Module 2: Language of Mathematics

Theme 1: Sets

A setis a collection of objects. We describe a set by listing all of its elements (if this set is finite and
not too big) or by specifying a property that uniquely identifies it.

Example 1 The setA of all decimal digits is
A=1{0,1,2,3,4,5,6,7,8,9}.
But to define a set of all even positive integers we write:
I ={k: k = 2n, wheren is a natural number
The last definition can be also written in another form, namely:
I = {k | k is an even natural numbjer

In the rest of this course, we shall either wite: property describing} or {z | property describing},
where: or | should be read as “such as”. Both are used in discrete math, however, we prefer the former.
This notation is called theet builder.

Let A be a set such that elements, . . . belong to it. We shall write

a€ A

if a is an element ofd. If = doesnotbelong toA we denote it ag ¢ A.

Uppercase letters are usually used to denote sets. Some letters are reserved for often used sets such
as the set of natural numbe = {0,1,2,...} (i.e., set of all counting numbers), the set of integers
Z={.,-2-1,012,...} (i.e., positive and negative natural numbers together with zero), and
the set of rational numbers which are ratios of integers, th&is; {r : r = m/n, m,n € Z}. A
set with no elements is called tkenpty (or null) setand is denoted &k

The setA is said to be aubsetof B if and only if every element ofl is also an element aB.

We shall writeA C B to indicate thatd is a subset oB.

Example 2 The setA = {1, 3} isa subset o8 = {0, 1,3, 5, 7}. Actually, in this cased is aproper
subset of4, and we write it asd C B. By proper we mean that there exits at least one elemeft of
that isnotan element ofd (in our example such elements @eor 5 or 7).

Two setsA and B areequal if and only if they have the same elements. We will subsequently
make this statement more precise. For example, the4ets {1,3,5} and B = {5,3,1} are
equal since order does not matter for sets. When the sets are finite and small, one can verify this



by listing all elements of the sets and comparing them. However, when sets are defined by the set
builder it is sometimes harder to decide whether two sets are equal or not. For example, is the set
R = {z : €®™® = 1} (i.e., solutions of this weird looking equatied™® = 1, wherei = /—1)

equal toZ? Therefore, we introduce another equivalent definitidn= B if whenevera € A, then

a € B and wheneven € B, thenb € B. The last statement can be written as follows:

A=DB ifandonlyif AC B and B C A. (1)

(To see this, one can think of two real numberandb that are equal; to prove this fact it suffices to
show thate < b andb < a.) This equivalence is very useful when proving some theorems regarding
sets.

If A is finite, then the number of elements 4fis called itscardinality and denoted asA|, that
is,

|A| = number of elements in A

A set is said to be infinite if it has an infinite number of elements. For example, the cardinality of
A ={a, b, c} is 3, while N is an infinite set.

The set ofall subsets of a given set is called thepower setand denoted(A).

Example 3 If A = {a,b,c}, then there ar8 subsets ofd, namely:

0, {a},{b}.{c},{a,b} {a, c}, {b,c}, {a, b, c}.

Thus the cardinality oP(A) is 8 = 23.
Now, we shall prove our first theorem about sets.

Theorem 1 If |A| = n, then|P(4)| = 2".

Proof:! The setd hasn elements and we can name them any way we want. For exampte,
{1,2,...,n}. Any subset of4, say B C A, contains some elements forh We can list these
elements or better we can associate with every elernent an indicatorz;(B) which is set to be
1if i € B and zero otherwise. More formally, for every sub&ebf A we construct an indicator
(21,...,xz,) with understanding that; = 1 if and only if theith element ofA belongs toB; other-
wise we setr; = 0. For example, ford = {1, 2, 3}, the identifier of{2, 3} is (0,1, 1) sincel is not

an element of3 (i.e.,z; = 0) while 2,3 € B, thatis,zo = 1 andzs = 1. Observe that every set of
P(A) has auniqueindicator (x1,...,z,). Thus counting the number of indicators will give us the
desired cardinality ofP(A). Sincez; can take only two values, and there arpossibilities the total
number of indicators i8 - 2- - - 2 = 2™, which is the cardinality of(A). This completes the proof.

The Cartesian product of two setsA and B, denoted byA x B, is the set obrderedpairs(a, b)
wherea € A andb € B, that s,

Ax B ={(a,b): a € Aandb € B}.

This proof can be omitted in the first reading.
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Figure 1: Venn diagrams for the union, intersection, difference, and complementary set.

