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NotationNotation

• A = discrete (usually finite) alphabet
• α = | A| = size of A  (when finite)
• finite sequence over  A
• infinite sequence over A
• sub-sequence (i sometimes omitted if = 1)
• pX(x) = Prob(X=x) = probability mass function (PMF) on A                 

(subscript X and argument x dropped if clear from context)

• X ∼ p(x) :  X obeys PMF p(x)
• Ep [F] = expectation of F  w.r.t. PMF p   (subscript and [ ] may be dropped)

• empirical distribution obtained from x1
n

• log x = logarithm to base 2 of x, unless base otherwise specified
• ln  x = natural logarithm  of x
• H(X), H(p) = entropy of a random variable X or PMF p, in bits;  also
• H(p)  =  − p log p − (1−p) log (1−p),  0 ≤ p ≤ 1 : binary entropy function
• D(p||q) = relative entropy (information divergence) between PMFs p and q
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Lossless Source CodingLossless Source Coding

3. Universal Coding
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Universal Modeling and CodingUniversal Modeling and Coding

q So far, it was assumed that a model of the data is available, and we 
aimed at compressing the data optimally w.r.t. the model

q By Kraft’s inequality, the models we use can be expressed in terms 
of probability distributions: 
For every UD code with length function L(s), we have

string of length n over 
finite alphabet A

⇒ a code defines a probability distribution P(s) = 2-L(s) over An

q Conversely, given a distribution P( ) (a model), there exists a UD 
code that assigns bits to s (Shannon code) 

q Hence, P( ) serves as a model to encode s, and every code has an 
associated model 
l a (probabilistic) model is a tool to “understand” and predict the 

behavior of the data
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Universal Modeling and Coding (cont.)Universal Modeling and Coding (cont.)

qGiven a model P( ) on n-tuples, arithmetic coding provides an 
effective mean to sequentially assign a code word of length close 
to -log P(s) to s
l we don’t need to see the whole string s = x1 x2 … xn : encode xt using 

conditional probability 

l the model probabilities can vary arbitrarily and “adapt” to the data
l in a strongly sequential model, P(xt) is independent of n

q CODING SYSTEM = MODEL + CODING UNIT
l two separate problems: design a model and use it to encode

We will view data compression as a problem of assigning 
probabilities to data
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Coding with Model ClassesCoding with Model Classes

q Universal data compression deals with the optimal description of 
data in the absence of a given model
l in most practical applications, the model is not given to us

q How do we make the concept of “optimality” meaningful?
l there is always a code that assigns just 1 bit to the data at hand!

The answer: Model classes
qWe want a “universal” code to perform as well as the best model in 

a given class C for any string s, where the best competing model 
changes from string to string
l universality makes sense only w.r.t. a model class

q A code with length function L(xn) is pointwise universal w.r.t. a 
class C if when n → ∞

pointwise 
redundancy
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How to Choose a Model Class?How to Choose a Model Class?

Universal coding tells us how to encode optimally w.r.t. to a class; it 
doesn’t tell us how to choose a class!

q Some possible criteria:
l complexity
l prior knowledge on the data
l some popular models were already presented

qWe will see that the bigger the class, the slower the best possible 
convergence rate of the redundancy to 0
l in this sense, prior knowledge is of paramount importance: don’t learn 

what you already know!

Ultimately, the choice of model class is an art
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Example: Bernoulli ModelsExample: Bernoulli Models

A = {0,1}, C = {Pθ , θ ∈ Λ = [0,1] } 
i.i.d. distribution
with parameter p(1) = θ

ML-estimate of θ
Therefore, our goal is to find a code such that

q Here is a trivial example of a universal code: 
Use bits to encode n1, and then “tune” your Shannon 
code to the parameter θ = n1 / n, which is precisely the ML-estimate

⇒ this is equivalent to telling the decoder what the best model is!
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Bernoulli Models: Enumerative CodeBernoulli Models: Enumerative Code

q The total code length for this code satisfies:

→ 0
l wasteful: knowledge of n1 already discards part of the sequences, to 

which we should not reserve a code word

q A slightly better code: enumerate all        sequences with n1ones, 
and describe the sequence with an index

Stirling: ⇒ for sequences such that n1/n is 
bounded away from 0 and 1,
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Bernoulli Models: Mixture CodeBernoulli Models: Mixture Code

q The enumerative code length is close to -log Q’(xn), where
q Is Q( ) a probability assignment?

