- Analysis of Exact Pattern Matching
Math techniques:
- Combinatorial Calculus (languages)
- Generating functions
- Simple complex asymptotics -- poles)
- Moment analysis
Homework - Problems
- Details of derivations
- Limiting distribution
- Extension to Markov
- Another example of combinatorial calculus (joint distribution)
References
(all can be downloaded from http://www.cs.purdue.edu/people/spa)
- M. Regnier and W. Szpankowski.
On Pattern Frequency Occurrences in a Markovian Sequence Algorithmica, 22, 631-649, 1998.
http://www.cs.purdue.edu
- W. Szpankowski.
Average Case Analysis of Algorithms on Sequences . John Wiley & Sons, New York, 2001.
(Chap. 7.1 and 8.3).
http://www.cs.purdue.edu>
- P. Jacquet and W. Szpankowski.
Analytic Approach to Pattern Matching. In Applied Combinatorics on Words (eds. Lothaire), Cambridge University Press (Encycl. of Mathematics and Its Applications), 2004.
http://www.cs.purdue.edu
- Worst Case Minimax Redundancy for memoryless Sources
Math techniques :
- Shtarkov bound
- Tree-like generating functions
- Singularity analysis
Homework - Problems
- Singularity expansion for T(z) and B(z)
- Extraction of coefficients for B m (z) --
details
References:
- W. Szpankowski.
On Asymptotics of Certain Recurrences Arising in Universal Coding.
Problems of Information Transmission , 34, No.2, 142-146, 1998.
http://www.cs.purdue.edu
- W. Szpankowski. Average Case Analysis of Algorithms on Sequences . John Wiley & Sons, New York, 2001. (Chap. 8.7).
http://www.cs.purdue.edu
- Error Resilient LZ'77 and Tries/Suffix Trees Analysis
Math techniques
- Recurrences
- Poissonization
- Mellin transform
- Depoissonization
Homework - Problems :
- Solve some other trie like recurrences (Chap. 7.6.1)
- Mellin transform exercises (Chap 9)
- Depoissonization examples (Chap 10)
- Limiting distribution of M n .
References:
- M. Ward and W. Szpankowski. Analysis of a Randomized Selection Algorithm Motivated by the LZ'77 Scheme.
The First Workshop on Analytic Algorithmics and Combinatorics
, (ANALCO04), New Orleans, January 10, 2004.
http://www.cs.purdue.edu
- W. Szpankowski.
Average Case Analysis of Algorithms on Sequences .
John Wiley & Sons, New York, 2001.
(Chap. 9 and 10).