
Module 2: Language of Mathematics

Theme 1: Sets

A set is a collection of objects. We describe a set by listing all of its elements (if this set is finite and

not too big) or by specifying a property that uniquely identifies it.

Example 1: The setA of all decimal digits is

A = f0; 1; 2; 3; 4; 5; 6; 7; 8; 9g:

But to define a set of all even positive integers we write:

I = fk : k = 2n; wheren is a natural numberg:

The last definition can be also written in another form, namely:

I = fk j k is an even natural numberg:

In the rest of this course, we shall either writefx : property describingxg orfx j property describingxg,
where: or j should be read as “such as”. Both are used in discrete math, however, we prefer the former.

This notation is called theset builder.

LetA be a set such that elementsa; b; : : : belong to it. We shall write

a 2 A

if a is an element ofA. If x doesnot belong toA we denote it asx =2 A.

Uppercase letters are usually used to denote sets. Some letters are reserved for often used sets such

as the set of natural numbersN = f0; 1; 2; : : :g (i.e., set of all counting numbers), the set of integers

Z = f: : : ;�2;�1; 0; 1; 2; : : :g (i.e., positive and negative natural numbers together with zero), and

the set of rational numbers which are ratios of integers, that is,Q = fr : r = m=n; m; n 2 Zg. A

set with no elements is called theempty (or null ) setand is denoted as;.
The setA is said to be asubsetof B if and only if every element ofA is also an element ofB.

We shall writeA � B to indicate thatA is a subset ofB.

Example 2: The setA = f1; 3g is a subset ofB = f0; 1; 3; 5; 7g. Actually, in this caseA is aproper

subset ofA, and we write it asA � B. By proper we mean that there exits at least one element ofB

that isnot an element ofA (in our example such elements are0, or 5 or 7).

Two setsA andB areequal if and only if they have the same elements. We will subsequently

make this statement more precise. For example, the setsA = f1; 3; 5g andB = f5; 3; 1g are

equal since order does not matter for sets. When the sets are finite and small, one can verify this
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by listing all elements of the sets and comparing them. However, when sets are defined by the set

builder it is sometimes harder to decide whether two sets are equal or not. For example, is the set

R = fx : e2�ix = 1g (i.e., solutions of this weird looking equatione2�ix = 1, wherei =
p�1)

equal toZ? Therefore, we introduce another equivalent definition:A = B if whenevera 2 A, then

a 2 B and wheneverb 2 B, thenb 2 B. The last statement can be written as follows:

A = B if and only if A � B and B � A: (1)

(To see this, one can think of two real numbersa andb that are equal; to prove this fact it suffices to

show thata � b andb � a.) This equivalence is very useful when proving some theorems regarding

sets.

If A is finite, then the number of elements ofA is called itscardinality and denoted asjAj, that

is,

jAj = number of elements in A:

A set is said to be infinite if it has an infinite number of elements. For example, the cardinality of

A = fa; b; cg is 3, whileN is an infinite set.

The set ofall subsets of a given setA is called thepower setand denotedP(A).

Example 3: If A = fa; b; cg, then there are8 subsets ofA, namely:

;; fag; fbg; fcg; fa; bg; fa; cg; fb; cg; fa; b; cg:

Thus the cardinality ofP(A) is 8 = 23.

Now, we shall prove our first theorem about sets.

Theorem 1. If jAj = n, thenjP(A)j = 2n.

Proof:1 The setA hasn elements and we can name them any way we want. For example,A =

f1; 2; : : : ; ng. Any subset ofA, sayB � A, contains some elements formA. We can list these

elements or better we can associate with every elementi 2 A an indicatorxi(B) which is set to be

1 if i 2 B and zero otherwise. More formally, for every subsetB of A we construct an indicator

(x1; : : : ; xn) with understanding thatxi = 1 if and only if theith element ofA belongs toB; other-

wise we setxi = 0. For example, forA = f1; 2; 3g, the identifier off2; 3g is (0; 1; 1) since1 is not

an element ofB (i.e.,x1 = 0) while 2; 3 2 B, that is,x2 = 1 andx3 = 1. Observe that every set of

P(A) has auniqueindicator(x1; : : : ; xn). Thus counting the number of indicators will give us the

desired cardinality ofP(A). Sincexi can take only two values, and there aren possibilities the total

number of indicators is2 � 2 � � � 2 = 2n, which is the cardinality ofP(A). This completes the proof.