⇒

qAha!! So we get the same result by mixing all the models in 
the class and using the mixture as a model!

qThis uniform mixture is very appealing because it can be 
sequentially implemented, independent of n:

where

lLaplace’s rule of succession!
l this results in a “plug-in” approach: estimate θ and plug it in
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Bernoulli Models: Mixture Code (cont.)Bernoulli Models: Mixture Code (cont.)

qMaybe we can make Stirling work for us with a different 
mixture, that puts more weight in the problematic regions 
where n1/n approaches 0 and 1?

qConsider Dirichlet’s density ⇒

⇒ by Stirling for the Gamma function, for all sequences xn

qThis mixture also has a plug-in interpretation:

where 
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Summary of CodesSummary of Codes

q Two-part code 
l describe best parameter and then code based on it: works whenever 

the number of possible optimal codes in the class is sub-exponential
l the most natural approach (akin to Kolmogorov complexity), but not 

sequential
l not efficient in the example: can be improved by describing the 

parameter more coarsely ⇒ trade-off: spend less bits on the parameter 
and use an approximation of best parameter

l alternatively, don’t allocate code words to impossible sequences
qMixture code
l can be implemented sequentially
l a suitable prior on the parameter gave the smallest redundancy

q Plug-in codes
l use a biased estimate of the conditional probability in the model class 

based on the data seen so far
l can often be interpreted as mixtures

q But what’s the best we can do?
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Normalized MaximumNormalized Maximum--Likelihood CodeLikelihood Code

qGoal: find a code that attains the best worst-case pointwise redundancy

q Consider the code defined by the probability assignment

q Since the redundancy of this code is the same for all xn, it must be 
optimal in the minimax sense!

q Drawbacks:  - sequential probability assignment depends on horizon n
- hard to compute
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Example: NML Code for the Bernoulli ClassExample: NML Code for the Bernoulli Class

qWe evaluate the minimax redundancy RC for the Bernoulli class:

typical of sufficient statistics: Hint: Stirling +

⇒ the pointwise redundancy cannot vanish faster than (log n)/2n
(Dirichlet mixture or NML code)
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Parametric Model ClassesParametric Model Classes

q A useful limitation to the model class is to assume C = {Pθ, θ ∈ Θd }

q Examples:
l Bernoulli: d = 1 , general i.i.d. model: d = α-1 (α = |A|)
l FSM model with k states: d = k(α-1)
l memoryless geometric distribution on the integers i ≥ 0: P(i) = θi (1-θ)

d = 1 
q The dimension of the parameter space (number of one-dimensional 

parameters) plays a fundamental role in modeling problems
l with more parameters we can better fit the model to the data (e.g., a 

Markov model of higher order ⇒ the entropy cannot increase)
l but on the other hand, the class is richer and the redundancy is higher: 

e.g., in a two-part code it takes more bits to describe the best parameter
we will quantify this tradeoff of the model selection step

a parameter space
of dimension d
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Minimax Redundancy for Parametric ClassesMinimax Redundancy for Parametric Classes

q For a parametric class,

ML-estimate
of θ based on xn

q A code corresponding to a distribution Q(xn), has a redundancy

and the minimax redundancy (with the NML code) is

l the more sensitive the class to the parameter, the larger the redundancy
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Assumptions on the Parametric Model ClassesAssumptions on the Parametric Model Classes

qWe will assume that each model in the class satisfies the 
marginality condition for a random process, namely

l this means that each model can be implemented in a strongly  
sequential manner

qWe will usually assume that the model class is “nice”, including:
lΘd is an open bounded subset of ℜd which includes the ML estimates

l the Fisher information matrix I(θ) is “nice”
u for i.i.d., this is the classical Fisher information

l the maximum-likelihood estimator satisfies the CLT: the distribution of

converges to N(0, I-1(θ) )

)()(
1

1 n

Ax

n xPxP
n

θθ =∑
∈

+

+













∂∂
∂

−=
∞→

ji

n

nij
xPE

n
I

θθ
θ θ )(ln1lim)(

2

))(( θθ −nxn
)



Seroussi/Weinberger – Lossless source coding        26-May-04 18

Redundancy of NML CodeRedundancy of NML Code

q Theorem:

As expected, RC grows with the number of parameters

q Idea of the proof:
l partition the parameter space into small hypercubes with sides
l represent each hypercube Vr(θr) by a parameter θr belonging to it
l associate to Vr(θr) the mass

l with a Taylor expansion of Pθ (xn) (as a function of θ) around its 
maximum            we get the exact asymptotics of 

l for each hypercube, approximate Pr(θr) using CLT ⇒ integral of a 
normal distribution
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Interpretation of NML as a TwoInterpretation of NML as a Two--part Codepart Code

q Encode xn in two parts:
l Part I: encode the parameter θr for the hypercube Vr(θr) into which                  

falls, with a code tuned to the distribution

l Part II: encode xn using the model , conditioned on the fact that the

ML estimate belongs to ⇒ distribution

q In earlier two-part codes, the parameters were represented with a 
fixed precision and then xn was encoded based on the 
approximate ML parameter
l evaluating the approximation cost with Taylor, this precision was 

shown to be optimal
l intuitively,          is the magnitude of the estimation error in            and 

therefore there is no need to encode the estimator with better precision
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Redundancy of the Mixture codeRedundancy of the Mixture code

q As in the Bernoulli example, for any i.i.d. exponential family, and 
for Markov models, mixture code also gives the same “magic” 
model cost when the distribution w(θ) is proportional to             
(Jeffrey’s prior)
l in the Bernoulli case, this is precisely Dirichlet’s distribution:
l the tool for solving the integral is Laplace’s integration method

q The advantage of mixtures is that they yield sequential horizon-free
codes:
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Important Example: FSM model classesImportant Example: FSM model classes

qGiven FSM S with k states (fixed initial state)
parameters = conditional probabilities per state p(x|s), x ∈ A, s ∈ S