Example 4 If A = {1,2} andB = {a, b}, then
Ax B=1{(1,a),(1,b),(2,a),(2,b)}.

In general, we can consider Cartesian products of three, foursets. IfA4, ..., A,, then an element
of A1 x Ay x --- x A, is called am-tuple.

We now introduceset operations Let A and B be two sets. We define thenion A U B, the
intersection A N B, and thedifference A — B, respectively, as follows:

AUB = {z:xz€ Aorz € B},
ANB = {z:xz€ Aandzx € B},
A-B = {z:z¢€Aandz ¢ B}.

Example 5 Let A = {1,2} andB = {2, 5}, then

AUB = {1,2,5},
ANB = {2},
A-B = {1}.

We say thatd and B aredisjoint if AN B = (), that is, there is no element that belongs to both
sets.



Sometimes we deal with sets that are subsets of a (mastdl). séfe will call such a set the
universal setor theuniverse. One defines the complement of the detlenoted asl, asA = U — A.

We can represent visually the union, intersection, difference, and complementary séfarsing
diagrams as shown in Figure 1, which is self-explanatory.

When A and B are disjoint, the cardinality ol U B is the sum of cardinalities od and B, that
is,|AUB| = |A|+|B]| (providedAN B = (). This identity is not true wherd and B are not disjoint,
since the intersection part would be counted twice!. To avoid this, we must subtradB| yielding

|AUB| = |A|+ |B|—-|ANB|.

The above property is called thginciple of inclusion-exclusion An astute reader may want to
generalize this to three and more sets. For example, consider the sets from Example 5. Note that
|AUB| =3,while|A| =2, |B|=2and|ANB|=1,thus|AUB| = |A| + |B| — |AN Bj.

We have already observed some relationships between set operations. For example, if
{1,3,5}, thenAU A = A, butAn® = (. There are more to discover. We list these identities
in Table 1.

Table 1: Set Identities

Identity Name

AUubh=A Identity Laws
ANU=A

AuU =U Domination laws
AND=10

ANA=A Idempotent laws
ANA=A

A=A Complementation laws
AUB=BnNA Commutative laws
ANB=BnNA

AU(BUC)=(AuB)UC Associative laws
AN(BNC)=(ANnB)NC
AN(BUC)=(ANB)U(ANC) | Distributive laws
AU(BNC)=(AUB)N(AUCQC)

AUB=ANB De Morgan’s laws
ANB=AUB

We will prove several of these identities, using different methods. We are not yet ready to use
sophisticated proof techniques, but we will be able to use either Venn diagrams or the the principle



expressed in (1) (i.e., to prove that two sets are equal it suffices to show that one set is a subset of
the otherandvice versa). The reader may want to use Venn's diagram to verify all the identities of
Table 1.

Example 6 Let us prove one of the identities, say De Morgan’s law, showingthatB C AU B
andA N B D AUB. Firstsuppose € AN B whichimplies thatr ¢ ANB. Hencex ¢ Aorz ¢ B
(observe this by drawing the Venn diagram or referring to the logical de Morgan laws discussed in
Module 1). Thusz € A or z € B which impliesz € A U B. This shows thatl N B C AU B.

Suppose now that € AU B, thatis,z € Aorx € B. This further implies that ¢ Aorz ¢ B.
Hencer ¢ AN B, and therefore: € AN B. This provesA N B D A U B, and completes the proof
of the De Morgan law.

Exercise 2A Using the same arguments as above prove the complementation law.



Theme 2: Relations

In Theme 1 we defined the Cartesian product of two detand B, denoted asl x B, as the set of
ordered pairs (a,b) such thata € A andb € B. We can use this to define a (binary) relatiin
We say thatR is abinary relation from A to B if it is a subset of the Cartesian produétx B. If
(a,b) € R, then we writen Rb and say that is related tch.

Example 7. Let A = {2, 3,4} andB = {3,4, 5,6, 7}. Define the relatiorR as
R = {(a,b) € A x B : adividesb},
where by “divides” we mean with zero remainder. Then

R ={(2,4),(2,6),(3,3),(3,6),(4,4)}.

We now define two important sets for a relation, namely, its domain and its rangedontesn
of R is defined as
{z: z € Aand(z,y) € R for somey € B},

while therange of R is the set

{y: y € Band(z,y) € Rfor somez € A}.
In words, the domain oR is composed of al: € A for which there isy such thatz Ry. The set of
all y € B such that there existsRy is the range of.