TheCartesian product of two setsA andB, denoted byA�B, is the set oforderedpairs(a; b)

wherea 2 A andb 2 B, that is,

A�B = f(a; b) : a 2 A andb 2 Bg:
1This proof can be omitted in the first reading.
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Figure 1: Venn diagrams for the union, intersection, difference, and complementary set.

Example 4: If A = f1; 2g andB = fa; bg, then

A�B = f(1; a); (1; b); (2; a); (2; b)g:

In general, we can consider Cartesian products of three, four, orn sets. IfA1; : : : ; An, then an element

of A1 �A2 � � � � �An is called ann-tuple.

We now introduceset operations. Let A andB be two sets. We define theunion A [ B, the

intersectionA \B, and thedifferenceA�B, respectively, as follows:

A [B = fx : x 2 A or x 2 Bg;
A \B = fx : x 2 A and x 2 Bg;
A�B = fx : x 2 A and x =2 Bg:

Example 5: LetA = f1; 2g andB = f2; 5g, then

A [B = f1; 2; 5g;
A \B = f2g;
A�B = f1g:

We say thatA andB aredisjoint if A \ B = ;, that is, there is no element that belongs to both

sets.
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Sometimes we deal with sets that are subsets of a (master) setU . We will call such a set the

universal setor theuniverse. One defines the complement of the setA, denoted as�A, as �A = U�A.

We can represent visually the union, intersection, difference, and complementary set usingVenn

diagrams as shown in Figure 1, which is self-explanatory.

WhenA andB are disjoint, the cardinality ofA [B is the sum of cardinalities ofA andB, that

is, jA[Bj = jAj+ jBj (providedA\B = ;). This identity is not true whenA andB are not disjoint,

since the intersection part would be counted twice!. To avoid this, we must subtractjA \Bj yielding

jA [Bj = jAj+ jBj � jA \Bj:

The above property is called theprinciple of inclusion-exclusion. An astute reader may want to

generalize this to three and more sets. For example, consider the sets from Example 5. Note that

jA [Bj = 3, while jAj = 2, jBj = 2 andjA \Bj = 1, thusjA [Bj = jAj+ jBj � jA \Bj.
We have already observed some relationships between set operations. For example, ifA =

f1; 3; 5g, thenA [ A = A, butA \ ; = ;. There are more to discover. We list these identities

in Table 1.

Table 1: Set Identities

Identity Name

A [ ; = A Identity Laws

A \ U = A

A [ U = U Domination laws

A \ ; = ;
A \A = A Idempotent laws

A \A = A

( �A) = A Complementation laws

A [B = B \A Commutative laws

A \B = B \A

A [ (B [C) = (A [B) [ C Associative laws

A \ (B \C) = (A \B) \ C

A \ (B [C) = (A \B) [ (A \C) Distributive laws

A [ (B \C) = (A [B) \ (A [C)

A [B = A \B De Morgan’s laws

A \B = A [B

We will prove several of these identities, using different methods. We are not yet ready to use

sophisticated proof techniques, but we will be able to use either Venn diagrams or the the principle
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expressed in (1) (i.e., to prove that two sets are equal it suffices to show that one set is a subset of

the otherandvice versa). The reader may want to use Venn’s diagram to verify all the identities of

Table 1.

Example 6: Let us prove one of the identities, say De Morgan’s law, showing thatA \B � A [ B

andA \B � A[B. First supposex 2 A \B which implies thatx =2 A\B. Hence,x =2 A or x =2 B

(observe this by drawing the Venn diagram or referring to the logical de Morgan laws discussed in

Module 1). Thus,x 2 A or x 2 B which impliesx 2 A [B. This shows thatA \B � A [B.

Suppose now thatx 2 A[B, that is,x 2 A or x 2 B. This further implies thatx =2 A or x =2 B.

