
Module 4: Mathematical Induction

Theme 1: Principle of Mathematical Induction

Mathematical induction is used to prove statements about natural numbers. As students may remem-

ber, we can write such a statement as a predicateP (n) where the universe of discourse forn is the

set of natural numbersN = f1; 2; : : :g.

Example 1: Here are some examples of what we mean byP (n):

P (n) � 1 + 2 + � � �+ n =
n(n+ 1)

2
; 8n 2 N;

P (n) � 12 + 22 + � � �+ n2 =
n(n+ 1)(2n+ 1)

6
; 8n 2 N;

P (n) � 13 + 23 + � � �+ n3 =

�
n(n+ 1)

2

�2
; 8n 2 N;

P (n) �

nX
i=0

ai =
an+1 � 1

a� 1
; 8n 2 N;

P (n) � n! > 2n for n � 4;

P (n) �
1

2
+

1

4
+

1

8
+ � � �+

1

2n
< 1; n � 1

where� means “logically equivalent”.

The first three expressions above provide closed-form formulas for the sum ofn consecutive

positive integers, the sum of squares ofn consecutive positive integers, and the sum of cubes of

n consecutive positive integers, respectively. The fourth expression is the sum of the firstn terms

in the geometric series and we studied it already in Module 2. The last two expressions are useful

inequalities for factorial and the sum of negative powers of2.

Every statementP (n) above is about natural numbers or a subset of natural numbers (e.g., for

n � 4). How can we prove such statements? Consider the first example above regarding the sum of

the firstn consecutive positive integers. We can easily verify thatP (n) is true forsomeselectedn.

Indeed,

P (1) is true since 1 =
1 � 2

2
;

P (2) is true since 1 + 2 =
2 � 3

2
;

P (3) is true since 1 + 2 + 3 =
3 � 4

2
:
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But how can we prove thatP (n) is true forall n 2 N?

The principle of mathematical induction (PMI) can be used to prove statements about natural

numbers.

The principle of mathematical induction: LetA be a set of natural numbers such that

the following two properties hold:

(1) 1 2 A;

(2) for every natural numbern

if n 2 A then n+ 1 2 A: (1)

Then

A = N = f1; 2; : : :g;

that is,A containsall natural numbers.

How is it related to proving statements likeP (n) above? Let us define

A = fn : P (n) is true forng;

that is,A is the set of natural numbers for whichP is true. The goal is to show thatA is the same as

the set of all natural numbers, that is,A = N. Imagine that one verifies thatP (1) is true. Then we

can setA = f1g. Let’s now assume that one can prove step (2) of PMI (that we shall call theinductive

step). Thus since we know that1 2 A, and we know the inductive step is valid, say forn = 1, we

conclude that2 2 A. Therefore,A = f1; 2g, that is,P (1) andP (2) are true. But using again the

inductive step, we conclude that3 2 A. Etc. Actually, PMI allows us to replace the imprecise “etc”

byA = N, that is,P (n) is true forall natural numbers!

But why is PMI true, in the first place? We demonstrate its truth using the proof by contradiction.

Suppose that (1) and (2) of PMI hold butA is not equal toN. Hence, it must be at least one natural

number is omitted fromN. Letn0 be thefirst number (smallest) among1; 2; : : : omitted fromN. We

know thatn0 cannot be1 since we assumed that1 2 A by (1) of PMI. But by our construction,n0 �

1 2 A. Then by step (2) of PMI we must conclude thatn0 2 A, which is the desired contradiction.

Therefore,A = N.

Let us introduce some additional notation. The first step (1) of PMI is called thebasis step, while

the second step is known as theinductive step. It is usually trivial to verify the basis step, and most

work has to be done to prove the inductive step. We shall illustrate it on the following example.

Example 2: Prove the first identity above about the sum ofn consecutive natural numbers, that is,

nX
i=1

i =
n(n+ 1)

2
; n � 1:
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In this case, the propertyP (n) is a predicate saying that the above is true forn, and

A = fn : identity above is true forn 2 Ng:

We proveP (n) is true for alln (i.e.,A = N) using PMI. We need to go through the basis step and

the inductive step.

Basis Step: We must proveP (1) is true, but this was already established before.