Example 8 In Example 7 the domain aR is the set{2, 3,4} while the range i3,4,6}. Observe
that domain ofA is a subset ofi while the range is a subset &f.

There are several important properties that are used to classify relations on sefR. beet
relation on the seX. We say that:

e Risreflexiveif xRz for everyz € X

e Rissymmetricif zRy impliesyRz forall z,y € X;

e Risantisymmetric if x Ry andy Rz implies thatr = y;

e Ristransitive if zRy andyRz implieszRz forall z,y,z € X.

Example 9 ConsiderA = {1,2,3,4} and letR = {(1,3), (4,2),(2,4),(2,3),(3,1)}. Observe that
the relationR is:

e notreflexive sinceg1,1) ¢ R;

e notsymmetric since for exampl&, 3) € R but(3,2) ¢ R;



e notantisymmetric sincél,3) € R and(3,1) € Rbutl # 3;
¢ nottransitive sincd2,3) € Rand(3,1) € R, but(2,1) ¢ R.

On the other hand, consider this relatisn= {(1,1),(2,2), (3,3), (4,4),(2,3),(3,1)(2,1)}. The
relation S is reflexive, transitive, but not symmetric, however, its antisymmetric, as easy to check.

Exercise 2B Let X = {1, 2, 3,4}. Is the following relation

R ={(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4), (3,3), (3,4), (4,4)}
reflexive, symmetric, antisymmetric, or transitive?

Relations are used in mathematics and in computer science to generalize and make more rigorous
certain commonly acceptable notion. For exampte’ Is a relation that defines equality between
elements.

Example 1Q Let A = Q be the set of rational numbers, that is, ratios of integers. Therb means
thate € Q has the same value as Q. For example% = % The relation= partitions the set of all
rational number€) into subsets such every subset contains all numbers that are equal. Observe that
= is reflexive, symmetric and transitive. Indead= z, x = y is the same ag = x, and finally if
x =y andy = z, thenz = z. Such relations are called equivalence relations and they play important
role in mathematics and computer science.

A relation R that isreflexive, symmetrj@andtransitiveis called arequivalence relationon the
set X. As we have seen above, the relatisndivides (actually,partitions) the set of all rational
numbers intalisjoint sets that cover the the whole set of rational numbers. Let us generalize this. For
an equivalence relatioR we define theequivalence sefor anya € X denoted bya| as follows

[a] :={z € X : zRa}.

In words,[a] is the set ofall elements: € X such that: anda are related by?. This is a special set,
as we formally explain below. Informally, the tvdifferentequivalence sefs] and[b] are disjoint and
the whole sefX is partitioned into disjoint equivalence sets (i.E.js the sum of disjoint equivalence
sets).

More formally, observe that i&Rb, then[a] = [b]. Indeed, letz € [a]. We shall prove that
x € [b], hencela] C [b]. ThuszRa and fromaRb and transitivity we conclude thatRb, hence
x € [b], as needed. In a similar manner we can prove {hjaC [a] which proves thafa] = [b].
Clearly if [a] = [b], thenaRb (by definition of[a]). The latter can be expressed in a different, but
logically equivalent, manner: Ifa,b) ¢ R, then[a] # [b] (this is an example ofounterpositive
argument discussed in Module Basic Logi¢. We should conclude that the sEtcan be partitioned
into disjoint subsetf| such that every element &f belongs to exactly one equivalence clags In
other words, the set

S={la]: a€ X}



is a partition ofX .

There is one important example of equivalence classes, cadlegruence classthat we must
discuss.

Example 11 Fix a numbem that is apositive intege(i.e., a natural number). L& be the set of all
integers. We define a relatid®,, onZ by =R,y if x — y is divisible byn, that is, there is an integer
k € Z such thatr — y = kn. We will write z = y mod n for R,,, or more oftenz mod n = y. Such
a relation is also calledongruence modulo n For example]l7 = 2 mod 5 sincel7 — 2 = 3 - 5, but
17 # 3 mod 5 sincel7 — 3 = 14 is not divisible by5.

It is not difficult to prove that= is reflexive, symmetric and transitive. Indeed,= x since
x—x =0-n. If £ =y mod n, theny = z mod n sincex —y = kn impliesy —x = (—k)n. Finally,
letz = y mod n andy = z mod n. Thatis,z —y = kyn andy — z = kon. Thenz — z = (k1 + k2)n,
hencer = z mod n.

Since= is an equivalence relation, we can define equivalence classes which areoaliedence
classes From the definition we know that

[a] = {a+k-n: for somek € Z}.

