Module 4: Mathematical Induction

Theme 1: Principle of Mathematical Induction

Mathematical induction is used to prove statements about natural numbers. As students may remem-
ber, we can write such a statement as a predi£4te) where the universe of discourse foris the
set of natural numbel = {1,2,...}.

Example 1 Here are some examples of what we mearPigy):

1
P(n) = 1+2+---+n:@, Vn € N,
1)(2 1
P(n) = IS . G )6(n+ ), Vn €N,
D12
P(n) = 13+23+---+n3:[”(”; )] ,  Vn €N,
& a"tt —1
P = ' = VneN
(n) ;a — n €N,
P(n) = n!>2" for n >4,
1 1 1 1
Pn) = ~4-4-—+-+—<1, n>1
(n) 2+4+8+ +2n<, n >

where= means “logically equivalent”.

The first three expressions above provide closed-form formulas for the suncofisecutive
positive integers, the sum of squaresrotonsecutive positive integers, and the sum of cubes of
n consecutive positive integers, respectively. The fourth expression is the sum of thetérsts
in the geometric series and we studied it already in Module 2. The last two expressions are useful
inequalities for factorial and the sum of negative powers.of

Every statemenP(n) above is about natural numbers or a subset of natural numbers (e.qg., for
n > 4). How can we prove such statements? Consider the first example above regarding the sum of
the firstn. consecutive positive integers. We can easily verify thét) is true forsomeselectedn.
Indeed,
1-2
Ta
P(2) istruesince 1+2 = ?3,

P(1) istruesince 1 =

. . -4
P(3) istruesince 1+2+43 = 5
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But how can we prove tha®(n) is true forall n € N?

The principle of mathematical induction (PMI) can be used to prove statements about natural
numbers.

The principle of mathematical induction: Let A be a set of natural numbers such that
the following two properties hold:

(1) 1€ 4

(2) for every natural number
if neA then n+1e€A 1)

Then
A=N=1{1,2,...},

that is, A containsall natural numbers.
How is it related to proving statements likgn) above? Let us define
A={n: P(n)istrue forn},

that is, A is the set of natural numbers for whichis true. The goal is to show that is the same as
the set of all natural numbers, that i§,= N. Imagine that one verifies th#t(1) is true. Then we
cansetd = {1}. Let's now assume that one can prove step (2) of PMI (that we shall cafidhetive
step. Thus since we know thdt € A, and we know the inductive step is valid, say foe= 1, we
conclude thak € A. Therefore,A = {1,2}, that is,P(1) and P(2) are true. But using again the
inductive step, we conclude thaite A. Etc. Actually, PMI allows us to replace the imprecise “etc”
by A = N, that is,P(n) is true forall natural numbers!

But why is PMI true, in the first place? We demonstrate its truth using the proof by contradiction.
Suppose that (1) and (2) of PMI hold hdtis not equal tdN. Hence, it must be at least one natural
number is omitted fronN. Letng be thefirst number (smallest) among 2, . . . omitted fromN. We
know thatn, cannot bel since we assumed thate A by (1) of PMI. But by our constructiom, —

1 € A. Then by step (2) of PMI we must conclude thgte A, which is the desired contradiction.
Therefore,A = N.

Let us introduce some additional notation. The first step (1) of PMI is callebabis step while
the second step is known as tiheuctive step. It is usually trivial to verify the basis step, and most
work has to be done to prove the inductive step. We shall illustrate it on the following example.

Example 2 Prove the first identity above about the sunmafonsecutive natural numbers, that is,

n

Zi:w n> 1.

2 ) =
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In this case, the propert#(n) is a predicate saying that the above is truerfpand
A = {n : identity above is true fom € N}.

We proveP(n) is true for alln (i.e., A = N) using PMI. We need to go through the basis step and
the inductive step.

Basis Step We must proveP(1) is true, but this was already established before.

Inductive Step: We now assume thd?(n) is true for afixedbut arbitrary n. The above assumption

is called thenductive hypothesisand in our case it takes the following form

n

. . n(n+1)
S ;z 5
for arbitraryn. (In the above symbok means equal by definition.) The reader must understand that
the statement immediately above and the statement that we want to prove are not the same, even if
they look alike. In the statement above we assume that the identity to be proved glsaums of
the firstn consecutive natural numbers) is true for one value (dut an arbitrary one).
We now perform the inductive step. We must establish the inductive step, that is, to show that the
formula for S,, above implies that

n+1
) n+1)(n+2

=1
is true, too. Observe that above we replagday n + 1 (on the left-hand side of the equation as well
as on the right-hand side). Indeed, we have

Sup1 = 1424 +n+(n+1)=) i+ (n+1)
i=1
1
n

= mr1(3+1)

(n+1)(n+2)

2 )
where in the second line above we invoked the induction hypothesis, in the third line we factored out
the term(n + 1), and then added what is left. This is exactly what we need to prove the inductive
step.