Hencex =2 A \B, and thereforex 2 A \B. This provesA \B � A [ B, and completes the proof

of the De Morgan law.

Exercise 2A: Using the same arguments as above prove the complementation law.
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Theme 2: Relations

In Theme 1 we defined the Cartesian product of two setsA andB, denoted asA � B, as the set of

ordered pairs (a; b) such thata 2 A andb 2 B. We can use this to define a (binary) relationR.

We say thatR is abinary relation from A to B if it is a subset of the Cartesian productA � B. If

(a; b) 2 R, then we writeaRb and say thata is related tob.

Example 7: LetA = f2; 3; 4g andB = f3; 4; 5; 6; 7g. Define the relationR as

R = f(a; b) 2 A�B : a dividesbg;

where by “divides” we mean with zero remainder. Then

R = f(2; 4); (2; 6); (3; 3); (3; 6); (4; 4)g:

We now define two important sets for a relation, namely, its domain and its range. Thedomain

of R is defined as

fx : x 2 A and(x; y) 2 R for somey 2 Bg;
while therange of R is the set

fy : y 2 B and(x; y) 2 R for somex 2 Ag:

In words, the domain ofR is composed of allx 2 A for which there isy such thatxRy. The set of

all y 2 B such that there existsxRy is the range ofB.

Example 8: In Example 7 the domain ofR is the setf2; 3; 4g while the range isf3; 4; 6g. Observe

that domain ofA is a subset ofA while the range is a subset ofB.

There are several important properties that are used to classify relations on sets. LetR be a

relation on the setX. We say that:

� R is reflexive if xRx for everyx 2 X;

� R is symmetric if xRy impliesyRx for all x; y 2 X;

� R is antisymmetric if xRy andyRx implies thatx = y;

� R is transitive if xRy andyRz impliesxRz for all x; y; z 2 X.

Example 9: ConsiderA = f1; 2; 3; 4g and letR = f(1; 3); (4; 2); (2; 4); (2; 3); (3; 1)g. Observe that

the relationR is:

� not reflexive since(1; 1) =2 R;

� not symmetric since for example(2; 3) 2 R but (3; 2) =2 R;
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� not antisymmetric since(1; 3) 2 R and(3; 1) 2 R but 1 6= 3;

� not transitive since(2; 3) 2 R and(3; 1) 2 R, but (2; 1) =2 R.

On the other hand, consider this relationS = f(1; 1); (2; 2); (3; 3); (4; 4); (2; 3); (3; 1)(2; 1)g. The

relationS is reflexive, transitive, but not symmetric, however, its antisymmetric, as easy to check.

Exercise 2B: LetX = f1; 2; 3; 4g. Is the following relation

R = f(1; 1); (1; 2); (1; 3); (1; 4); (2; 2); (2; 3); (2; 4); (3; 3); (3; 4); (4; 4)g

reflexive, symmetric, antisymmetric, or transitive?

Relations are used in mathematics and in computer science to generalize and make more rigorous

certain commonly acceptable notion. For example, “=” is a relation that defines equality between

elements.

Example 10: LetA = Q be the set of rational numbers, that is, ratios of integers. Thena = b means

thata 2 Q has the same value asb 2 Q. For example,12 = 4
8 . The relation= partitions the set of all

rational numbersQ into subsets such every subset contains all numbers that are equal. Observe that

= is reflexive, symmetric and transitive. Indeed,x = x, x = y is the same asy = x, and finally if

x = y andy = z, thenx = z. Such relations are called equivalence relations and they play important

role in mathematics and computer science.

A relationR that isreflexive, symmetric, andtransitive is called anequivalence relationon the

setX. As we have seen above, the relation= divides (actually,partitions) the set of all rational

numbers intodisjoint sets that cover the the whole set of rational numbers. Let us generalize this. For

an equivalence relationR we define theequivalence setfor anya 2 X denoted by[a] as follows

[a] := fx 2 X : xRag:

In words,[a] is the set ofall elementsx 2 X such thatx anda are related byR. This is a special set,

as we formally explain below. Informally, the twodifferentequivalence sets[a] and[b] are disjoint and

the whole setX is partitioned into disjoint equivalence sets (i.e.,X is the sum of disjoint equivalence

sets).

