz%.

Let us now computé’(E, U Ey). From previous modules we know that
|E1 U E2| = |E1| + |E2| — |E1 N E2|

therefore, by the definition of probability

E,UE
P(EyUE,) = %
_ B[+ |Ba| — By N By
S|
|E1| | |Ba|  |ELN By
S| 1S S|

= P(El) + P(EQ) - P(E1 N EZ)
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In summary, we prove that
P(E1 U EQ) = P(El) + P(EQ) - P(E1 N EQ)

In words, the probability of union of two events is the sum of the probability of both events minus
the the probability of product of the events, When the events are disjointiji.e), E5 = ), then
P(E1 U EQ) = P(El) + P(EQ)

Example 5 What is the probability that a randomly selected positive integer smaller than equal to
100 is divisible either by2 or by 5?

Let F; that the integer is divisible by, and F; the event that the integer is divisible ByClearly
|Ey| = 50 and|E>| = 20. Observe that the event we are looking fofdsU E5. In order to compute
it we need E; N Ey| = 10 since there are ten numbers in the rahgde 100 that are divisible byl 0.
Therefore, by the definition of probability we have

P(EyUEy) = P((E1)+ P(Ez) — P(E1 N Ey)
50 20 10

100 T 100 ~ 100
3

5

Exercise 7A What is the probability of generating a binary strifig0, 1, 1,0, 1,0) of length seven
provided0 and1 are equally likely.



Theme 2: Probability Theory

In the previous section, we assumed that all outcomes of the sampleS$pagequally likely. This
led us to the Laplace definition of probability. Here we generalize it.

Let S be a probability space. Throughout, we assume $hat finite, and often we just list all
outcomes (e.g.5 = {s1,...,,}). Any subsetA of S will be called anevent We now define
probability P as a function from the set of subsets $finto the interval[0, 1]. If we denote by
Q={A: AC S} then

P: Q—10,1]

such that the following three properties hold (belB\A) denotes the probability of the eveA):
1. P(A) >0;

3. ifANB =0,thenP(AU B) = P(A) + P(B).

The above three properties say that the probability of any event must be nonnegative, that the proba-
bility of a “sure” event (i.e.S) is equal to one, and finally that the probability of the union of disjoint
events is the sum of the probabilities of the corresponding events.

Using these three assumptions one can prove many properties of probability (that we already
encountered in the previous section). For exampledlet S — A be the complementary event tb
(that is, A is the same asot A). We haveP(A) = 1 — P(A). Indeed, observe th& — A and A are
disjoint, hence by (c) we find

1=P(S)=P((S—-A)UA) = P(S - A)+ P(A) = P(A) + P(A),
which proves our claim thaP(A) = 1 — P(A). By the way, as a corollary we see that

P®) =P(S)=1-P(S)=0.

Let now all outcomes ir$ beequally likely. To be more precise, l&t = {s1,...,s,} and
1
P(s;) = —
n

since by the second property above we have > " | P(s;) = nP(s;) (all events sum up to one).
LetnowA = {s;,,...,s;, }, thatis|A| = k. By the third property of the probability definition and
the above we have

P(A) = P(SiIUSZ'QU...USZ'k)
k
= Y P(si;) = kP(s1)
=1
_ kA
on 8]



In the above we first observe that the evenis a union of the elementary eves= s;, U s;, U
...Us;, . All elementary events are disjoint, hence we can sum probabilities, as the second line above
shows. Finally, since every event is equally likely and therenaegents, hencé(s;) = 1/n. We

have just recovered Laplace’s definition of probability for equally likely outcomes.

Example 6 Find the probability that a randomly selectgdligits decimalnumber is also a valid
octal number whose digits are betweeands.

First, ak digit number can be represented (as, z2, . .., zx) Wherez; € {0,1,...,9} if the
number is decimal, angd; € {0, 1,..., 7} if the number is octal. The number of decimal numbers of
lengthk is 10* (just apply the multiplication rule). The number of valid octal numbers of lekgth
8*. Therefore, the probability i§: = (£)".

Conditional Probability

Consider the case when you know that evBritas occurred, and knowing this you want to compute
the probability of event. This is known as theonditional probability and denoted aB(A|B).