Example 12 Congruence classes moddl@re

0] = {5k: keZ},

1] = {pk+1:keZ}
2] = {pk+2: keZ}
8] = {bk+3: keZ}
4] = {pk+4:keZ}

In words, an integer belongs to one of the above classes because when dividitigebremainder is
either0 or 1 or 2 or 3 or 4, but nothing more than this.

We have seen before that the relatisrwas generalized to the equivalence relations. Let us do
the same with well knowr< relation. Notice that it defines an order among of real number. Let now
zRy if x <y andz,y € R. Clearly, this relation is reflexive and transitive because z and if
z < yandy < z, thenz < z. Itis definitelynotsymmetric since: < y doe snot implyy < x unless
2 = y. Actually, it is easy to see that it is antisymmetric since K y andy < z, thenz = y. We
call such relationpartial orders. More preciselya relation R on a setX is partial order if R is
reflexive, antisymmetric, and transitive
Example 13 Let xRy if x dividesy (evenly) forz,y € Z. This relation is reflexive and transitive as
we saw in Example 11. It is not symmetric (indeédjivides10 but not the other way around). Is it
antisymmetric? Let dividesy andy dividesz, that is, there are integensandm such thaty = m- z



andz = n-y. Thatis,y = m -n -y, hencem - n = 1. Sincem,n € Z we must haven = n = 1.
ThusR is antisymmetric.

A reflexive, antisymmetric, and transitive relatiéhis calledpartial order (not just an order or
total order) since for,y € X it may happen that neitherRy nor yRx. In Example 13 we see
that(2,3) ¢ Rand(3,2) ¢ R. If for all z,y € X we have either:Ry or yRz, then R defines a
total order. For example, the usual ordering of real numbers defines a total ordering, but pairs of real
numbers in a plane define only a partial order.



Theme 3: Functions

Functions are one of the most important concepts in mathematics. They are also special kinds of
relations. Recall that a relatioR from X to Y is a subset of the Cartesian produ€tx Y. Recall

also that the domain aR is the set oft € X such that there existgrelated tar throughR, that is,

xRy. For relations it is not important that f@veryz there isy related toxz by R. Moreover, it is
legitimate to have twg’s, sayy; andy, such that: Ry, andz Ry, for somez. These two properties

are eliminated in the definition offanction More formally, we define function denoted ag’ from

X toY as arelation fromX to Y having two additional properties:

1. The domain off is X;
2. If zfy; andzfys, theny; = yo.

The last item means that if there is arsuch that it is related tg, andys, theny; mustbe equal to
y2. In other words, there is nethat has two different values gfrelated to it.

We shall use lowercase lettefsg, h, etc. to denote functions. Furthermore, whefy we shall
write it asy = f(xz). Finally, we will also use another standard notation for functions, namely:

f: X=Y

Functions are also calladappingsor transformations
The second property of the function definition is very important, so we characterize it in another
way. Consider a relatioR on X andY. Define

R(z) ={y €Y : (z,y) € R}.

Observe thaR(z) is a set. It may be empty, may contain one element or many elements. R/isen
a function, thenR(z) is not empty foreveryz € X and in fact it containgxactlyone element that is
called anmageof x. More generally, the image df denoted ag(X) for a functionf : X — Y'is
defined as

f(X)={yeY: y=f(z)forsomer € X}.

In other words,f(X) is a subset o¥” for which there isz € X such thatf (z) € Y. For example in
Figure 2 the image oK = {1,2,3} is {a, b}.

Example 14 (a) Consider the relationf = {(1,a),(2,b),(3,b)} from X = {1,2,3} toY =
{a,b,c,d}. Itis a function since every has exactly one image iW. In fact, f(1) = a, f(2) =
f(B)=bandf(X) = {a,b} C Y. Figure 2 shows a graphical representation of this function.
(b) The relation? = {(1,a), (2,a), (3,¢)} is not a function since = 1 andz = 2 have the same
imagea.

10



Figure 2: The functiory defined in Example 14.

(@) (b)

Figure 3: Plots of two functions: (3)(z) = z?; (b) f(z) = 27.

Functions are often represented by mathematical formulas. For example, we cafwyite 22
for every reak:, or more formally

z€R = f(z) =22,

or
f={(z,2%: = € R}
To visualize such functions we often graph them in(hgy) coordinates wherg = f(z).
Example 15 In Figure 3 we draw the functiong = f;(z) = z? and f»(z) = 2%. Both functions
are defined on the set of red@swhich is the domain for both functions. Singé > 0 and2? > 0

hence the range df; is the set of nonnegative reals while ffyrit is the set of positive reals. That is,
fi(R) =R" U {0} and f(R) = R".