But, there is actually another, direct, proof originally proposed by &tle century mathematician
Carl Friedrich Gauss. Let, as befoi, = """ ; i. We write the sunf,, twice one starting the sum
from 1 up ton, and the second time starting frasmdown tol. Then, we add the individual elements
vertically. Here is what comes out:



S, = 1 + 2 + -« + (n—1) + n
Sh = n + n-—-1 + - + 2 + 1
28, = (n+1) + (n+1) + -~ + (n+1) + (n+1)

Since there are terms(n + 1) in the bottom line, we prove that
25, =n(n+1).
Again, we recover the same identity.

Exercise 4A Using mathematical induction prove that

"\, n(n+1)2n+1)

Exercise 4B Using mathematical induction prove that

n

S - [t

=1

Induction on a Subset of Natural Numbers

In the PMI discussed above in the first step we assumed thatl, however, if we start the induction
from another natural number, saythen it holds for all. > £. This is shown in the next example.

Example 3 Prove that
n!>2" for n>4.

We recall that! = 1-2-3---n = (n — 1)In. We are asked to prove the above inequality only for
n > 4. Thus let
P(n) = {n! > 2" is true forn > 4}.

We first check thatl! = 24 > 2* = 16, thus P(4) is true. (Observe thaP(3) is not true.) Now
assume this statement is true for arbitraryy 4. We must prove that

(n+1)! > 2"+l
for n > 4. This is easy since

(n+1)! = nl(n+1)

oM (n + 1)

>
> 2n+1.

The first inequality follows from the induction hypothesis > 2™ while the second identity is a
consequence dfi + 1) > 2 for n > 4. This proves the desired inequality for all> 4.
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The next two examples require a little bit of work before the induction can be applied.
Example 4 Bernoulli's inequality We shall prove the following result.

Theorem 1If n is a natural number and + z > 0, then
(14+2)" > 1+ nz. 2

Proof. The proof is by induction. In the basis step, we assumel and verify that1+z)™ > 14+nz
is true forl + = > 0. Now, we assume (inductive hypothesis) that- z)" > 1 + nz is true for an
arbitraryn, and we must prove that

(1+2)" " >14 (n4+ 1)z
for 1 + x > 0. To prove this we proceed as follows:

(1 +z)"! = (1+2)"(1+zx)

by induction _
> (1+nx)(14+xz) since 14+z>0

= 1+ (n+ 1)z 4 na?

> 1+ (n+ 1)z,

where the first inequality is a consequence of the induction assumption (i lenowethat (1 +z)™ >

1 + nz so we can replacél + z)" by 1 + nz becausd + z > 0; observe that il + = < 0, then we
had to reverse the inequality sfjnThe next step is simple algebra, while the last step follows from
the fact thatwz? is nonnegative; it doesn’t matter what the valuerpbecause: + nz? > « for any

a. This proves the theorem.
Example 5 Let us prove that L1 .
R R | 3
5 + 1 + 3 + + on < (3)
for n > 1. We prove it by induction. The first step far= 1 is easy to check, so we concentrate on

the inductive step. We adopt the inductive hypothesis, which in this case is

I
2 4 8 2n ’
and must prove that
L N
2 4 8 on - ontl '
A natural approach fails. If we invoke the induction hypothesis to the+iterms of the above, we
will get
1
1+ on+1

Think of 3 < 5 that after multiplying by—3 becomes-9 > —15.



which doesnotimply that it is less than or equal tosincel/2"*+! > 0. Here’s how we proceed

1 1 1 1 1 1 1/1 1 1 1
R S T TR - §+§<§+1+§+'“+z—n>
by induction 1 1
< 54‘5
< 1,

where in the first line on the right-hand side we factg? and observe that what is left in the paren-
thesis must be smaller thdrby the inductive hypothesis. The rest is simple algebra. This proves the
inequality.

In some cases, we must us@eneralizedmathematical induction that we formulate in a little
different form than before.

If a statementP(n) is true forn = 1, and if for everyn > 1, the truth of P(n) for all
natural numbers< n implies the truth ofP(n) for n, thenP(n) is true for all natural
numbers.