Example 7. There are five black balls and ten green balls in a box. You select randomly a ball, and it
happens to be a green ball. You dot return this ball to the box. What is the probability that in the
second selection you pick up a green balllis the event of selecting a green ball in the first pick,
andB is the probability of choosing another green ball in the second pick, then the probability we are
seeking is denoted &3(B|A). In our case it is

9
P(B|4) = -

since after the first selection there are only nine green balls in the box contaihiagls. (Here we
used explicitly the fact that after picking a geen ball there are daligalls left with9 green balls.)
We can compute this probability in a different way. Observe {that= 15 and|A| = 10, hence

10

P(A) = —.
Let us now compute the probability éf N B. EventA can occur inl0 ways out ofl5, while B can

occur9 out of 14 since one ball was already taken out from the box in the pick. Hence

10 9
P(ANB) = 1 14
and then we “define” (see below for additional explanations) the conditional probadiliyA) as

_P(AnB) 10 9 15 9
P(Bl4) = P(A) 15 14 10 14

Thus, we obtain the same result as the one computed directly. It suggests a definition of conditional
probability that we shall discuss next.



Let us generalize this example. Consider a sample sfa®d two eventsd, B C S. Assume
eventB has occurred Then the sample spaéeeffectively reduces td@, therefore, we must restrict
the occurrence of evert to those outcomes that fall intB. In a senseB is the new sample space.
In other words, the number of “favorable outcomes” is it but|A N B|. Therefore for equally
likely events we comput®(A|B) as follows

ANB
P(am) = 22

Observe, however, that
|AN B
|B|
ANB| S|
EE
|ANB|

P(A|B) =

2

|B|

P‘(fll N B)
P(B)
In the second line above, we multiply and divide|lSy and then observe in the third line that we have
the probabilitiesP?(A N B) and P(B).
Actually, the last expression is used as a definition of the conditional probability.

Let A and B be events withP(B) > 0. The conditional probability of A given B,
denoted ad$’(A|B), is defined as
P(ANB)

PAIB) = =5

Example 8 A box contains5000 chips,1000 of them made by company, the rest by company .
It is known that10% = 100 chips made by compan¥ are defective, while onlyy% = 200 chips
made by company” are defective. Compute the probability that if you pick up a defective chips it
comes from company .

Let A be the event that a chip is made by compahynd B that a chip is defective. We need
to find P(A|B), that is, the probability that provided a chip is defective it i comes from company
For this we need’(B) and P(A N B). But

100 + 200
100
Then P(ANB 0.02 1
pap) = PANB)_ 0.0z

P(B) 006 3
that is, one out of every three.



Independence

If P(A|B) = P(A), then the knowledge oB3 does not change the probability df We say that
A and B areindependent events Observe that the above condition is equivalenP{od N B) =
P(A)P(B), which serves as a definition.

Two eventsA and B are said to béndependentif and only if

P(ANB) = P(A)P(B).

Example 8 Consider a five-bit binary string. The probability of generating a zero is equal Bits
are generated independently. What is the probability of getiirig1?
Since we have independence we easily compute

P(00111) = P(0) - P(0) - P(1) - P(1) - P(1) = p*(1 — p)?

sincel — p is the probability of generating a one.

Exercise 7B Show that ifA and B are independent events, thérand B are also independent events.

Binomial Distribution and Bernoulli Trials

In the last example, we generated five bits and asked for the probability of gedting. However,

if we ask for the probability of generating tvis and threds, the situation is different. This time we
do not specify where the tw@s and thred are located. Therefore, strings liké011, 11001, etc.
satisfy the description of the event. In fact, we h&g, 2) = C(5, 3) ways to select two zeros out
of five. Thus this probability is equal to

C(5,2)p*(1 — p)3 = 10p*(1 — p)?,

and this should be compared with the answer to the previous example. For instanee)).if, then
the above becomes
C(5,2)0.12-0.9% = 10 - 0.01 - 0.729 = 0.0729.

We shall generalize the last situation, and introduce the so da#edoulli trials and thebino-
mial distribution . Consider an experiment that has two outcomes calledesseandfailures. Let
the probability of a success he while the probability of a failurey = 1 — p. This experiment is
called theBernoulli trial . Let us repeat it times. Many problems in probability can be solved by
asking what is the probability df successes in Bernoulli trials. The last example can be viewed as
five Bernoulli trials with a success being a generation of a zero.

Let us now considen independentBernoulli trials with the probability of a success equapto
What is the probability of obtaining successes. Since the outcomes are indepengentieular trial
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with k successes has the probability(1 — p)»~*. But we can choose ofi(n, k) waysk successes
out of n trials, therefore, the probability éf successes in independent Bernoulli trials is

C(n,k)p*(1 —p)"*. (1)
Considered as a function &f we call the above function tHanomial distribution and denote it as
b(k;n,p) = C(n, k)p*(1 — p)» "

Observe that (1) is probability since by the definition of probability it sums up to one. More
precisely, by Newton’s summation formula discussed in Module 5

Y Clnk)pfl-p"F=p+1-p=1"=1
k=0

as needed.

