[40] Homework 5: Big O, Ω .

- [10] Select the best "big Oh" notation for each expression. Justify by showing the constants c and n_0 . Note that f(n) = O(g(n)) if there are constants c > 0 and $n_0 > 0$ so that for all $n \ge n_0$ we have $|f(n)| \le c \cdot g(n)$.
 - 1. $100n + \log n$.
 - 2. $(5n+1)^3 + 1000n^2$. 3. $n\sqrt{n^3} + \log^5 n$.

3.
$$n\sqrt{n^3 + \log^5 n}$$

- 4. $n^3 + n + \sqrt{n} + \sqrt{\log n}$.
- [10] Show the following:

$$6n^{2}\log n - 2n = \Theta(n^{2}\log n)$$
$$\frac{6n^{2} + n}{n\log^{6} n + 1} = \Theta\left(\frac{n}{\log^{6} n}\right)$$
$$\sum_{i=1}^{n} i^{2} = \Theta(n^{3})$$

- [10] Is $(\log n)^3 = O(\log n^3)$? Justify your answer?
- [10] We say that $f(n) \prec g(n)$ if g(n) grows faster than f(n) (e.g., $\log n \prec n$). Order the following functions by by \prec from the lowest to the highest:

$$\left(\frac{5}{3}\right)^{2n}$$
, 10⁸, $\sqrt{n^3}\log^2 n$, $2^{\log_2 n}$, $\log^4 \sqrt{n}$, $2^{3\log_2 n}$, 2^n .

Justify your answer.