ML estimates:

target:

mixture distribution:

⇒ equivalent to doing i.i.d. mixture for every state sub-sequence
⇒ optimal universal probability assignment:

Krichevski-Trofimov (KT) estimator
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FSM model: Numerical ExampleFSM model: Numerical Example

q FSM = First order Markov, initial state 0

x20 = 0 0 1 1   1   1   0 1 1   1   1      1   1   0 0   0   0    1 0    0
1/2 3/4 1/6 1/2  3/4 5/6 1/8 3/8 7/10 3/4 11/14 13/16 5/6 3/20 1/2 7/12 9/14 5/16 5/22 13/18

total probability:

⇒ code length: 18 bits
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FSM model classes and the LempelFSM model classes and the Lempel--Ziv algorithmZiv algorithm

q The LZ algorithm is universal for ANY class of FSM models (of any 
size) ⇒ in particular, for all Markov models

Markov machine
of any order k

and for an infinite sequence x∞

)|(suplim)(1suplim k
n

n

n
LZ

n
SxHxL

n
)

∞→∞→
≤

)()|(suplimlim)(1suplim ∞

∞→∞→∞→
=≤ xHSxHxL

n k
n

nk

n
LZ

n

))

limit exists
Markov 

compressibility



Seroussi/Weinberger – Lossless source coding        26-May-04 24

Expected Pointwise RedundancyExpected Pointwise Redundancy

q So far, we have considered the code length for individual sequences, 
without taking any average

qWe have found that for parametric classes, the best we can do is to 
achieve a worst-case pointwise redundancy of about bits

q This means guaranteed performance, but maybe there are only a few 
such “unlucky” strings?

q How to weight the redundancies in order to compute an average? 
Since we are assuming that the class C = {Pθ, θ ∈ Θd } is a good 
model for the data, it makes sense to assume that the data was
drawn from a source with some distribution Pθ in C

q Expected pointwise redundancy of a code 
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Expected RedundancyExpected Redundancy

qMaybe there exist codes that are “good” (with expected pointwise
redundancy smaller than ) for a significant fraction of models 
in the class?

qWe will be even “larger”: we consider the expected redundancy

normalized divergence
for distr. defined on n-tuples

This is more “liberal” because

and therefore
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Lower Bound on Expected RedundancyLower Bound on Expected Redundancy

q The pointwise universal codes we saw are - a fortiori - average 
universal for all parameters θ ⇒ this means that the corresponding 
distribution Q is “close” to all the models in the class in the sense 
that 

q Still, the answer is that is about the best we can do for 
most models in the class: it’s the inevitable cost of universality

q Theorem:
Assume that either CLT holds for ML estimator of parameters in Θd 
or
Then for all Q and all ε > 0, 

for all points θ in Θd except  in a set whose volume → 0 as n → ∞
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Lower Bound (cont.)Lower Bound (cont.)

q This lower bound parallels Shannon’s coding theorem: 
when we consider a model class instead of a single distribution,
a model cost gets added to the entropy

q The bound cannot hold for all models in the family, but it holds for 
most

qOne interpretation of the lower bound: 
if the parameters can be estimated well, they are “distinguishable” 
(Pθ is sensitive to θ), so the class cannot be coded without a model 
cost

Conclusion: 
the number of parameters affects the achievable convergence rate
of a universal code length to the entropy
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Variations on the Lower BoundVariations on the Lower Bound

q Assuming, in addition, that , then the cumulative

volume of “bad” parameters for all sufficiently large n → 0 ⇒
the “bad” parameters form a set of Lebesgue volume 0

q Strong Redundancy-Capacity Theorem:
Under very mild conditions on the model class,

where and Qw is a mixture,

for all θ except for a set B for which , where w* is the 
density that achieves the supremum

q For parametric classes, Cn indeed behaves as and w*(B) → 0 
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Optimal Codes for Average RedundancyOptimal Codes for Average Redundancy

q How do we achieve ?

