Module 1: Basic Logic

Theme 1: Propositions

English sentences are either true or false or neither. Consider the following sentences:
1. Warsaw is the capital of Poland.
2.24+5=3.
3. How are you?

The first sentence is true, the second is false, while the last one is neither true nor false. A statement
that is eithertrue or false but not both is called @roposition. Propositional logic deals with such
statements andompound propositionsthat combine together simple propositions (e.g., combining
sentences (1) and (2) above we may say “Warsaw is the capital of Polardhand= 3”).

In order to build compound propositions we need rules on how to combine propositions. We
denote propositions by lowercase lettgrg or r. Let us define:

e Theconjunction of p andgq, denoted ap A ¢, is the proposition
p and g,

and it istrue when bothp andgq are true and false otherwise.

e Thedisjunction of p andq, denoted ap V g, is the proposition

p or g,

and it isfalsewhen bothp andq are false and true otherwise.

e Thenegationof p, denoted either asp or p, is the proposition

It is nottrue thatp.

Example 1 Letp ="Hawks swoop” and; =“Gulls glide”. Thenp V q is the same as “Hawks swoop
or gulls glide”. We also can translate back. For example, the English sentence “it is not true that
hawks swoop” can be written a®.

Exercise 1A With the same notation as in the example above write the following propositions sym-
bolically:

e It is not true that “Hawks swoop and gulls glide”.

¢ “Hawks do not swoop or gulls do not glide”.



Theme 2: Truth Tables

We can express compound propositions usiriguth table that displays the relationships between

the truth values of the simple propositions and the compound proposition. In the next three tables
we show the truth tables for the negation, conjunction, and disjunction. Observe that any proposition
p can take only two values, namelsue, denotedT’, or false, denotedF. Therefore, for a com-

pound proposition consisting of two propositions (exg4 ¢) we must consider only four possible
assignments df’ and F'.

Table 1: The truth table for the negation.
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F
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Table 2: The truth table for the conjunction.

p 4 |phg
T T[T
T F|F
F T|F
F F|F

Table 3: The truth table for the disjunction.
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In this module we will often use truth tables. To construct a truth table for a statement (e.qg.,
—p V ¢) containing two propositions, sayandg, one first builds two columns with all possible vales

of p andq (i.e., (T, 7T), (T, F), (F,T),(F, F)), and then follows already accepted rules of inference
to determine the truth value of the compound statement-{gay q).

Exercise 1B Construct truth tables for the following statements:
o p A —p;

e pV —q.



Theme 3: Implications

In mathematics we often deal wittonditional statementske: “if z = 2, then z? = 4. Theif-then
statement is calletnplication and it is denoted gs — q. It is false wherp is true and; is false and
true otherwise. The reader may inspect the truth tabje-ef ¢ in Table 4 below.

Table 4: The truth table for the implication.

p—4q
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It is important to emphasize that — ¢ is false only wherp is true andgq is false In words,
truth camotimply afalse statement, bufalse can implytruth . For example, consider the following
statement

if =—2, then z?>=4

which is true even if the first part of this compound statement is not true, say wheh

In the implicationp — ¢, the propositior is calledhypothesisor antecedentand the proposition
g is known asconclusion or consequent The conclusion expressesnacessary conditionfor p,
while the hypothesis expressesuficient condition for ¢ to hold. Some other common ways of
expressing the implicatiopn — ¢ are:

e if p, theng;

p impliesgq;

e ifp,q;

ponly if ¢;

p is sufficient forg;

° qifp;

g wheneverp;
e ¢ is necessary fap.

Exercise 1C Make truth tables for the following statements:
1. p— —q;

2. (pA—q) > .



There are some important related implications following frer ¢, namely:

1. The propositiory — p is called theconverse
2. Thecontrapositive of p — ¢ is =q¢ — —p;
3. Theinverseis —p — —g.

In Table 5 we compare the truth values of these propositions.

Table 5: The truth table for the implication, contrapositive, converse, and inverse.

P q|p—a|-qg—=-p|g=p|p—q
T T[T T T T
T F|F F T T
F T|T T F F
F F|T T T T

We say that two compound propositiofsand () arelogically equivalentif they have the same
truth values. We shall write

P=Q
or
P < Q.
It should be observed from Table 5 that the implicatiopr+ ¢ has the same truth values as the
contrapositive~g — —p, but not as the converse and the inverse. Thus we can write
p—q = —q— P,
p—=q #F —p— g,
p—=q #F q—p.

Example 2 Prove that
p—q = "pVg.
We use the truth table. Our computation is shown in Table 6. Comparing the second column with the

last one, we see that the truth values are the sameforg and—p V ¢, so the above two compound
propositions are logically equivalent.

Table 6: The truth table for Example 2.

p q|p—aq|-p| Vg
T T|T F [T
T F|F F | F
F TI|T T[T
F FIT T (T




Exercise 1D Using the truth table prove that the following propositions are logically equivalent:

pV(gAr) =

(pVa)A(pVr).

In Exercise 1D the reader was asked to prove logical equivalence that is known under the name
distributive law. This is an example of many other logical equivalences that we list in Table 7 and

prove in the sequel.

Table 7: Logical Equivalences

Equivalence Name

pANT = p Identity laws
pVF =0p

pVT =T Domination laws
pANF = F

pVp =p Idempotent laws
PAp =p

=(-p) = p Double negation law
pVqg =qVp Commutative laws
PAG = qAp

pVgVr) = (pVqVr Associative laws
pA(gAT) = (PAg) AT

pV(gAT) = (pVq) A(pVr) | Distributive laws
pA(gVr) = (pAq)V(pAT)

-(pAq) = —pV—q De Morgan’s laws

=(pVq) = pA—q

All laws listed above can be easily proved using the truth table. The reader is encouraged to try
to work out all the truth tables. Having such laws under our belt, we can prove many new logical

equivalencesvithoutusing the truth table.