Inductive Step: We now assume thatP (n) is true for afixedbut arbitrary n. The above assumption

is called theinductive hypothesisand in our case it takes the following form

Sn :=

nX
i=1

i =
n(n+ 1)

2

for arbitraryn. (In the above symbol:= means equal by definition.) The reader must understand that

the statement immediately above and the statement that we want to prove are not the same, even if

they look alike. In the statement above we assume that the identity to be proved (aboutall sums of

the firstn consecutive natural numbers) is true for one value ofn (but an arbitrary one).

We now perform the inductive step. We must establish the inductive step, that is, to show that the

formula forSn above implies that

Sn+1 =
n+1X
i=1

i =
(n+ 1)(n+ 2)

2

is true, too. Observe that above we replacedn by n+ 1 (on the left-hand side of the equation as well

as on the right-hand side). Indeed, we have

Sn+1 = 1 + 2 + � � � + n+ (n+ 1) =

nX
i=1

i+ (n+ 1)

=
n(n+ 1)

2
+ (n+ 1)

= (n+ 1)
�n
2
+ 1
�

=
(n+ 1)(n+ 2)

2
;

where in the second line above we invoked the induction hypothesis, in the third line we factored out

the term(n + 1), and then added what is left. This is exactly what we need to prove the inductive

step.

But, there is actually another, direct, proof originally proposed by the18th century mathematician

Carl Friedrich Gauss. Let, as before,Sn =
Pn

i=1 i. We write the sumSn twice one starting the sum

from 1 up ton, and the second time starting fromn down to1. Then, we add the individual elements

vertically. Here is what comes out:
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Sn = 1 + 2 + � � � + (n� 1) + n

Sn = n + n� 1 + � � � + 2 + 1

2Sn = (n+ 1) + (n+ 1) + � � � + (n+ 1) + (n+ 1)

Since there aren terms(n+ 1) in the bottom line, we prove that

2Sn = n(n+ 1):

Again, we recover the same identity.

Exercise 4A: Using mathematical induction prove that

nX
i=1

i2 =
n(n+ 1)(2n+ 1)

6
:

Exercise 4B: Using mathematical induction prove that

nX
i=1

i3 =

�
n(n+ 1)

2

�2
:

Induction on a Subset of Natural Numbers

In the PMI discussed above in the first step we assumed that1 2 A, however, if we start the induction

from another natural number, sayk, then it holds for alln � k. This is shown in the next example.

Example 3: Prove that

n! > 2n for n � 4:

We recall thatn! = 1 � 2 � 3 � � � n = (n � 1)!n. We are asked to prove the above inequality only for

n � 4. Thus let

P (n) = fn! > 2n is true forn � 4g:

We first check that4! = 24 > 24 = 16, thusP (4) is true. (Observe thatP (3) is not true.) Now

assume this statement is true for arbitraryn � 4. We must prove that

(n+ 1)! > 2n+1

for n � 4. This is easy since

(n+ 1)! = n!(n+ 1)

> 2n(n+ 1)

> 2n+1:

The first inequality follows from the induction hypothesisn! � 2n while the second identity is a

consequence of(n+ 1) > 2 for n � 4. This proves the desired inequality for alln � 4.

4



The next two examples require a little bit of work before the induction can be applied.

Example 4: Bernoulli’s inequality. We shall prove the following result.

Theorem 1If n is a natural number and1 + x > 0, then

(1 + x)n � 1 + nx: (2)

Proof. The proof is by induction. In the basis step, we assumen = 1 and verify that(1+x)n � 1+nx

is true for1 + x > 0. Now, we assume (inductive hypothesis) that(1 + x)n � 1 + nx is true for an

arbitraryn, and we must prove that

(1 + x)n+1 � 1 + (n+ 1)x

for 1 + x > 0. To prove this we proceed as follows:

(1 + x)n+1 = (1 + x)n(1 + x)

by induction
� (1 + nx)(1 + x) since 1 + x > 0

= 1 + (n+ 1)x+ nx2

� 1 + (n+ 1)x;

where the first inequality is a consequence of the induction assumption (i.e., weknow that(1+x)n �

1 + nx so we can replace(1 + x)n by 1 + nx because1 + x > 0; observe that if1 + x < 0, then we

had to reverse the inequality sign1). The next step is simple algebra, while the last step follows from

the fact thatnx2 is nonnegative; it doesn’t matter what the value ofx, becausea+ nx2 � a for any

a. This proves the theorem.