Example 9 A biased coin is thrown 7 times. The probability of throwing a taibid. What is the
probability of throwing three tails in four trials?
Clearly, we have the Bernoulli trials with the success being a throw of a tail. Hence, the probability
is equal to
C(7,3)(0.4)> - 0.6 = 0.1536.

after substitutingy = 0.4 in (1).

Random Variables

Many problems are concerned with a numerical values associated with the outcome of an experiment.
For example, we can assign valii¢o the tail when throwing a coin, and vallewvhen throwing a
head. Such a numerical value assigned to an outcome is known as a random variable.

A random variable is a function from the sample space of an experiment to the set of
real numbers.

Example 1Q Let us flip a coin three times. Define a random variaklg) to be the number of tails
that appear whenis the outcome. We have

X(HHH) = 0,
X(HHT) = X(HTH)=X(THH) =1,
X(TTH) = X(THT)=X(HTT) =2,
X(TTT) = 3.

1We recall that by Newton’s formula

n

(a+b)" = Z C(n, k)a"b™".

k=0



Having defined a random variable, we can now introduceptiobability mass function. Let
Ay ={s e S: X(s)=t}, thatis,A; is the subset of (an event) that assigns valuef X. Then

P(X =t)=P(A) = > P(s)
SEA
since A, is disjoint union of elementary evenisuch thatX (s) = t.
Let us now discuss an important notion of probability theory, namely, the “expected value” of an
experiment. For example, one expects alidutails when flipping an unbiased coif0 times. We
are now in a position to definite it precisely.

The expected value(also known as thenean valug of a random variableX (s) over
s € S taking values int € X (s) is defined as

E[X]=) P(s)X(s)= Y tP(X =t).

s€S teX(S)

The above formula extends the definition of “average value” known from high school. Indeed, let
all eventsX = t are equally likely, and assume that 1,2,...,n. WE learned in high school to
compute the average (expected value) as follows

_14+24---n
N n

1 1 1 -
E[X =1-—4+2- = +... —:§:tPX:t
[X] n—i— + —i—nn 2 ( )

n

which coincides with the above definition.

Example 11 We shall continue Example 10 assuming that the coin is fair (i.e., probability of a head
or a tail is0.5). From the previous example we find that

P(X =0) = é
PX=1) = 3,
P(x=2) = 2,
P(X=3) =

since, for example} X = 1} = {HHT,THH, HT H}, thus we have three out @ = 8 outcomes
satisfyingX =1 (i.e., the number of tails is equal to one). Therefore,

1 3 3 1 15
EX]=0-g+1-o+3- 043 0=,

that is, on average we ha\Ié tails per three throws.



Let us now compute the expected value of the binomial distribution defined above. We Xefine
as the number of successesiiBernoulli trials. TheA

E[X] = i EP(X =k) = i kC(n, k)pF(1 — p)"F
k=0 k=0

= j{:kZFG;é757pkU-—zﬁ"k
k=0

B n (TL— 1)| N
B kzzln(k - )l(n — k)!pk(l -p) k

= npY C(n—1k—1)p~1(1 —p)n-D=(=D)
k=1

n—1
= )y Cln—1j)p'(1—p"
j=0

= np(p+1-p)"!

= np.
The first line is just the definition of the binomial distribution and the expected value. In the third line
we use the following property of the binomial coefficients (see Module 4 and 6):

~ kal (n—1)! B
kC(n,k) = M=) n(k D=k nC(n—1,k—1).
In the fourth line above we change the index of summation fkdm; = &k — 1, while in the fifth line

we apply the Newton summation formula, discussed in Module 4 which we recall below

(a+b)" = Z C(n, k)ako"*.
k=0

(Inourcaseg =pandb=1—p.)
Expectation has some nice properties. For example,

E[X + Y] = E[X] + E[Y],

this is, the expectation of the sum of random variables is the sum of expectations. This is very
important result! Let us derive it. We have

E[X +Y] = > P(s)[X(s) +Y(s)]
sES
= ) P(s)X(s)+ »_P(s)Y(s)
seS SES
= E[X]+E[Y]
2This derivation is quite long and can be omitted in the first reading. We shall re-derive the same result in Example 13
using simpler arguments.
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Example 13 We just computed thaE[X] = np for binomially distributedX. We needed a long
chain of computations. But we can prove the same result using the above property in a much easier
way. Observe that

X=X1+Xo+--+ X,

where X; is equal tol when a success occurs afddtherwise. Such a random variable is called
the Bernoulli random variable or, more precisely, Bernoulli distributed random variable. Clearly,
E[X;]=1-p+0- (1 —p) = p. Since the expectation of a sum of random variables is the sum of
expectations, we have

E[X] = E[X1] + E[X;] + - -- + E[Xy] = np,

as before, but this time we derive it in a simple way.