We use the mixture Qw for which the weighted expected redundancy

is maximum  ⇒ Cn

⇒ an appropriate mixture is the best one can do to minimize the
expected redundancy for the worst-case parameter (close to 
Jeffrey’s prior in the case of exponential families/Markov models)

q In many situations, the minimum expected redundancy (or at least
its main term ) can be achieved by a plug-in code of the 
form

where         is an estimate of θ based on xt-1

l example:  Bernoulli/FSM cases (KT estimator; even Laplace’s estimator
works in the average sense)
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Summary of Codes and BoundsSummary of Codes and Bounds

qMinimax pointwise redundancy: NML code
l for “nice” parametric families with d parameters,

l horizon-dependent, mixture code with suitable prior is a good horizon-
free approximation

l in fact, for i.i.d. models with α-1 parameters, it can be shown that

)/1(|)(|log1
2

log
2

nodI
n

n
n

dR
d

++= ∫Θ
θθ

πC

2)(
21)|(

)(

)(
lim)...|(lim

1

1121
NML

NML

NML α+

+
=

∑

∑
=

+−∈

−

−∈

∞→−∞→ sn
sxn

vxQ

uxQ
xxxxq

t

t

x

x

tnAv

t

tnAu

t

nttn

KT mixture!



Seroussi/Weinberger – Lossless source coding        26-May-04 31

Summary (cont.)Summary (cont.)

qMinimax average redundancy: mixture codes with prior such that the 
weighted expected redundancy is maximum

l for i.i.d. exponential families and Markov models, close to Jeffrey’s prior

l not only we cannot do better than Cn for one parameter (minimax), but for 
most parameters

l for “nice” parametric families,
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TwiceTwice--universal codinguniversal coding

q Consider a model class to be the union of nested classes of 
growing dimensionality:
where
l example: Markov of different order, or FSM

qWe seek a code length close to the minimum over the classes of 
the universal code length for each class:

l here, we also try to optimize the model size
l trade-off: first part diminishes with d, second part grows with d
l we answer questions such as: should we model the data as i.i.d. or as 

Markov of order 1?
l since the second level of universality is over a discrete set, we expect it 

not to affect the main redundancy term
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Mixture Approach to DoubleMixture Approach to Double--UniversalityUniversality

q Consider the series where

The probability assignment
universal sequential 
code for Θd

is sequential:

It is universal as desired: for all d

q However, it involves an infinite sum
l this can be avoided by modifying Qd so that for all t ≤ d:

this way, all models with d ≥ n assign the same probability α-n and the sum 
becomes finite, without affecting universality and sequentiality

l anyway, this is obviously not practical but shows achievability of the goal
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PlugPlug--in Approach to Doublein Approach to Double--UniversalityUniversality

q The idea: estimate the best model class Θd based on xt-1, and plug it 
to encode xt with Qd

l the decoder can reproduce the process without overhead

q In general, this approach does not work pointwise, but for some 
model classes it was shown to work on the average
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Lossless Source CodingLossless Source Coding

5. Universal Algorithms for Tree Models
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DoubleDouble--Universality for Tree ModelsUniversality for Tree Models

q Tree sources (FSMX)
l finite memory ≤ k  (Markov)
l # of past symbols needed to 

determine the state might be
< k  for some states

l by merging nodes from the full Markov 
tree, we get a model with a smaller 
number of free parameters

l the set of tree sources with unbalanced 
trees has measure zero in the space of 
Markov sources of any given order: 
otherwise, double-universality would 
contradict the lower bound!!

l yet, tree models have proven very useful 
in practice, partly because there exist 
efficient twice-universal, sequential
schemes in the class of tree models of 
any size
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Contexts and TreesContexts and Trees

q Any suffix of a sequence xt is called a context in which the next 
symbol xt+1 occurs

q For a finite-memory process P, the conditioning states s(xt) are 
contexts that satisfy

q # of parameters: α-1 per leaf of the tree 
l assume minimal parametrization: sibling states with identical 

conditional distribution are “merged”
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TwoTwo--pass Context Algorithmpass Context Algorithm

q First pass: gather all the context statistics for xn in a tree
lO(n) complexity with suffix tree methods

q After the first pass, associate to each node a cost

and “prune” the tree to find a subtree T with total minimum cost for 
the leaves (dynamic programming algorithm)

q The total cost for T is:
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TwoTwo--pass Context Algorithm (cont.)pass Context Algorithm (cont.)

q Second pass: describe T to the decoder using nT bits and encode 
xn conditioned on T with KT ⇒ by definition, we have the best tree 
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Pruning of Context Trees: ExamplePruning of Context Trees: Example
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Drawbacks of TwoDrawbacks of Two--pass Approachpass Approach

q Non-sequential

q The scheme has asymptotically minimum pointwise redundancy, 
but is redundant (given the tree, not all xn are possible)

⇒ mixture with weights λT is better!

q Can the mixture be efficiently done?
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Mixture Approach: Context Tree WeightingMixture Approach: Context Tree Weighting

q CTW: An efficient implementation of the mixture for the class of 
binary tree models of maximum length bounded by m
l there exist extensions for non-binary and unbounded, but not as elegant

q Probability assignment associated with a node s of the tree

q Theorem: Let T have lT leaves ( ⇒ nT = 2 lT -1), mT leaves at level m
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CTW: “Proof” by ExampleCTW: “Proof” by Example

q Let  m = 2
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CTW: Practical IssuesCTW: Practical Issues

q Finite precision: - as node probabilities get smaller they cannot be 
stored ⇒ may need to re-compute from counts