Example 3 Prove that

~(pV(-pAg) =-pA-g = =(pVg).

We proceed as follows

—(pV(=pAq) = —pA-(-pAg)
=p A (=(=p) V —q) De Morgan’s law

“pA(pV—q)
(=p Ap)V (-pA—q) distributive law

5

De Morgan’s law

double negation law



FV (=pA—q) since pAp=F

= (-pA—-q)VF commutative law
= (-pA—q) identity law
= =(pVyq) De Morgan’s law

Thus the above logical equivalence is proved. The above is largely self-explanatory, but a few words
of additional information follows: In the first statement above we, naturally, apply De Morgan’s law
-(PVQ) =—-PA-Q. Inour case() is acompound stateme@t = —p A ¢, thus another application
of De Morgan’s law implies-QQ = pV—q. Then we “multiply out”, that ispA(qVr) = (pAq)V(pAT).
The rest is simple.

A compound proposition is calledtautology if it is always true, no matter what the truth values
of the propositions (e.gp, vV —p = T no matter what is the value pf Why?).

A compound proposition is calledantradiction if it is always false, no matter what the truth
values of the propositions (e.@.A —p = T no matter what is the value pf Why?).

Finally, a proposition that is neither a tautology nor a contradiction is caltshtingency.



Theme 4: Predicates and Quantifiers
In mathematics we often have to deal with sentences like
p:x>—2z+1=0 or g¢: n isaprime number

which arenot propositions since their values are neither true nor false since the values of the variables
x andn are not specified. We shall denote such statemeni¥(agor Q(n) and callpropositional
functionsor predicatesof = or n.

More formally, letP be a statement involving the variaktghat belongs to the s@&. ThenP is
called apropositional function or predicate with respect taD if for eachx € D the sentencé(z)
is a proposition. The domaip is often called theainiverse of discourseof P.

Example 4 The statement above
P(z): 2> —2c+1=0

is true whenz = 1 and is false for any: # 1. The statemen®)(3) is true, whereQ(n): “n is a prime
number”.

Predicates are very important in mathematics and computer science since they allow us to justify
logical inferences osyllogisms Consider the following famous syllogism:

All men are mortal.

Fermat is a man.

Therefore, Fermat is mortal.
This conclusion seems to be perfectly correct, but we do not have rules of inference for propositional
logic to justify it. We shall come back in Module 3 to such logical inferences when we discuss
mathematical proofs.

We saw above how to change a propositional function into a proposition: by assigning truth values

to the variablez. There is another way of changing a predic&ter) into a proposition: either by

saying thatP(z) is true forall values ofx belonging toD or that P(x) is true forsomevalue ofz in
D. The former is called thaniversal quantificatiorwhile the latter theexistential quantification

Universal quantification
Theuniversal quantification P(z) is the proposition
P(z) is true for all values of: in the universe of discoursB.

We shall denote is as
Vz P(z).



We can also read it as “for at P(z)” or “for every z P(z)”. The symbolV¥ (notice that it is an
upside down) is called a universal quantifier.

Example 5 The statement
Vo2 >0

is a universally quantified statement that is true. But
Vzz? >0

is a universally quantified statement that is false sincerfer 0 we havez? = 0. We have just
learned how to prove that a universal quantification is false. We must ahleast one valuef z for
which P(x) is not true. Such a value afis called acounterexamplefor Vz, P(z).
Finally, observe that if the universe of discourse consists of a finite number of elements, say
T1,%2,...,2p, then
VeP(xz) = P(x1) AN P(x2) A+ A P(zy)

since this conjunction is true if and only#(z1), P(x3), ..., P(z,) are all true.

Existential quantification

Theexistential quantification P(z) is the proposition
P(z) is true for some value(s) af in the universe of discourse.

We shall denote it as
dz P(x).

We can also read it as “for someP(z)” or “there is anxz such thatP(z)” or “there is at least one
such thatP(x)”. The symbol3 (notice that it is mirror image dE) is called an existential quantifier.

Example 6 Let Q(z) denote the statementz? = 1. What is the truth value of the quantification

3z Q(x)

when the universe of discourse foiis the set of real numbers? Sin@¢1/2) andQ(—1/2) are true
propositions, we conclude that: Q(z) is true in the defined universe of discourse. But if we demand
that the universe of discourse fpiis the set of integers, théix Q(x) is false since there is no integer
satisfying4z? = 1. Here, we observe that in order to prove that an existentially qualified statement
P(z) is false, one must show that fall z in the universe of discourse the predicétér) is false.

Finally, observe that if the universe of discourse consists of a finite number of elements, say
T1,%2,...,Ly, then

dzP(z) = P(xz1)V P(x2)V---V P(xy,)

since this disjunction is true if and only if at least onelt{ir1 ), P(x2), ..., P(z,) is true.



We now generalize De Morgan’s laws to quantifications. We claim that

-VzP(xz) = 3x—P(x), (1)
—3dzP(z) =Va—P(x) 2

Let us try toprovethe first statement. Suppose thatz P(x) is true. HenceYzP(x) is false. But,
as we seen before such a statement is false if there exists at least@nghich P(z) is false. This
implies that for such: the statement:.P(z) is true, form which we infer thallz—P(x) is true. We
have shown that if-VzP(z) is true, therdz—P(z) is true. In a similar manner, we conclude that
if =VzP(x) is false, therdz—P(z) is false. In conclusion, the pair of proposition§zP(z) and
Jz-P(x) have the same truth values, so they must be logically equivalent.