More formally, observe that ifaRb, then [a] = [b]. Indeed, letx 2 [a]. We shall prove that

x 2 [b], hence[a] � [b]. ThusxRa and fromaRb and transitivity we conclude thatxRb, hence

x 2 [b], as needed. In a similar manner we can prove that[b] � [a] which proves that[a] = [b].

Clearly if [a] = [b], thenaRb (by definition of [a]). The latter can be expressed in a different, but

logically equivalent, manner: If(a; b) =2 R, then [a] 6= [b] (this is an example ofcounterpositive

argument discussed in Module 1:Basic Logic). We should conclude that the setX can be partitioned

into disjoint subsets[a] such that every element ofX belongs to exactly one equivalence class[a]. In

other words, the set

S = f[a] : a 2 Xg
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is a partition ofX.

There is one important example of equivalence classes, calledcongruence class, that we must

discuss.

Example 11: Fix a numbern that is apositive integer(i.e., a natural number). LetZ be the set of all

integers. We define a relationRn onZ by xRny if x� y is divisible byn, that is, there is an integer

k 2 Z such thatx� y = kn. We will write x � y mod n for Rn, or more oftenx mod n = y. Such

a relation is also calledcongruence modulo n. For example,17 � 2 mod 5 since17� 2 = 3 � 5, but

17 6� 3 mod 5 since17� 3 = 14 is not divisible by5.

It is not difficult to prove that� is reflexive, symmetric and transitive. Indeed,x � x since

x�x = 0 �n. If x � y mod n, theny � xmod n sincex�y = kn impliesy�x = (�k)n. Finally,

let x � y mod n andy � z mod n. That is,x�y = k1n andy�z = k2n. Thenx�z = (k1+k2)n,

hencex � z mod n.

Since� is an equivalence relation, we can define equivalence classes which are calledcongruence

classes. From the definition we know that

[a] = fa+ k � n : for somek 2 Zg:

Example 12: Congruence classes modulo5 are

[0] = f5k : k 2 Zg;
[1] = f5k + 1 : k 2 Zg;
[2] = f5k + 2 : k 2 Zg;
[3] = f5k + 3 : k 2 Zg;
[4] = f5k + 4 : k 2 Zg:

In words, an integer belongs to one of the above classes because when dividing by5 the remainder is

either0 or 1 or 2 or 3 or 4, but nothing more than this.

We have seen before that the relation= was generalized to the equivalence relations. Let us do

the same with well known� relation. Notice that it defines an order among of real number. Let now

xRy if x � y andx; y 2 R. Clearly, this relation is reflexive and transitive becausex � x and if

x � y andy � z, thenx � z. It is definitelynotsymmetric sincex � y doe snot implyy � x unless

x = y. Actually, it is easy to see that it is antisymmetric since ifx � y andy � x, thenx = y. We

call such relationspartial orders . More precisely,a relationR on a setX is partial order ifR is

reflexive, antisymmetric, and transitive.

Example 13: Let xRy if x dividesy (evenly) forx; y 2 Z. This relation is reflexive and transitive as

we saw in Example 11. It is not symmetric (indeed,5 divides10 but not the other way around). Is it

antisymmetric? Letx dividesy andy dividesx, that is, there are integersn andm such thaty = m �x
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andx = n � y. That is,y = m � n � y, hencem � n = 1. Sincem;n 2 Z we must havem = n = 1.

ThusR is antisymmetric.