- probability assignment is a ratio of vanishing 
numbers

q In general, m needs to be assumed large, and complexity raises

q Binary only

q However, there are good implementations of CTW which provide 
the best compression ratios on text and binary file compression

q From a practical viewpoint, a plug-in approach is more appealing
l however, universality is only shown on an average sense
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PlugPlug--in Approachin Approach

q In a plug-in approach, the idea is to encode xt+1 by selecting a 
context from xt that strikes the “right balance” between conditional 
entropy and model cost
l a long context reduces entropy by introducing more conditioning
l but the longer the context, the smaller occurrence counts it has and the 

statistics that we learn from them are less reliable

l for each time t, it is only necessary to select a context in the path
xt xt-1 xt-2 …, not the whole tree

q A plug-in twice-universal scheme consists of a context selection 
rule, and a coding scheme based on the statistics stored at the 
selected context (e.g., KT estimator)

q The context selection rule is also a tool for model selection for 
purposes other than data compression
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Context AlgorithmContext Algorithm

q The algorithm consists of three interleaved stages:
l growing of a tree that captures, essentially, all occurrences of each 

symbol at each node
l a context selection rule that selects for xt+1 a context st (xt) from the tree 

Tt grown by xt

l a KT sequential probability assignment for xt+1 based on the counts 
stored at st (xt)

q For each new symbol, we first encode, then update Tt →Tt+1 (think 
of the decoder!)
l the update consists of incrementing the occurrence counts for all the 

nodes in the path xt xt-1 xt-2 …
l when we get to a leaf that was already visited, we extend the tree one 

level and initialize the count of xt+1 to 1 (the others remain 0) ⇒ 
only a few initial occurrences are missing, so we can basically assume 
that for all nodes s and all symbols a, the count is available

l nodes in other paths don’t need to be visited
)|( san tx
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Context Selection RuleContext Selection Rule

q Basic principle:
The node which would have assigned the shortest code length for 
its symbol occurrences in the past string should be selected

qMost intuitive choice: find minimum cost tree     for all times t, and 
do KT-coding for xt+1 conditioned on the context  xt xt-1 xt-2 …in   
l unlike two-pass, the cost should not include tree description: the 

decoder already has it !
l very complex and was not shown to be asymptotically optimal, even on 

the average

q Another possibility: for each node sb ∈ Tt , b ∈ A define

Choose the deepest node sb in Tt such that

)()()( sLsbLsb ttt ′−=∆

KT code length for symbols occurring at sb

KT code length for symbols occurring
at sb based on counts gathered at s
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Universality of Context AlgorithmUniversality of Context Algorithm

q Easier to analyze:

the selected tree Tt is the smallest complete super-tree of
{ the deepest nodes w in Tt s.t. ∆t (w) ≥ C log (t+1) }

q Theorem: For any minimal complete tree T with k leaves defining a 
tree source PT (xn) with probabilities bounded away from
0, if C > 2(α+1) then the probability assignment Q of 
Context Algorithm satisfies

and, moreover,

with PT -probability 1
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Idea of the ProofIdea of the Proof

q The proof is based on the fact that

and so the contribution of the “bad” sequences is O(1/n)

q Two (non-disjoint) classes of errors:
l overestimation: the selected tree contains an internal node which is a 

leaf of the true tree; taken care of by the penalty term
l underestimation: a leaf of the selected tree is an internal node of the 

true tree; requires large deviation techniques
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PPM algorithmPPM algorithm

q A context selection rule very popular in the data compression 
community: choose the shortest context that occurred more than
a certain number of times
l rationale: the context gathered enough statistics in order to be reliable
l the rule is totally ad hoc: if the best tree model is short, it will tend to 

overestimate (think of data generated by an i.i.d. source!)

q A family of algorithms based on variations of this selection rule is 
called PPM (Prediction by Partial Matching)
l it is a very popular scheme for text compression and yields some of the 

best compression ratios
l however, algorithms with a stronger theoretical basis tend to do better
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Application to Statistics: the MDL PrincipleApplication to Statistics: the MDL Principle

qModel selection is probably the most important problem in statistical 
inference

qMinimum Description Length (MDL) principle of statistical inference:
choose the model class that provides the shortest code length for 
the model and the data in terms of the model ⇒ universal coding 
theory provides the yardstick to measure this code length

q Rationale: models serve as tools to describe regularities in the data
l we should use the simplest explanation for the data, but not too simple

q Strong consistency shown in various settings, solves problem of 
model order selection avoiding the use of artificial penalty terms

q Bayesian interpretation through mixture codes
l however, NML code cannot be explained as a mixture

qOther interpretations: maximum-entropy principle
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Lossless Source CodingLossless Source Coding