However, in generdB[XY] is not equal tdE[ X |E[Y']. To assure this is true one must assukhe
andY are independent defined as follows:

Two random variableX andY on the same sample spagareindependentif

P(X(s) =1,Y(s) =) = P(X(s) = 1) - P(Y(s) = ).

Example 14 Let us roll two dice. What is the probability of gettirigon the die and on the second
die. Let X represent the number obtained on the first die ¥rile number rolled on the second die.
Since the events are independent, we have

P(X=6,Y=5)=P(X=6)-P(Y=5)=
We now prove the following result
Theorem 1Let X andY are independent random variables. Then
E[XY] =E[X]E[Y].

Proof. We have



where in the second line we used independence, while in the third line we computed two independent
sums.

Finally, we shall discussariance. The expected value of a random variable tells us its average
value but says nothing about variability of it. The reader should not forge&ttigt random variable
and it (randomly)aries While we would like to find one synthetic number (e.g., the expected value)
to describe this random variable, such a characterization is usually very poor. Therefore, we try to
introduce some parameters that can tall us (in a simplified way) more about the random variable.
The variance, roughly speaking, determines how widely a random variable is distributed around the
expected value. Formally:

Let X be a random variable defined on a sample sgac€hevariance of X, denoted
asVar[X], is

Var[X] = ¥ P(s)(X(s) — E[X])* = E[(X - B[X])?].
sES

That is, the variance is trexpected valuef the following random variable(X — E[X])2. Since we
expect thatX is more likely to concentrate arouri&{ X ], the random variableX — E[X])? tells us
about variations o around the expected value.

We can compute the variance using the following formula

Var[X] = E[X?] - E[X]%. 2)
Indeed,
E[(X — E[X])?)] = E[X?-2XE[X]+ E[X]]]
= E[X?] - 2E[X]|E[X] + E[X]?
= E[X?’]-E[X]?

where above we used the fact that the expected value of a sum of random variables is the sum of the
expected values and the following identity (let’s call it the “square of sum identity”)

(a +b)* = a* + 2ab + b?

known from high school.

Example 15 Consider a Bernoulli random variablg taking valuel with probability p and zero
otherwise. What is the variance &f?
We observe first thdE[X] =1-p+ 0- (1 — p) = p. Then we compute

E(X? =1%p+0%- (1 —p) =p.

12



Thus, a straightforward computation gives us
Var[X] = E[X?| ~E[X? =p-p*=p(1 -p) =p-¢

Unlike the expectation the variance of a sum of two random variablestthe sum of variances.
For this to hold, we need additional assumptions, as shown below.

Theorem 2 Let X andY beindependentrandom variables. Then
Var[X + Y] = Var[X] + Var[Y].
In general, ifX;, ¢ =1,2,...,n are pairwise independent random variables, then

Var[X; + X2 + --- + X,,] = Var[X]| 4+ Var[Xy]| + --- + Var[X,,].

Proof. From (2) we have
Var[X + Y] =E[(X +Y)) - E[X + Y]~
But

E[(X +Y)Y] = E[X?+2XY +Y?]
= E[X?]+2E[XY]+E[Y?]
= E[X?]+ 2E[X]E[Y] + E[Y?]

where in the second line we use the idenity+ b)? = a? + 2ab + b and in the third line we apply
independence ok andY. Summing up, we obtain

Var[X +Y] = E[X +Y))]-E[X +Y]?
= E[(X +Y)’] - (E[X] +E[Y))?
= E[X?]+ 2E[X|E[Y] + E[Y?] — E[X]? — 2E[X]|E[Y] — E[Y]?
= (E[X*]-E[X]*) + (E[Y?] - E[Y]’
= Var[X] + Var[Y],

which completes the proof. In the first line we use the fact Wat[X] = E[X?] — E[X]? (derived
above), then we use again the square of sum identity, then we rearrange terms of the sum, and finally
obtain the desired identity.

Example 18 Let us compute the variance of the binomial distribution. We use the representation of
binomial distribution from Example 13, that is,

X=X+ + Xy,
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whereX; are Bernoulli distributed witVar[X;] = p(1 — p) as computed in Example 15. Therefore,
by the last theorem

Var[X]| = Var[X; +--- + X,;] = Var[X ] + - -- + Var[X,,] = np(1 — p).

That is, the variance of the sum of Bernoulli distributed random variables is the sum of variances of
individual random variables, and it is equakhtp(1 — p).
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