A reflexive, antisymmetric, and transitive relationR is calledpartial order (not just an order or

total order) since forx; y 2 X it may happen that neitherxRy nor yRx. In Example 13 we see

that (2; 3) =2 R and(3; 2) =2 R. If for all x; y 2 X we have eitherxRy or yRx, thenR defines a

total order. For example, the usual ordering of real numbers defines a total ordering, but pairs of real

numbers in a plane define only a partial order.
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Theme 3: Functions

Functions are one of the most important concepts in mathematics. They are also special kinds of

relations. Recall that a relationR from X to Y is a subset of the Cartesian productX � Y . Recall

also that the domain ofR is the set ofx 2 X such that there existsy related tox throughR, that is,

xRy. For relations it is not important that foreveryx there isy related tox by R. Moreover, it is

legitimate to have twoy’s, sayy1 andy2 such thatxRy1 andxRy2 for somex. These two properties

are eliminated in the definition of afunction. More formally, we definea function denoted asf from

X to Y as a relation fromX to Y having two additional properties:

1. The domain off isX;

2. If xfy1 andxfy2, theny1 = y2.

The last item means that if there is anx such that it is related toy1 andy2, theny1 mustbe equal to

y2. In other words, there is nox that has two different values ofy related to it.

We shall use lowercase lettersf , g, h, etc. to denote functions. Furthermore, whenxfy we shall

write it asy = f(x). Finally, we will also use another standard notation for functions, namely:

f : X ! Y:

Functions are also calledmappingsor transformations.

The second property of the function definition is very important, so we characterize it in another

way. Consider a relationR onX andY . Define

R(x) = fy 2 Y : (x; y) 2 Rg:

Observe thatR(x) is a set. It may be empty, may contain one element or many elements. WhenR is

a function, thenR(x) is not empty foreveryx 2 X and in fact it containsexactlyone element that is

called animageof x. More generally, the image ofX denoted asf(X) for a functionf : X ! Y is

defined as

f(X) = fy 2 Y : y = f(x) for somex 2 Xg:
In other words,f(X) is a subset ofY for which there isx 2 X such thatf(x) 2 Y . For example in

Figure 2 the image ofX = f1; 2; 3g is fa; bg.
Example 14: (a) Consider the relationf = f(1; a); (2; b); (3; b)g from X = f1; 2; 3g to Y =

fa; b; c; dg. It is a function since everyx has exactly one image inY . In fact, f(1) = a, f(2) =

f(3) = b andf(X) = fa; bg � Y . Figure 2 shows a graphical representation of this function.

(b) The relationR = f(1; a); (2; a); (3; c)g is not a function sincex = 1 andx = 2 have the same

imagea.
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Figure 2: The functionf defined in Example 14.
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Figure 3: Plots of two functions: (a)f(x) = x2; (b) f(x) = 2x.

Functions are often represented by mathematical formulas. For example, we can writef(x) = x2

for every realx, or more formally

x 2 R! f(x) = x2;

or

f = f(x; x2) : x 2 Rg:
To visualize such functions we often graph them in the(x; y) coordinates wherey = f(x).

Example 15: In Figure 3 we draw the functionsy = f1(x) = x2 andf2(x) = 2x. Both functions

are defined on the set of realsR which is the domain for both functions. Sincex2 � 0 and2x > 0

hence the range off1 is the set of nonnegative reals while forf2 it is the set of positive reals. That is,

f1(R) = R+ [ f0g andf2(R) = R+.

Exercise 2C: What is the image off(R) for f(x) = x4? What about the image ofR over the

functionf(x) = x3?
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There are some functions occurring so often in computer science that we must briefly discuss

them here. The first function, themodulus operator, we already studied in Example 11. We say

thatx mod y is equal to the remainder whenx is divided byy (we, of course, implicitly assume that

x; y 2 Z, i.e.,x andy are integers). We recall thatx mod y = n is equivalent tox � n mod y used

before. For example,10 mod 3 = 1 and13 mod 5 = 3.

We shall write this function as

h(x) = y mod n; n 2 N

with the understanding thaty is the remainder of the divisionx=n. The domain of such a function is

the set of integers, while the image (or range) is the set of natural numbers. In fact, we can restrict the

range ofh to the setf0; 1; : : : ; n� 1g because the remainder of any division byn must be an integer

between0 andn� 1.