6. Sequential Decision Problems
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The Sequential Decision ProblemThe Sequential Decision Problem

q The framework
l observations:  xn = x1 x2 … xn , xt ∈ A
l corresponding actions:  bn = b1 b2 … bn , bt ∈ B
l instantaneous losses l(bt , xt) accumulate over time:

qOn-line (sequential) strategy
l {bt} , action bt is decided before observing xt

l possibly randomized:  { pt (bt | xt-1 , bt-1) }

q The goal: as n → ∞, approximate performance of best strategy in a 
given reference class, for arbitrary xn (deterministic setting)
l excess loss w.r.t. reference: regret or redundancy
l the reference class (or expert set) may reflect limited resources
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Prediction with expert advicePrediction with expert advice

qMost general setting:  reference class = set of generic “experts”
q Basic principle for on-line strategy

select an expert’s prediction randomly, with probability dependent 
on its accumulated loss

On-line Lseq (xn)

Expert 1

Expert 2

Expert β

...

Score

Score

Score

Winner
Lmin (xn)...

x1 x2 … xn

Goal:
Lseq (xn) ≤ Lmin (xn)+ε(n)
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Sequential Decision Problem: Examples Sequential Decision Problem: Examples 
q Binary prediction with Hamming loss
l x1 x2 … xn is a binary sequence (|A|=2)
l the action: predict either bt = 0 or 1 (deterministic), or assign a probability 

pt to 1 (randomized strategy) (|B|=2) 
l the loss: 

deterministic strategy: l(bt , xt) = 0 if  bt = xt and 1 otherwise
⇒ accumulated loss = total # of prediction errors

randomized strategy: E[ l(bt , xt)] =  | xt - pt |

q A less trivial example: lossless data compression
l x1 x2 … xn is the data to encode, finite alphabet A
l the (deterministic) action bt is a probability distribution assigned to xt

bt = {pt ( ⋅ | x1 x2 … xt-1)} (B continuous and vectorial!)

l the loss: l(bt , xt) = - log pt (xt | x1 x2 … xt-1) (given the assigned 
distribution, an encoder can generate a code word of length l(bt , xt) )

l the accumulated loss (total code length) is - log of the probability 
assigned to x1 x2 … xn
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ExponentialExponential--Weighting AlgorithmWeighting Algorithm

q The most general scheme for on-line expert selection
l here, we will assume A, B finite and loss bounded by lmax

q LF (xt) = loss of expert F ∈ F accumulated through time t
At time t+1 choose the action suggested by expert F with probability

Then,

⇒ with  , normalized excess loss over best expert is

(horizon-dependent scheme))2/()(lnmax nβl

∑
∈′

−

−

+
′

=

F

L

L

F

)(

)(

1
F

F

)F( t

t

x

x

t
e

eP
η

η

some given positive constant

8
ln)(min)(

2
max

FFew
l

LL
F

η
η

β nxx nn ++≤
∈

number of experts

n)ln8(1

max

βη
l

=



Seroussi/Weinberger – Lossless source coding        26-May-04 57

HorizonHorizon--Free Exponential WeightingFree Exponential Weighting

q Horizon-free variant: divide the data into blocks of exponentially
growing size, and apply the horizon-dependent
algorithm to each block ⇒ it is easy to see that
the overall loss increases only by a constant
factor for all n
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Example: Binary Prediction with Constant ExpertsExample: Binary Prediction with Constant Experts

q Two experts: one always says “0”, the other always says “1”
l analogous to memoryless model in data compression

q Lmin (xn) = min (n0 , n1 )

Horizon-free approximation:
Choose the current winner except if
up to ε(t) from tie, with ε(t) = , 
in which case randomize ⇒
similar redundancy, different constant

qMinimum worst-case redundancy: draw xt+1 xt+2 … xn at random and 
predict the winner in the overall sequence of length n-1
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FS reference strategies (LFS reference strategies (L--Z framework)Z framework)

q A given FSM is driven by the observations {xt}
S = set of states f = next-state function 
s1= fixed initial state st+1= f(st , xt)

Reference strategy is allowed to vary following the FSM: bt= g(st)
l example: one-state machine = constant strategy

q Best g for the specific xn :

expectation w.r.t.
conditional empirical distribution

⇒ normalized regret vanishes by applying single- state strategy to sub-
sequences at each state

q Take best FSM for xn, consider normalized loss for n → ∞, and |S| → ∞
q For log loss: FS “compressibility” of an infinite individual sequence
l efficiently achievable: LZ data compression scheme
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FS PredictabilityFS Predictability

q Similarly, FS “predictability”
l sequential “LZ-like” decision scheme performs essentially as well as 

the best FSM (of any size!) for the sequence

q Example: x12 = 0 1 01 00 010 011

1         1         1   2         1   2          1  3        1  3        1      4         1

