Solution of Homework 2: Language of Mathematics

Q1. Prove

$$A \cap B = \overline{\overline{A} \cup \overline{B}}$$

without using the De Morgan's law and Venn's Diagram.

Answer

To prove that two sets are equal, we need to prove that each set is a subset of the other:

i) To prove that $\overline{\overline{A} \cup \overline{B}} \subseteq A \cap B$:

$$\forall x \in \overline{A \cup B} \implies x \notin \overline{A} \cup \overline{B} \\ \implies (x \notin \overline{A}) \land (x \notin \overline{B}) \\ \implies (x \in A) \land (x \in B) \\ \implies x \in A \cap B$$

Thus, all elements of $\overline{A} \cup \overline{B}$ are also elements of $A \cap B$. That is,

$$\overline{\bar{A} \cup \bar{B}} \subseteq A \cap B \cdots \cdots \cdots (1)$$

ii) Likewise, to prove that $A \cap B \subseteq \overline{A \cup B}$, we follow the exact same steps but in the reverse order thus proving:

$$A \cap B \subseteq \overline{\overline{A} \cup \overline{B}} \cdots \cdots \cdots (2)$$

From (1), (2) : $A \cap B = \overline{\overline{A} \cup \overline{B}}$.

Q.2 What is the image of $f(\mathbf{R})$, where **R** is the set of all reals:

- $f(x) = x^4$
- $f(x) = x^2 4x$
- $f(x) = 2^{x^2}$
- $f(x) = \sin(x)$

Answer

If we plot the functions (or by substituting with different values for the independent variable x), the image of $f(\mathbf{R})$ will be:

1.
$$f(x) = x^{4}$$

 $f(\mathbf{R}) = [0, \infty).$
2. $f(x) = x^{2} - 4x$
 $f(\mathbf{R}) = [-4, \infty).$
3. $f(x) = 2^{x^{2}}$
 $f(\mathbf{R}) = [1, \infty).$

4. $f(x) = \sin(x)$ $f(\mathbf{R}) = [-1, 1].$

Q.3 Is
$$f(x) = x^2 + 1$$
 a bijection of $\mathbf{R} \to \mathbf{R}$?
Compute also $f^{-1}(\{y : 0 \le y \le 1\})$, if exists, where $f^{-1}(Y)$ denotes an inverse image, that is, the set of all x such that $f(x) \in Y$.

Answer

The function f(x) is not a bijection because it is not one-to-one. For example, f(1) = f(-1) = 2. Therefore, the inverse of f(x) does not exist.

Q.4 What are the values of the following:

$$\sum_{i=5}^{99} 5 \cdot 2^{i-4},$$
$$\sum_{j=3}^{100} (2^{j+1} - 2^j),$$
$$\prod_{k=1}^{100} (-1)^k.$$

Answer

To solve this problem we will be using the following two formulas that we have learned in class: n = n + 1 - 1

1.
$$\sum_{i=0}^{n} r^{i} = \frac{r^{n+1} - 1}{r - 1}$$

2. $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

The first formula is the sum of n + 1 terms of the geometric progression and the second formula is the sum of the first n positive integers.

1.

$$\sum_{i=5}^{99} 5 \cdot 2^{i-4} = \frac{5}{2^4} \sum_{i=5}^{99} 2^i$$
$$= \frac{5 \cdot 2^5}{2^4} \sum_{i=0}^{94} 2^i$$
$$= 10 \cdot \frac{2^{94+1} - 1}{2 - 1}$$
$$= 100(2^{95} - 1)$$

2. One way to solve this problem is:

$$\begin{split} \sum_{j=3}^{100} (2^{j+1} - 2^j) &= \sum_{j=3}^{100} 2^{j+1} - \sum_{j=3}^{100} 2^j \\ &= 2 \sum_{j=3}^{100} 2^j - \sum_{j=3}^{100} 2^j \\ &= \sum_{j=3}^{100} 2^j \\ &= 2^3 \sum_{j=0}^{97} 2^j \\ &= 8 \cdot \frac{2^{97+1} - 1}{2 - 1} \\ &= 8(2^{98} - 1) \end{split}$$

$$\prod_{k=1}^{100} (-1)^k = (-1)^{\sum_{k=1}^{100} k}$$
$$= (-1)^{\frac{100(100+1)}{2}}$$
$$= (-1)^{5050}$$
$$= 1$$