Exercise 2C What is the image off (R) for f(x) = z*? What about the image @& over the
function f (z) = 23?

11



There are some functions occurring so often in computer science that we must briefly discuss
them here. The first function, thmodulus operator, we already studied in Example 11. We say
thatz mod y is equal to the remainder whernis divided byy (we, of course, implicitly assume that
z,y € Z,i.e.,x andy are integers). We recall thatmod y = n is equivalent ta: = n mod y used
before. For exampld,0 mod 3 = 1 and13 mod 5 = 3.

We shall write this function as

h(z) =ymodn, mneN

with the understanding thatis the remainder of the division/n. The domain of such a function is
the set of integers, while the image (or range) is the set of natural numbers. In fact, we can restrict the
range ofh to the se{0,1,...,n — 1} because the remainder of any division/bynust be an integer
betweer) andn — 1.

The other important and often used functions areftber and ceiling of a real number. Let
z € R, then

|z|] = the greatesinteger less than or equal te,

[]

the leasinteger greater than or equal ta
For example,

18.99] = 8, [8.99] =9
|I-75] = -8 [-7.7]=-T
10 = 10  [10] = 10.

Finally, we introduce some classes of functions as we did with relations. Consider the function
f(x) = z? shown in Figure 3(a). We havg(—2) = f(2) = 4, that is, there are two values ofthat

are mapped into the same valueyqbr with the same image). This is an example of a function that is
not one-to-one or injective. We say thafunctionf from X to Y is one-to-oneor injective if there
arexi,zo € X such thatiff (z1) = f(z2), thenz; = z5. In other words, for one-to-one functigh

for eachy € Y there is at most one € X with f(z) = y. The function in Figure 3(b) is one-to-one,

as easy to see.

Example 16 Consider
f= {(la b)a (2,0,), (3v C)}
from X = {1,2,3} toY = {a,b, c,d}. This function is injective.

How to know weather a function is one-to-ne or not? We provide some conditions below. We
first introduceincreasingand decreasingfunctions. A functionf : X — Y is increasing (non-
decreasing if f(z) < f(y) (f(z) < f(y)) wheneverr < y for all z,y € X. For example, the

12



function f (z) = 2% is increasing in the domaiR (cf. Figure 3(b)). Similarlya functionf : X — Y
is decreasing(non-increasing if f(z) > f(y) (f(z) > f(y)) whenever: < y for all z,y € X. For
an increasing (decreasing) function the bigger the value isf the bigger (smaller) the value gf
will be.
The functionf (z) = z? plotted in Figure 3(a) is neither increasing or decreasing in the domain
R. However, it is a decreasing function for all negative reals and increasing in the set of all positive
reals.
In Example 16 we havé¢ (X) = {a,b,c} C Y. Afunction f from X to Y such thatf(X) =Y
is said to beonto Y or surjective function.

Example 17 Let f : R — R* U {0} be such thaf (z) = x2, whereR" is the set of positive real
numbers. Clearlyf(R) = R* U {0}, thus itisontoR™ U {0}. But if we definef : R — R with
f(x) = 2, then such a function is not surjective.

A function f : X — Y that is both injective and surjective is calledigection. The function in
Example 16 is a bijection while the function in Example 17 is not. For a bijection we can define an
inverse functionf ! : ¥ — X as

7 =Aly,2): () € f},
that is,z andy switch their roles. Observe that vid® not need to have bijection in order to define
the inverse since: (i) the domain of the inverse functiol iand by the definition of a function, for

everyy there must be: such thatr = f~!(y); (ii) There must beonly onex such thatr = f~!(y)
and this is guaranteed by the requirement hit one-to-one function.

Example 18 Let f : R — R be such thaf(z) = z2. This is not a one-to-one function. Let us
restrict the domainX to the set ohonnegativerealsX = R* U {0} and we do the same with the
range, that isy = R* U {0}. Now f(z) = z? has an inverse function defined 81 U {0} which

is f1(y) = .