1 1 1 1 1 1

4
1 2

1 4 1

1

1

2
1

1
5

2

1

15
1 3

1
1

15

3
1 1

“context” at which 8th decision is made

n1
n0
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Average LossAverage Loss

qWhen the goal is to minimize the average number of prediction errors, 
the redundancy can be made much smaller than the worst pointwise
case
l this is different from data compression (log loss)!

q For example, for binary prediction and two constant experts, “0” and 
“1”, the redundancy is given by n-1Eθ[#errors]-min(θ,1-θ) and it is O(1/n)
for a majority predictor without randomization

Proof: Assuming (without loss of generality)   p(1) = θ < 0.5,
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Lossless Source CodingLossless Source Coding

7. Lossless image compression
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Lossless Image Compression (the real thing…)Lossless Image Compression (the real thing…)

q Some applications of lossless image compression:
l Images meant for further analysis and processing (as opposed to just 

human perception)
u Medical, space

l Images where loss might have legal implications
u Medical

l Images obtained at great cost
l Applications with intensive editing and repeated 

compression/decompression cycles 
l Applications where desired quality of rendered image is unknown at time 

of acquisition
q A new international standard (ISO/IEC: “JPEG Committee): JPEG-LS

Compress Store,
transmit

De-
compress

Input Output

010010...010010...
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Universality vs. Prior KnowledgeUniversality vs. Prior Knowledge

q Application of universal algorithms for tree models directly to real 
images yields poor results
l some structural symmetries typical of images are not captured by the 

model
l a universal model has an associated “learning cost:” why learn 

something we already know?

qModeling approach: limit model class by use of “prior knowledge”
l for example, images tend to be a combination of smooth regions and 

edges
l predictive coding was successfully used for years:

it encodes the difference between a pixel and a predicted value of it
l prediction errors tend to follow a Laplacian distribution ⇒

AR model + Laplacian, where both the center and the decay
are context dependent

l Prediction = fixed prediction + adaptive correction 
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Models for ImagesModels for Images

q Continuous tone images
l Gray scale: a 2D array of pixel intensity values

(integers) in a given range [0..(α -1)] (often α=256)

l Color: a 2D array of vectors (e.g. triplets) whose coordinates represent 
intensity in a given color space (e.g., RGB, YUV); similar principles

q In practice, contexts are formed out of a finite
subset of the past sequence

q Conditional probability model for prediction errors: 
two-sided geometric distribution (TSGD)

l “discrete Laplacian”
l shift s constrained to [0,1) by integer-valued adaptive

correction (bias cancellation) on the fixed predictor

c
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b d
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Causal template

)1,0[  (0,1),    ,)( ||
0 ∈∈= + sceP se θθ s

e

P(e)

–s

TSGD

–1

123 255 8 15
0 128 200 217

...

...
...



Seroussi/Weinberger – Lossless source coding        26-May-04 66

Complexity ConstraintsComplexity Constraints

q Are sophisticated models worth the price in complexity?
l Algorithm Context and CTW are linear time algorithms for tree sources of 

limited depth, but quite expensive in practice
l even arithmetic coding is not something that a practitioner will easily buy in 

many applications!
q Is high complexity required to approach the best possible

compression?
q The idea in JPEG-LS: apply judicious modeling to reduce complexity, 

rather than to improve compression

the modeling/coding separation paradigm is less neat without 
complex models or arithmetic coding
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The LOCOThe LOCO--I algorithmI algorithm

q JPEG-LS is based on the LOCO-I algorithm:
LOw COmplexity LOssless COmpression of Images

q Basic components:
l Fixed + Adaptive prediction
l Conditioning contexts based on quantized gradients
l Two-parameter conditional probability model (TSGD)
l Low complexity adaptive coding matched to the model (variants of 

Golomb codes)
l Run length coding in flat areas to address drawback of symbol-by-

symbol coding
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JPEGJPEG--LS (LOCOLS (LOCO--I Algorithm): Block DiagramI Algorithm): Block Diagram
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Fixed PredictorFixed Predictor

q Causal template for prediction and conditioning

median of a, b, 
and a+b-c

q Nonlinear, has some “edge detection” capability:
l Predicts b in ‘‘vertical edge’’
l Predicts a in ‘‘horizontal edge’’
l Predicts a+b-c in ‘‘smooth region’’
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Parameter Reduction and AdaptivityParameter Reduction and Adaptivity

q The goal in selecting the number of parameters: capture high order 
dependencies without excessive model cost

q Adaptive coding is needed, but arithmetic coding ruled out (if 
possible…) due to complexity constraints

q A solution that addresses both issues: 
Model prediction residuals with a TSGD
l only two parameters per context 

u “sharpness’’ (rate of decay, variance, etc.)
u shift (often non-zero in a context-dependent scheme)

l allows for large number of contexts (365 in JPEG-LS)
l suited to low complexity adaptive coding

s

e

P(e)