The only difference between the basis PMI and the above is that in in the inductive step of the gen-
eralized mathematical induction we assume that the trutR(af§, P(2),...,P(n — 1) implies the
truth of P(n). In other words, the second step of the generalized PMI can be written as

{1,2,...,n—1} CA then necA

whereA is the set defined in the original PMI.

Recurrences

We now apply mathematical induction to establish some facts about recurrences. We come back to
recurrences in Theme 3.
We start with an example that illustrates an application of the generalized mathematical induction.

Example @ Let us defin€l’(0) = 1 and then

T(n):1~|—;ZT(i), n> 1. (4)

This is an example of eecurrence that we shall study in some details later in this module. Observe
that we can compute consecutive valligs), 7'(2) and so on from the recurrence itself. For example,
2

T(1) = 1+7T(0) =3,

T(2) + 1+ = (T(0)+T(1) =5,
TG) = 7.

2This subsection can be omitted in the first reading.




But can we guess ho®(n) grows for arbitraryn. In the table below we computed some numerical
values ofT'(n) and compared them to the growthofindn?.

n | T(n) | n?
1 3 1
3 7 9
6 13 36
9| 19 | 81
12| 25 | 144
15| 31 | 225
18| 37 | 324

From this table we should observe than) grows faster tham and much slower than?. Let us

then conjecture that
T(n) <4nlogsn, mn >2. (5)

We now use mathematical induction to prove this guess. Observ&'tBat= 5 < 8log,2 = 8
(sincelog, 2 = 1), butT'(1) = 3 > 4log, 1 = 0, therefore, we must start the induction fram= 2.

To carry out the inductive step we shall assume that fof aln — 1 the above guess is is true.
We now prove that this guess is also true-foindeed,

n—1

2 6 2
T = 1+—+—4+— T(5
(n) +n+n+nj§; (4)

induction 8§ 2
IC 8.2 . .
+n+nz4jlog2]
Jj=2
8 8 1
1+ —+ -1 j
+ ot oan;J

8 8 -1
= 1+—+—log2n<w—1>
n n 2

log j<logn

8 8
1+ — — —logyn —4logyn + 4nlogyn
n on

, 8 8
1 —4logyn + 4nlogy,n since — < —logyn, n > 2,
no-mn

IN

< 4dn logy n, n > 2,

where (i) in the first step we use the recurrence and extract the first two terms from the sum; (ii) in the
second line we use the induction assumption in its general form and bound&yeriy 45 log, j

3We recall thaty = log, x is a logarithm to basg of z, that is, it is the exponent to whidghmust be raised to obtain

as shown herg? = z.



for 2 < j < m; (iii) in the third line we observe thdbg, j < log, n (sincej < n) and factor the
constant termog, n in front of the sum; (iv) in the fourth line we apply the formula for the sum of
the firstn — 1 consecutive integers proved in Example 2; (v) the fifth line is simple algebra; (vi) in
the sixth line we observe that

S < S
for n > 2 and therefore cancel out the tergys:; finally the last inequality follows from the fact that
1 —4logyn < 0forn > 2. (As we said at the beginning of this subsection, if this derivation is too
involved in the first reading, the student can move forward to the next section since it will not be used

in the forthcoming discussion.)



Theme 2: Newton’s Summation Formula

From high school we know that

(a+b)? = a?+2ab+ b2,
(a+b)?* = a®+3a*b+ 3ab?® +b°,
(a+b)* = a*+4a®b+ 6a%0* + 4ab® + b
But what about a formula for
(a+b)"

for arbitraryn. We shall derive it here, and it is call&kewton’s summation formula
Before we handle the general cas¢®fb)™, we must introduce some new notation. In particular,

binomial coefficientsalso known adNewton'’s coefficientdNe define for naturat andn > &
n! nn—1)---(n—k+1)
C(n,k) := =
(k) = k! ’

where we remind that! =1-2-3---(n — 1) - n. By definition0! = 1. In literature the Newton

coefficientsC'(n, k) are also denoted as

C(n,k) = C(n,n—k).
But we shall also need the following lemma.

Lemma 1 For natural £ andn
C(n,k)=C(n—1,k)+C(n—1,k—1). (6)

Proof. We give a direct proof. Observe that
(n—1)! (n—1)!
Hin—k—1! (k= 1)l(n—k)
(n—1Dl(n — k) v (n—1)k
El(n—k—1!n—-k) (k—1k(n—k)!
I Gl L S
El(n — k)!
n!
El(n — k)!
= C(n,k)

Cn—1,k-1)+C(n-1,k-1) =
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where in the second line we multiply and divide the first termnby £ and the second term by
Then we factorizg% and after some simple algebra obtain the desired result.