Finally, we define the composition of two functions. Let
g: X—=Y and f:Y —>Z

Then for everyr € X we findg(z) = y, but for suchy we computef(y) = f(g(x)). The resulting
function is called theompositionof f andg and is denoted ago g.
Example 19 Let

g = {(1,a)(2,0),3,0)}

= {(a,2),(b,z), (c,y)}-

Then

fog={(1,2),(2,2),3,9)}.
Example 20 Let g(z) = sin(z) andf(z) = 2*. The compositiory o g = f(g(z)) = 2™,

13



Theme 4: Sequences, Sums, and Products

Sequences are special functions whose domain is the set of natural nuNberd1,2,...} or
Ny = {0,1,2,...}, thatis,f : N — R is asequence We shall writea,, := f(n) to denote an
element of a sequence, where the lettén a,, can be replaced by any other letter, sayor z,,.
Since a sequencs, is a set we often write it aga,, } ,en Or simply{a,, }.

Example 21 Leta,, = 1/n? for n € N. That is, the sequence

a1,0a2,0a3, ...
starts with
] 11
) 4? 9? tet
If b, =1+ (—1)", then the sequence begins with
0,2,0,2,...
Finally, z,, = 27" looks like
111
274787
We can create another sequence from a given seqyengeby selecting only some terms. For
example, we can take very second term of the sequghee}, that is,1,1/3,1/5,.... This amounts

to restricting the domain to a subset of natural numbers. If we denote this sulsset 2§, then we
can denote such a sequence (subsequencg),ascs. Another way of denoting a subsequence is
{an, }ren Where{n;} is a subsequence of natural numbers, thatjs, N — S C N. Itis usually
required thaik, < ni41, thatis,{ns} is an increasing sequence.

There is one important subsequence that we often use. Namely, Sefifen, m+1,m+2,...}.
Sometimes, we shall denote such a sequendge,gs2.,,,.

Example 22 Leta, = 2". The first terms are, 4, 8, 16, 32, . . .. Take every second term to produce
a sequence that staftss, 32, . ... We can write it a®,, = 2" or asay,.

Sequences are important since they are very often used in computer science. They are frequently
used in sums and products that we discuss next. Consider a (sub)sequence

Amy Gm+1y -+ 50n,
and add all the elements to yield
Om + Gm+t1 + Q2 + -+ + Gp.

To avoids the dots- - we have a short hand notation for such sums, namely

n n n
Yo=Y a=w
j=m k=m i=m



In the above, we use differemmtdices of summationj, & or s since they do not matter. What matters
is the lower boundn and the upper bound of the index of summation, and the sequengsétself.
In a similar manner we can define theduct notation For the above case instead of writing

AmAm+1 """ Qp
we simply write
n n n
[T = 1T @=Ta

Example 23 Here are some examples:

24:1 PRNS S S B
g 2 3 4 12
5

Yook = 22 42% 4 2% 4 2° = 60,
k=2

Ly 1.2 3 4 163
~j+1 2 3 4 5 60

7j=1

Exercise 2D Find
Ly
2. 112_, 2~

We have to learn how to manipulate sums and products. Observe that

n n+2
Zaj = Zak—2=a1+a2+---+an.
j=1 k=3

In the above we change the index of summation frotm & = j + 2. We obtainedexactlythe same
suma; + as + - -+ + a,. In general, when we change indgx {1,2,...,n} to, sayk = j + m
for somem € Z, we must change the lower summation index frpre= 1 to £ = m, the upper
summation index from = n to j = n + m, anda; must be replaced hyj,_,,.

Example 24 This is the most sophisticated example in this module, however, it is important that the
reader understands it. We consider a special sequence callgeldimetric progression It is defined
as follows: Fixr > 0 and defines,, = r" for n = {0, 1,2, ...}. This sequence begins with

2 .3
Lr,re,r, ...

Let us now consider the sum of the first- 1 terms of such a sequence, that is,
n .
S =) 1" 2)
i=0
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Can we find a simple formula for such a sum? Consider the following chain of implications

n+1 ) n+1 )
Spp1=Su+r"T=>"r" = 14> 7
] =1

n
N
Jj=0

n
= 1+r2rj
j=0
= 14718y,

where the second line follows from the change of the index summatiofi + 1, in the third line we
factorr in front of the sum, while in the last line we replacgg;_, rJ by S, as defined in (2). Thus
we prove that

Sy, + 1"t =14+1r8,,

from which we findS,,:
1— ,rn+1

1—r7r
as long ag # 1. Therefore, the complicated sum as in (2) has a very simple closed-form solution
given above. An unconvinced reader may want to verify on some numerical examples that these two
formulas give the same numerical value.

Sp =
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