–s

TSGD

–1

)1,0[  (0,1),    ,)( ||
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Context DeterminationContext Determination

q Look at the gradients g1 = (d-b), g2 = (b-c), g3 = (c-a),
l gradients capture the level of activity (smoothness, edginess) surrounding a pixel

l g1, g2, g3 quantized into 9 regions determined by 3 thresholds  S1, S2, S3

l maximum information on x i+1 suggests equiprobable regions

q Symmetric contexts merged: 
P( ε | [q1, q2, q3] )  ↔ P( -ε | [-q1, -q2, -q3] )

q A fixed number of contexts:  (93 + 1)/2 = 365

-S1 S1 S2 S3-S2-S3 0

0 1 2 3 4-1-2-3-4

c b d

a next pixelx

Causal template:
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1 1   0 0 0 0 1

Coding of TSGD’s: Golomb CodesCoding of TSGD’s: Golomb Codes

qOptimal prefix codes for TSGDs are built out of the Golomb codes 
for nonnegative integers

qGiven a code parameter m and an integer j, 
j → { j mod m (in binary),   j /m (in unary) }

l example:  j = 19,  m = 4:

l Golomb codes are optimal for geometric distributions
l JPEG-LS uses the subfamily of Golomb power-of-2 (PO2) codes:  m = 2k

l Encoding is very simple and explicit: no tables
l Very suited for adaptive coding: adapt  k

19 mod 4 = 3 19 /4  = 4

 { }  2/  ),2 mod (    :
2

kk nnnG k →
(binary) (unary)

n ≥ 0,
k = code parameter
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Adaptive Coding of TSGD’s in JPEGAdaptive Coding of TSGD’s in JPEG--LSLS

qOptimal prefix codes for TSGD’s are approximated in JPEG-LS 
by applying the Golomb-PO2 subfamily to a mapped error value: 
ε → M(ε) or ε → M(−1−ε)

0,-1,+1,-2,+2, .... → 0, 1,  2,  3,  4, .... (Rice mapping), or
-1,0,-2,+1,-3, ....  → 0, 1,  2,  3,  4, ....

q Adaptive code selection (parameter k, mapping)
l approximation of optimal strategy based on ML estimation for TSGD 

parameters θ, s through sufficient statistics
A = accumulated sum of error magnitudes
N_ = number of negative samples

q Assumption s ∈ [0,1) satisfied through the use of adaptive 
correction of the predictor, using also

B = accumulated sum of error values
N = total number of samples

-1 0
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Adaptive Coding (cont.)Adaptive Coding (cont.)

q For the Golomb-PO2 code with parameter k applied on remapped 
prediction errors 
l compute the expected code length explicitly as a function of θ, s, and k

l replace (the unknown) θ and s by their ML estimates as a function of 
sufficient statistics

qOptimal decision regions for k result in
l Let

l If A− N_ ≤ N ϕ,  use  N_ to 
u choose k = 0 or k = 1
u choose s ≥ ½ or s < ½ if k = 0 (irrelevant if k > 0)

l If A − N_ > N ϕ , choose k such that 

ϕ = + ≈( ) / .5 1 2 1 618      (golden ratio)
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Approximation of Decision RegionsApproximation of Decision Regions

qObserve

⇒ is always close to a power of  2

q Since                            can be approximated by k  ≅  log2 (A/N) 

l If k=0 and s < -1/2,  encode M(-ε-1), otherwise M(ε)
l Only 4 variables per context are needed

Estimate k using the trivial loop
for (k=0; (N<<k)< A; k++);

ϕ ϕ
ϕ

2 1 2
0 48 0 5

−

− ≈
≈ ≈

−k k ln
ln . .

1
1

0 52ϕ
−

−
+k .

N N k− ≈/ . ,0 5     
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Embedded RunEmbedded Run--length Codinglength Coding

q Aimed at overcoming the basic limitation of 1 bit/pixel inherent to 
pixel-wise prefix codes, most damaging in low-entropy regions

q Creates super-symbols representing runs of the same pixel value 
in the “flat region” a = b = c = d ⇒ special context
[q1,q2,q3]=[0,0,0]

q A run of a is counted and the count is encoded using block-
MELCODE, a fast adaptation technique for Golomb-type codes
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LOCOLOCO--I in One PageI in One Page

loop:
qGet context pixels a, b, c, d,  next pixel x
q Compute gradients d-b, b-c, c-a and quantize ⇒ [q1, q2, q3, sign]
q [q1, q2, q3] = 0 ? YES: Process run state NO:   Continue
q xpred = predict ( a, b, c )
q Update correction value for context. Correct xpred

q ε = x - xpred . If  sign < 0 then  ε = -ε
q Estimate k for the context
q Remap ε → M (ε ) or ε → M (-1-ε )
q Encode M with Golomb-PO2(k)
q Back to loop
run state:
q Count run of a until x ≠ a ⇒ run length L
q Encode L using block-MELCODE
q Update MELCODE state
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