Example 5: Let us prove that
1

2
+

1

4
+

1

8
+ � � �+

1

2n
< 1 (3)

for n � 1. We prove it by induction. The first step forn = 1 is easy to check, so we concentrate on

the inductive step. We adopt the inductive hypothesis, which in this case is

1

2
+

1

4
+

1

8
+ � � � +

1

2n
< 1;

and must prove that
1

2
+

1

4
+

1

8
+ � � �+

1

2n
+

1

2n+1
< 1:

A natural approach fails. If we invoke the induction hypothesis to the firstn terms of the above, we

will get

1 +
1

2n+1

1Think of 3 � 5 that after multiplying by�3 becomes�9 � �15.
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which doesnot imply that it is less than or equal to1 since1=2n+1 > 0. Here’s how we proceed

1

2
+

1

4
+

1

8
+ � � � +

1

2n
+

1

2n+1
=

1

2
+

1

2

�
1

2
+

1

4
+

1

8
+ � � �+

1

2n

�
by induction

<
1

2
+

1

2
� 1;

where in the first line on the right-hand side we factor1=2 and observe that what is left in the paren-

thesis must be smaller than1 by the inductive hypothesis. The rest is simple algebra. This proves the

inequality.

In some cases, we must use ageneralizedmathematical induction that we formulate in a little

different form than before.

If a statementP (n) is true forn = 1, and if for everyn > 1, the truth ofP (n) for all

natural numbers< n implies the truth ofP (n) for n, thenP (n) is true for all natural

numbers.

The only difference between the basis PMI and the above is that in in the inductive step of the gen-

eralized mathematical induction we assume that the truth ofP (1); P (2); : : : ; P (n � 1) implies the

truth ofP (n). In other words, the second step of the generalized PMI can be written as

f1; 2; : : : ; n� 1g � A then n 2 A

whereA is the set defined in the original PMI.

Recurrences2

We now apply mathematical induction to establish some facts about recurrences. We come back to

recurrences in Theme 3.

We start with an example that illustrates an application of the generalized mathematical induction.

Example 6: Let us defineT (0) = 1 and then

T (n) = 1 +
2

n

n�1X
i=0

T (i); n � 1: (4)

This is an example of arecurrence that we shall study in some details later in this module. Observe

that we can compute consecutive valuesT (1), T (2) and so on from the recurrence itself. For example,

T (1) = 1 +
2

1
T (0) = 3;

T (2) + 1 +
2

2
(T (0) + T (1)) = 5;

T (3) = 7:
2This subsection can be omitted in the first reading.
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But can we guess howT (n) grows for arbitraryn. In the table below we computed some numerical

values ofT (n) and compared them to the growth ofn andn2.

n T (n) n2

1 3 1

3 7 9

6 13 36

9 19 81

12 25 144

15 31 225

18 37 324

From this table we should observe thatT (n) grows faster thann and much slower thann2. Let us

then conjecture that3

T (n) � 4n log2 n; n � 2: (5)

We now use mathematical induction to prove this guess. Observe thatT (2) = 5 � 8 log2 2 = 8

(sincelog2 2 = 1), butT (1) = 3 > 4 log2 1 = 0, therefore, we must start the induction fromn = 2.

To carry out the inductive step we shall assume that for allj � n � 1 the above guess is is true.

We now prove that this guess is also true forn. Indeed,

T (n) = 1 +
2

n
+

6

n
+

2

n

n�1X
j=2

T (j)

induction
= 1 +

8

n
+

2

n

n�1X
j=2

4j log2 j

log j�logn
= 1 +

8

n
+

8

n
log2 n

n�1X
j=2

j

= 1 +
8

n
+

8

n
log2 n

�
n(n� 1)

2
� 1

�

= 1 +
8

n
�

8

n
log2 n� 4 log2 n+ 4n log2 n

� 1� 4 log2 n+ 4n log2 n since
8

n
�

8

n
log2 n; n � 2;

� 4n log2 n; n � 2;

where (i) in the first step we use the recurrence and extract the first two terms from the sum; (ii) in the

second line we use the induction assumption in its general form and bound everyT (j) by 4j log2 j