The other important and often used functions are thefloor and ceiling of a real number. Let

x 2 R, then

bxc = the greatestinteger less than or equal tox;

dxe = the leastinteger greater than or equal tox:

For example,

b8:99c = 8; d8:99e = 9

b�7:5c = �8 d�7:7e = �7

b10c = 10 d10e = 10:

Finally, we introduce some classes of functions as we did with relations. Consider the function

f(x) = x2 shown in Figure 3(a). We havef(�2) = f(2) = 4, that is, there are two values ofx that

are mapped into the same value ofy (or with the same image). This is an example of a function that is

not one-to-one or injective. We say thata functionf fromX to Y is one-to-oneor injective if there

arex1; x2 2 X such that iff(x1) = f(x2), thenx1 = x2. In other words, for one-to-one functionf

for eachy 2 Y there is at most onex 2 X with f(x) = y. The function in Figure 3(b) is one-to-one,

as easy to see.

Example 16: Consider

f = f(1; b); (2; a); (3; c)g
from X = f1; 2; 3g to Y = fa; b; c; dg. This function is injective.

How to know weather a function is one-to-ne or not? We provide some conditions below. We

first introduceincreasinganddecreasingfunctions. A functionf : X ! Y is increasing (non-

decreasing) if f(x) < f(y) (f(x) � f(y)) wheneverx < y for all x; y 2 X. For example, the
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functionf(x) = 2x is increasing in the domainR (cf. Figure 3(b)). Similarly,a functionf : X ! Y

is decreasing(non-increasing) if f(x) > f(y) (f(x) � f(y)) wheneverx < y for all x; y 2 X. For

an increasing (decreasing) function the bigger the value ofx is, the bigger (smaller) the value ofy

will be.

The functionf(x) = x2 plotted in Figure 3(a) is neither increasing or decreasing in the domain

R. However, it is a decreasing function for all negative reals and increasing in the set of all positive

reals.

In Example 16 we havef(X) = fa; b; cg � Y . A functionf from X to Y such thatf(X) = Y

is said to beonto Y or surjective function.

Example 17: Let f : R ! R+ [ f0g be such thatf(x) = x2, whereR+ is the set of positive real

numbers. Clearly,f(R) = R+ [ f0g, thus it isontoR+ [ f0g. But if we definef : R ! R with

f(x) = x2, then such a function is not surjective.

A function f : X ! Y that is both injective and surjective is called abijection. The function in

Example 16 is a bijection while the function in Example 17 is not. For a bijection we can define an

inverse functionf�1 : Y ! X as

f�1 = f(y; x) : (x; y) 2 fg;
that is,x andy switch their roles. Observe that wedo not need to have bijection in order to define

the inverse since: (i) the domain of the inverse function isY and by the definition of a function, for

everyy there must bex such thatx = f�1(y); (ii) There must beonly onex such thatx = f�1(y)

and this is guaranteed by the requirement thatf is one-to-one function.

Example 18. Let f : R ! R be such thatf(x) = x2. This is not a one-to-one function. Let us

restrict the domainX to the set ofnonnegativerealsX = R+ [ f0g and we do the same with the

range, that is,Y = R+ [ f0g. Now f(x) = x2 has an inverse function defined onR+ [ f0g which

is f�1(y) =
p
y.

Finally, we define the composition of two functions. Let

g : X ! Y and f : Y ! Z:

Then for everyx 2 X we findg(x) = y, but for suchy we computef(y) = f(g(x)). The resulting

function is called thecompositionof f andg and is denoted asf Æ g.

Example 19: Let

g = f(1; a)(2; a); (3; c)g
f = f(a; z); (b; x); (c; y)g:

Then

f Æ g = f(1; z); (2; z); (3; y)g:
Example 20: Let g(x) = sin(x) andf(x) = 2x. The compositionf Æ g = f(g(x)) = 2sin(x).
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Theme 4: Sequences, Sums, and Products

Sequences are special functions whose domain is the set of natural numbersN = f1; 2; : : :g or

N0 = f0; 1; 2; : : :g, that is,f : N ! R is a sequence. We shall writean := f(n) to denote an

element of a sequence, where the lettera in an can be replaced by any other letter, sayun or xn.

