[40] Homework 2. Language of Mathematics

Each problem is worth 10 points

[10] Prove

$$A \cap B = \bar{A} \cup \bar{B}$$

without using the de Morgan law and Venn's diagrams.

[10] What is the image of $f(\mathbf{R})$, where **R** is the set of all reals:

• $f(x) = x^4$

- $f(x) = \sin(x)$
- [10] Is $f(x) = x^2 + 1$ a bijection of $\mathbf{R} \to \mathbf{R}$?

Compute also $f^{-1}(\{y: 0 \le y \le 1\})$, if exists, where $f^{-1}(Y)$ denotes an inverse image, that is, the set of all x such that $f(x) \in Y$.

[10] What are the values of the following:

$$\sum_{i=5}^{99} 5 \cdot 2^{i-4},$$
$$\sum_{j=3}^{100} (2^{j+1} - 2^j),$$
$$\prod_{k=1}^{100} (-1)^k.$$