3We recall thaty = logb x is a logarithm to baseb of x, that is, it is the exponent to whichb must be raised to obtainx

as shown hereby = x.
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for 2 � j < n; (iii) in the third line we observe thatlog2 j � log2 n (sincej � n) and factor the

constant termlog2 n in front of the sum; (iv) in the fourth line we apply the formula for the sum of

the firstn � 1 consecutive integers proved in Example 2; (v) the fifth line is simple algebra; (vi) in

the sixth line we observe that
8

n
�

8

n
log2 n

for n � 2 and therefore cancel out the terms8=n; finally the last inequality follows from the fact that

1 � 4 log2 n � 0 for n � 2. (As we said at the beginning of this subsection, if this derivation is too

involved in the first reading, the student can move forward to the next section since it will not be used

in the forthcoming discussion.)
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Theme 2: Newton’s Summation Formula

From high school we know that

(a+ b)2 = a2 + 2ab+ b2;

(a+ b)3 = a3 + 3a2b+ 3ab2 + b3;

(a+ b)4 = a4 + 4a3b+ 6a2b2 + 4ab3 + b4:

But what about a formula for

(a+ b)n

for arbitraryn. We shall derive it here, and it is calledNewton’s summation formula.

Before we handle the general case of(a+b)n, we must introduce some new notation. In particular,

binomial coefficientsalso known asNewton’s coefficients. We define for naturalk andn � k

C(n; k) :=
n!

k!(n� k)!
=

n(n� 1) � � � (n� k + 1)

k!
;

where we remind thatn! = 1 � 2 � 3 � � � (n � 1) � n. By definition0! = 1. In literature the Newton

coefficientsC(n; k) are also denoted as

Cr
n :=

 
n

k

!
:

From the definition we immediately find

C(n; 0) = 1

C(n; 1) = n

C(n; k) = C(n; n� k):

But we shall also need the following lemma.

Lemma 1For natural k andn

C(n; k) = C(n� 1; k) + C(n� 1; k � 1): (6)

Proof. We give a direct proof. Observe that

C(n� 1; k � 1) +C(n� 1; k � 1) =
(n� 1)!

k!(n� k � 1)!
+

(n� 1)!

(k � 1)!(n� k)!

=
(n� 1)!(n� k)

k!(n� k � 1)!(n � k)
+

(n� 1)!k

(k � 1)!k(n� k)!

=
(n� 1)!

k!(n� k)!
(n� k + k)

=
n!

k!(n� k)!

= C(n; k)
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where in the second line we multiply and divide the first term byn � k and the second term byk.

Then we factorize (n�1)!
k!(n�k)! and after some simple algebra obtain the desired result.

Now, we are ready to formulate and prove the Newton summation formula.

Theorem 2For any naturaln

(a+ b)n =
nX

k=0

�
n

k

�
akbn�k: (7)

Proof.4 The proof is by induction with respect ton. The basis step forn = 1 is easy to check since

C(1; 0) = C(1; 1) = 1.

We now start the inductive step, and postulate that if (7) is true for arbitraryn, then

(a+ b)n+1 =
n+1X
k=0

C(n+ 1; k)akbn+1�k

must be true. We proceed as follows

(a+ b)n+1 = (a+ b)n(a+ b) =

nX
k=0

C(n; k)ak+1bn�k +

nX
k=0

C(n; k)akbn+1�k

= C(n+ 1; 0)bn+1 + abn [C(n; 0) + C(n; 1)]

+ a2bn�1 [C(n; 1) + C(n; 2)] + � � �

+ akbn�k+1 [C(n; k � 1) + C(n; k)] + � � �

+ anb [C(n; n) + C(n; n� 1)] +C(n+ 1; n+ 1)an+1

Lemma1
=

n+1X
k=0

C(n+ 1; k)akbn+1�k:

In the first line above we use mathematical induction and then multiply out. In the next few lines

we group terms with the same power, that isaibn+1�i for all i. Finally, we applied Lemma 1 (i,e.,

C(n; k) + C(n; k � 1) = C(n+ 1; k)) to finish the derivation.

