Solution of Homework 9: Discrete Probability

Q1. Show that if A and B are independent events, then \overline{A} and \overline{B} are also independent events.

Answer

$$P(\overline{A})P(\overline{B}) = (1 - P(A))(1 - P(B))$$

= $1 - P(A) - P(B) + P(A)P(B)$
= $1 - (P(A) + P(B) - P(A)P(B))$
= $1 - (P(A) + P(B) - P(A \cap B))$ A, B are independent
= $1 - P(A \cup B)$
= $P(\overline{A \cup B})$
= $P(\overline{A \cup B})$
= $P(\overline{A \cap B})$
 $\rightarrow \overline{A}, \overline{B}$ are independent

Note that this was only one way to do it and there are lots of other ways to prove that the L.H.S. = R.H.S.

Q2. What is the probability of a five-card poker hand contains the ace of hearts?

Answer

Let E be the event that a five-card poker hand contains the ace of hearts. The number of elements in the event E is the number of ways to pick the other four cards, which is C(51, 4).

$$\therefore P(E) = \frac{|E|}{|S|} = \frac{C(51,4)}{C(52,5)} = \frac{5}{52}.$$

Q3. What is the conditional probability that exactly four heads appear when a fair coin is flipped five times, given that the first flip came up tails?

Answer

Let A be the event that exactly four heads appear when a fair coin is flipped five times and B be the event that the first flip came up tails. We need to find

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{(0.5)^5}{0.5} = (0.5)^4 = 0.0625.$$

Q4. Let X_n be the random variable that counts the difference in the number of tails and the number of heads when n coins are flipped. Assume that the probability of throwing a head is p = 0.3. Compute $\mathbf{E}[X_n]$ and $\mathbf{Var}[X_n]$.

Answer

Let N_T be the number of tails and N_H be the number of heads obtained from tossing the *n* coins. Note that, both N_T and N_H have Binomial Distribution (with probabilities of success *q* equal to 0.7 and 0.3, respectively), mean = nq, and variance = nq(1-q). Now that $X_n = N_T - N_H$, $\mathbf{E}[X_n] = \mathbf{E}[N_T] - \mathbf{E}[N_H] = 0.7n - 0.3n = 0.4n$.

Morever, since $n = N_T + N_H$, $X_n = 2N_T - n$ and, therefore, $\mathbf{Var}[X_n] = \mathbf{Var}[2N_T - n] = \mathbf{Var}[2N_T]$ (since N_T , n are independent and $\mathbf{Var}[n] = 0$). Hence, $\mathbf{Var}[X_n] = \mathbf{Var}[2N_T] = 4\mathbf{Var}[N_T] = 4n(0.7)(1 - 0.7) = 0.84n$.