Since a sequencean is a set we often write it asfangn2N or simplyfang.
Example 21: Let an = 1=n2 for n 2 N. That is, the sequence

a1; a2; a3; : : :

starts with

1;
1

4
;
1

9
; : : :

If bn = 1 + (�1)n, then the sequence begins with

0; 2; 0; 2; : : :

Finally, xn = 2�n looks like
1

2
;
1

4
;
1

8
; : : :

We can create another sequence from a given sequencefang by selecting only some terms. For

example, we can take very second term of the sequencef1=ng, that is,1; 1=3; 1=5; : : :. This amounts

to restricting the domain to a subset of natural numbers. If we denote this subset asS � N, then we

can denote such a sequence (subsequence) asfangn2S . Another way of denoting a subsequence is

fankgk2N wherefnkg is a subsequence of natural numbers, that is,nk : N! S � N. It is usually

required thatnk < nk+1, that is,fnkg is an increasing sequence.

There is one important subsequence that we often use. Namely, defineS = fm;m+1;m+2; : : :g.
Sometimes, we shall denote such a sequence asfang1n=m.

Example 22: Let an = 2n. The first terms are2; 4; 8; 16; 32; : : :. Take every second term to produce

a sequence that starts2; 8; 32; : : :. We can write it asbn = 22n or asa2n.

Sequences are important since they are very often used in computer science. They are frequently

used in sums and products that we discuss next. Consider a (sub)sequence

am; am+1; : : : ; an;

and add all the elements to yield

am + am+1 + am+2 + � � � + an:

To avoids the dots� � � we have a short hand notation for such sums, namely

nX

j=m

aj =
nX

k=m

ak =
nX

i=m

ai:
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In the above, we use differentindices of summationj, k or i since they do not matter. What matters

is the lower boundm and the upper boundn of the index of summation, and the sequencean itself.

In a similar manner we can define theproduct notation. For the above case instead of writing

amam+1 � � � an

we simply write
nY

j=m

aj =
nY

k=m

ak =
nY

i=m

ai:

Example 23: Here are some examples:

4X

i=1

1

i
= 1 +

1

2
+

1

3
+

1

4
=

25

12
;

5X

k=2

2k = 22 + 23 + 24 + 25 = 60;

4X

j=1

j

j + 1
=

1

2
+

2

3
+

3

4
+

4

5
==

163

60
:

Exercise 2D: Find

1.
P3

i=1 i
2 .

2.
Q2
k=0 2

k.

We have to learn how to manipulate sums and products. Observe that

nX

j=1

aj =
n+2X

k=3

ak�2 = a1 + a2 + � � �+ an:

In the above we change the index of summation fromj to k = j + 2. We obtainedexactlythe same

suma1 + a2 + � � � + an. In general, when we change indexj 2 f1; 2; : : : ; ng to, sayk = j + m

for somem 2 Z, we must change the lower summation index fromj = 1 to k = m, the upper

summation index fromj = n to j = n+m, andaj must be replaced byak�m.

Example 24: This is the most sophisticated example in this module, however, it is important that the

reader understands it. We consider a special sequence called thegeometric progression. It is defined

as follows: Fixr > 0 and definean = rn for n = f0; 1; 2; : : :g. This sequence begins with

1; r; r2; r3; : : :

Let us now consider the sum of the firstn+ 1 terms of such a sequence, that is,

Sn =
nX

i=0

ri: (2)
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Can we find a simple formula for such a sum? Consider the following chain of implications

Sn+1 = Sn + rn+1 =
n+1X

i=0

ri = 1 +
n+1X

i=1

ri

= 1 +
nX

j=0

rj+1

= 1 + r
nX

j=0

rj

= 1 + rSn;

where the second line follows from the change of the index summationi = j +1, in the third line we

factorr in front of the sum, while in the last line we replaced
Pn

j=0 r
j by Sn as defined in (2). Thus

we prove that

Sn + rn+1 = 1 + rSn;

from which we findSn:

Sn =
1� rn+1

1� r

as long asr 6= 1. Therefore, the complicated sum as in (2) has a very simple closed-form solution

given above. An unconvinced reader may want to verify on some numerical examples that these two

formulas give the same numerical value.
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