Exercise 4C: Apply Newton’s formula to the following

(1 + x2)4:

The above formula can lead to surprisingly interesting identities. Here are two of them

2n =

nX
i=0

�
n

i

�
(8)

0 =

nX
i=0

�
n

i

�
(�1)i (9)

4The proof can be omitted in the first reading.
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The first identity follows immediately from the Newton formula applied to

(1 + 1)n;

while the second follows from

(1� 1)n:

We shall re-derive these identities using combinatorial arguments in one of the next modules.
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Theme 3: Recursion and Recurrences

Sometimes it is difficult to define an object explicitly. In such cases, it is better to define this object

in terms of itself but of a smaller size. (Actually, we have seen this principle at work in mathematical

induction.) This process is calledrecursion and often it is described mathematically by arecurrence.

Example 7: Definea0 = 1 and forn � 0

an+1 = 2an:

Let’s see what we get. We first compute some sample values:

a1 = 2;

a2 = 2a1 = 4;

a3 = 2a2 = 2(2a1) = 8 = 23;

a4 = 2a3 = 2(2a2) = 2(2(2a1)) = 24:

Based on this numerical evidence, we conjecture thatan = 2n. We can prove it using mathematical

induction. But, in this it is easier to give a direct proof that is calledtelescoping. We proceed as

follows:

an+1 = 2an = 2 � 2an�1 = 22 � 2an�2 = � � � 2i+1an�(n�i) = � � � = 2na0 = 2n:

In the above we successively used the recurrenceai = 2ai�1 until we reached the initial valuea0 and

we know thata0 = 1. Observe that without knowinga0 we can neither start the recurrence nor finish

it.

Exercise 4D: Derive an explicit formula for the following recurrence forn � 1

an = 3an�1

with a0 = 1.

We can define some other functions recursively. For example,F (n) = n! can be defined recur-

sively as follows

F (0) = 1;

F (n+ 1) = (n+ 1)F (n); n � 0:

Furthermore, let

Sn =

nX
k=0

ak
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wherefakgnk=0 is a given sequence. For a computer to understand such a sum, we must define it

recursively. For example, we can do it this way

S0 = a0;

Sn+1 = Sn + an+1; n � 0:

But, let us consider a more general recurrences. We underline that in order to start a recurrence we

must define some initial values, and to provide a “method” how to compute the next value. Consider

the following recurrence

a0 = 1;

an = an�1 + 2n; n � 1:

This recurrence starts with

1; 3; 7; 15; : : :

but what is a general formula foran? Let us move the terman�1 to the other side of the recurrence

and write down all the values as follows

a1 � a0 = 2

a2 � a1 = 22

a3 � a2 = 23

: : :

ai � ai�1 = 2i

: : :

an�1 � an�2 = 2n�1

an � an�1 = 2n:

Now, when we add all these equations together most of them will cancel out (we say that the sum

telescopes) exceptan anda0 giving us

an � a0 =
nX
i=1

2i;

which is the same as saying

an =

nX
i=0

2i: (10)

Is this better than the original recurrence? Not yet since we must compute the sum. Actually, in

Module 2 we defined the geometric progression as follows

bn = rn; n = 0; 1; : : :
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and we derived

Sn :=

nX
i=0

ri =
1� rn+1

1� r
; r 6= 1: (11)

Actually, we shall re-prove this formula using mathematical induction. It is easy to check its truth for

n = 0 (the basis step). Let us move to the inductive step. We first assume that the statement above is

true for arbitraryn, and we try to prove that this would imply that

Sn+1 =
n+1X
i=0

ri =
1� rn+2

1� r
:

We proceed as follows

Sn+1 =

n+1X
i=0

ri

=

nX
i=0

ri + rn+1

induction
=

1� rn+1

1� r
+ rn+1

=
1� rn+1 + rn+1 � rn+2

1� r
;

where in the second line we extract the last term from the sum and write it separately asrn+1, then

in the next line we apply to the first sum the inductive hypothesis, and finally after some algebra we

prove the desired formula.

Now, we can return to (10) to conclude that

an =

nX
i=0

= 2n+1 � 1:

Let us solve some more recurrences. This is the only way to learn how to handle them. Letb0 = 0

and

bn = bn�1 + n; n � 1:

We do the following telescoping

bn = bn�1 + n

= (bn�2 + n� 1) + n

= bn�3 + (n� 2) + (n� 1) + n

: : :

= bi + (i+ 1) + (i+ 2) + � � �+ n

: : :
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= b0 + 1 + 2 + 3 � � � + (n� 1) + n

=

nX
i=1

i

=
n(n+ 1)

2

where in the second line we substitutebn�1 = b�n� 2+(n�1), in the third line we start observing

a pattern in whichbi is followed by the sum of the firsti + 1 natural numbers. Then we apply the

sum ofn consecutive natural numbers derived in Example 2. In every step of the above derivation we

used the recurrence itself to reduce it until we reach the value that we know, that is,b0. We can do it

since in stepi we know thatbi = bi�1 + i.