Now, we are ready to formulate and prove the Newton summation formula.

Theorem 2For any naturaln .
n n 7, —
(a +b) :;(k>akb k 7)
Proof.* The proof is by induction with respect in The basis step fat = 1 is easy to check since
C(1,0) = C(1,1) = 1.
We now start the inductive step, and postulate that if (7) is true for arbitraityen

n+1

(a + b)n+1 — Z C’(n +1, k)akanrlfk
k=0
must be true. We proceed as follows
(@+0)™™ = (a+b)"a+b) =D Cn, k)" +Y " C(n, k)a b
k=0 k=0

= C(n+1,00"" +ab" [C(n,0) + C(n,1)]
+ a?b" 1 [C(n, 1) + C(n,2)] + - -
+  dF O, k- 1)+ C(n, k)] + - -

T (O m) + Clnn — )]+ Cln+ Ln + 1)an
n+1
Lemmal Z C(n+1,k)a*pnt1-F
k=0

In the first line above we use mathematical induction and then multiply out. In the next few lines
we group terms with the same power, thatig" !~ for all 5. Finally, we applied Lemma 1 (j,e.,
C(n,k) + C(n,k — 1) = C(n + 1, k)) to finish the derivation.

Exercise 4C Apply Newton’s formula to the following
(1+z%)*

The above formula can lead to surprisingly interesting identities. Here are two of them

» = Z(“) ®)

1=0
0 = i(?)(—l)i (9)

“The proof can be omitted in the first reading.
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The first identity follows immediately from the Newton formula applied to
(1+1)",

while the second follows from
(1—-1)".

We shall re-derive these identities using combinatorial arguments in one of the next modules.

11



Theme 3: Recursion and Recurrences

Sometimes it is difficult to define an object explicitly. In such cases, it is better to define this object
in terms of itself but of a smaller size. (Actually, we have seen this principle at work in mathematical
induction.) This process is calledcursion and often it is described mathematically byeaurrence.

Example 7. Defineag = 1 and forn > 0
Ap4+1 = Qan.

Let's see what we get. We first compute some sample values:

ap = 2,

ay = 201 =4,

a3 = 2a9 =2(2a;) =8=2%

ar = 2a3 =2(2a9) = 2(2(2a;)) = 2.

Based on this numerical evidence, we conjecture dhat 2". We can prove it using mathematical
induction. But, in this it is easier to give a direct proof that is calieléscoping We proceed as
follows:

41 =2ap =2 2ap_1 =2 2ap_p =2 a,_(,_; =+ =2"q = 2".

In the above we successively used the recurrence 2q,; 1 until we reached the initial valug, and
we know thaizg = 1. Observe that without knowing, we can neither start the recurrence nor finish
it.

Exercise 4D Derive an explicit formula for the following recurrence for> 1

ap = 3ap-1

with ag = 1.

We can define some other functions recursively. For exanife) = n! can be defined recur-
sively as follows

Furthermore, let



where{a;}}_, is a given sequence. For a computer to understand such a sum, we must define it
recursively. For example, we can do it this way

So = ao,
Sp41 = Sptapg1, n>0.
But, let us consider a more general recurrences. We underline that in order to start a recurrence we

must define some initial values, and to provide a “method” how to compute the next value. Consider
the following recurrence

ayg = 1,
a, = ap 1+2", n > 1.
This recurrence starts with
1,3,7,15,...

but what is a general formula far,? Let us move the term,_; to the other side of the recurrence
and write down all the values as follows

ap —ay = 2
ay — a1 = 22
a3z —ay = 23
a; —a;1 = 2
n—1
p1—ap-2 = 2
Gp — ap_1 = 2".

Now, when we add all these equations together most of them will cancel out (we say that the sum
telescopesexcepta,, andag giving us

n
ap — ap = Z 2i,
i=1
which is the same as saying
n
an =Y 2. (10)
i=0

Is this better than the original recurrence? Not yet since we must compute the sum. Actually, in
Module 2 we defined the geometric progression as follows

by =", n=0,1,...
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and we derived
n+1

n
. 1—r
;:E L 1. 11
Sn i:[)'r' 1—r ""7’é ( )

Actually, we shall re-prove this formula using mathematical induction. It is easy to check its truth for
n = 0 (the basis step). Let us move to the inductive step. We first assume that the statement above is
true for arbitraryn, and we try to prove that this would imply that

ntl 2
D D
=0
We proceed as follows
n+1

Sn+1 = Z r'
i=0
n
_ Z ,r,i + ,rn+1
i=0
induction 1 —r"*!
- 1—7r
1 —pntl ppntl g2

1—r ’

+ it

where in the second line we extract the last term from the sum and write it separatély' ashen
in the next line we apply to the first sum the inductive hypothesis, and finally after some algebra we
prove the desired formula.