Consider now a more complicated recurrence:5

c0 = 0;

cn = 2cn�1 + n:

Let us start the telescoping process and try to find a general pattern. We have

cn = 2cn�1 + n

= 2(2cn�2 + n� 1) + n = 22cn�2 + 2(n� 1) + n

= 22(2cn�3 + n� 2) + 2(n� 1) + n

= 23cn�3 + 22(n� 2) + 2(n� 1) + n

= 23(2cn�4 + n� 3) + 22(n� 2) + 2(n� 1) + n

= 24cn�4 + 23(n� 3) + 22(n� 2) + 2(n� 1) + n

: : :

= 2icn�i + 2i(n� i) + 2i�1cn�i+1 + � � �+ 22(n� 2) + 2(n� 1) + n

: : :

= 2nc0 + 2n�1[n� (n� 1)] + 2n�2[n� (n� 2)] + � � �+ 22(n� 2) + 2(n� 1) + n

=

n�1X
k=0

2k(n� k):

In the second line above, we substitutecn�1 by 2cn�2 + n � 1 and observe that the “additive term”

is nown+ 2(n� 1) (the additive term is the one that does not involveci). After another substitution

the additive term is enlarged to22(n� 2) + 2(n� 1) + n. Now you should be able to see the pattern

which becomes2i(n� i) + 2i�1cn�i+1 + � � �+22(n� 2) + 2(n� 1) +n. After the last substitution

the additive term is finally2n�1[n� (n� 1)] + 2n�2[n� (n� 2)] + � � �+22(n� 2) +2(n� 1) +n.
5The next two examples can be omitted in the first reading.
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Now to finish the recurrence we must find a formula for the following sum

cn =

n�1X
k=0

2k(n� k) = n

n�1X
k=0

2k �

n�1X
k=0

k2k:

Observe that in the first sum we could factorizen since the summation is overk, thusn is fixed. After

this observation, the first sum is easy to estimate. We just found above that it is equal to2n � 1. But

the second one is harder. To estimate it we first observe that

2k+1 � 2k = 2k(2� 1) = 2k:

Then

Sn =

nX
k=0

k2k =

nX
k=1

k2k

=

nX
k=1

k(2k+1 � 2k)

=

nX
k=1

k2k+1 �

nX
k=1

k2k

(A)
=

nX
k=1

k2k+1 �

n�1X
k=0

(k + 1)2k+1

=

nX
k=0

k2k+1 �

n�1X
k=0

k2k+1 �

nX
k=0

2k+1

(B)
=

n�1X
k=0

k2k+1 + n2n+1 �
n�1X
k=0

k2k+1 �
nX

k=0

2k+1

(C)
= n2n+1 � 0� (2n+1 � 2)

= (n� 1)2n+1 + 2:

In line (A) we change the index of summation fromk to k + 1, in line (B) we expand the first sum

and observe that it cancels out the second sum, finally in line (C) we apply the geometric sum that we

already discussed above.

Coming back to the recurrence, putting everything together we have

cn = 2n+1 � n� 2

which is our final answer. Uffff: : : it was not that hard.

Finally, we solve one non-linear recurrence. Consider the following6

an = 3a2n�1; n � 1
6The forthcoming analysis may be completely omitted, and come back only if a student is interested in a better under-

standing of non-linear recurrences.
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wherea0 = 1. It is a non-linear recurrence sincean�1 is squared. Telescoping might be difficult for

this recurrence. So we first simplify it. Definebn = log2 an. Then we have

b0 = 1

bn = 2bn�1 + log2 3

sincelog(xy) = log x+ log y. Now we are on familiar grounds. Using telescoping we find

bn = (2n � 1) log2 3;

which implies

an = 2(2
n�1) log

2
3 = 32

n�1:

Finally, we should say it is always a good idea to verify numerically our solution by comparing its

some initial values to the values computed from the recurrence itself.
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