Now, we can return to (10) to conclude that

n

ap =) =2""" -1,

i=0
Let us solve some more recurrences. This is the only way to learn how to handle thém=_et
and
b, =b,_1+mn, n > 1.

We do the following telescoping

by = byp_1+n
= (bp—o+n—-1)+n
= bps3s+(n—2)+(n—1)+n

= bi+(i+)+(E+2)+ - +n
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= by+14243--+(n—1)+n
n

— ZZ
i=1

n(n+1)
2

where in the second line we substitéte | = b—n — 24 (n — 1), in the third line we start observing
a pattern in whiclp; is followed by the sum of the first+ 1 natural numbers. Then we apply the
sum ofn consecutive natural numbers derived in Example 2. In every step of the above derivation we
used the recurrence itself to reduce it until we reach the value that we know, that\lge can do it
since in step we know thath; = b; 1 + 1.

Consider now a more complicated recurrefce:

60:0,

cn = 2cp—1+n.
Let us start the telescoping process and try to find a general pattern. We have

cpn = 2¢h,1+n
= 22, 2+n—1)4+n=2%, o+2(n—1)+n
= 22(2¢p 3+n—-2)+2n—-1)+n
= ¢, 3+22n—-2)+2(n—-1)+n
= 22(2cy 4+n—-3)+2°(n—2)+2(n—1)+n
= 2%, 4 +22n-3)+2°(n-2)+2(n—1) +n

= 2%, i +2(n—0)+2 ey A+ 220 —2) +2(n — 1) +n

= 2%+ 2" n—(n—-1)]+2"2n—(n—-2)]+---+2*(n—-2)+2(n—1)+n
n—1

= > 2¥(n—k).
k=0

In the second line above, we substitate | by 2¢,, 5 + n — 1 and observe that the “additive term”
is nown + 2(n — 1) (the additive term is the one that does not invalye After another substitution
the additive term is enlarged 83 (n — 2) + 2(n — 1) +n. Now you should be able to see the pattern
which becomeg(n — i) + 2" lc,_ip1 +--- +22(n — 2) +2(n — 1) + n. After the last substitution
the additive termis finallg"~'[n — (n — 1)] +2"2n — (n —2)] +--- +22(n —2) +2(n — 1) +n.

5The next two examples can be omitted in the first reading.
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Now to finish the recurrence we must find a formula for the following sum

n—1 n—1 n—1
Cp = Z2k(n— k) :nZQk - Zszk.
k=0 k=0 k=0

Observe that in the first sum we could factorizeince the summation is ovér thusr is fixed. After
this observation, the first sum is easy to estimate. We just found above that it is etial tbh But
the second one is harder. To estimate it we first observe that

okl _ ok —9k(2 — 1) = 2F,

Then
n n
Sp = Y k2P =Y k2
k=0 k=1
— Z k(2k+l _ 2k)
k=1

S S
k=1 k=1

n n—1
DS k2 =3 (k4 1)28
k=1 k=0
n n—1 n
— Z k2k+1 _ Z k2k)+1 _ Z 2k)+1
k=0 k=0 k=0
n—1 n—1 n
(B) Z ok+1 4 pontl Z Lok+1 _ Z ok+1
(©

n2n+1 _ 0 _ (2n+1 _ 2)
= (n—1)2""" 42,
In line (A) we change the index of summation franto k£ + 1, in line (B) we expand the first sum
and observe that it cancels out the second sum, finally in line (C) we apply the geometric sum that we

already discussed above.
Coming back to the recurrence, putting everything together we have

e, =2" —n—2

which is our final answer. Uffff. . it was not that hard.
Finally, we solve one non-linear recurrence. Consider the follofving

ap = Ba%_l, n>1

5The forthcoming analysis may be completely omitted, and come back only if a student is interested in a better under-
standing of non-linear recurrences.
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whereay = 1. It is a non-linear recurrence sinag_; is squared. Telescoping might be difficult for
this recurrence. So we first simplify it. Defing = log, a,,. Then we have

bp = 1
b, = 2bp_1 +logy3
sincelog(zy) = log = + logy. Now we are on familiar grounds. Using telescoping we find
b, = (2" — 1) log, 3,

which implies

ay, = 2(2”71) 10g23 — 32”71.

Finally, we should say it is always a good idea to verify numerically our solution by comparing its
some initial values to the values computed from the recurrence itself.
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