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Notation

 A=discrete (usually finite) alphabet
« a=|Al =size of A (when finite)
o X =X =XX%X%KX = finite sequence over A
2 Xf = X" = XXX Kx K= infinite sequence over A
e X' = X%, KX; = sub-sequence (i sometimes omitted if = 1)
* pPy(X) = Prob(X=x) = probability mass function (PMF) on A
(subscript Xand argument xdropped if clear from context)
e X~p(x): Xobeys PMF p(x)
* E,[F] = expectation of F w.r.t. PMF p (subscript and [] may be dropped)
* P,(X) = empirical distribution obtained from x,"
. Iolgx: logarithm to base 2 of x, unless base otherwise specified
* In x= natural logarithm of x
 H(X), H(p) = entropy of arandom variable Xor PMF p, in bits; also
* H(p) = - plogp- (1-p)log (1-p), O£p £ 1: binary entropy function
* D(p||g) =relative entropy (information divergence) between PMFs pand g
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Lossless Source Coding

3. Universal Coding

Seroussi/Weinberger — Lossless source coding 26-May-04 3



Universal Modeling and Coding

q So far, it was assumed that a model of the data is available, and we
aimed at compressing the data optimally w.r.t. the model

q By Kraft’s inequality, the models we use can be expressed in terms
of probability distributions:

o) - L(s)
For every UD code with length function L(S), we have A 2 £1

string of length n over St AT
finite alphabet A

b acode defines a probability distribution P(s) = 2-® over A

g Conversely, given a distribution P() (a model), there exists a UD
code that assigns ¢- logp(s)¢ bits to S(Shannon code)

g Hence, P() serves as a model to encode S, and every code has an
associated model

I a (probabilistic) model is atool to “understand” and predict the
behavior of the data
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Universal Modeling and Coding (cont.)

g Given a model P() on n-tuples, arithmetic coding provides an
effective mean to sequentially assign a code word of length close

to -log P(s) to S
I we don’t need to see the whole string S= X; X, ... X,: encode X, using

conditional probability | ; P(Xtu)
p(xt | X, X X )= P(X’) _ ul AMt

1732 -1 P(Xt-l) 3 P(Xt'lv)
vi An-t+1

I the model probabilities can vary arbitrarily and “adapt” to the data
I in a strongly sequential model, P(X!) is independent of n

g CODING SYSTEM = MODEL + CODING UNIT
I two separate problems: design a model and use it to encode

We will view data compression as a problem of assigning
probabilities to data
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Coding with Model Classes

q Universal data compression deals with the optimal description of
data in the absence of a given model

I in most practical applications, the model is not given to us
g How do we make the concept of “optimality” meaningful?
I there is always a code that assigns just 1 bit to the data at hand!

The answer: Model classes

g We want a “universal” code to perform as well as the best model in
a given class C for any string S, where the best competing model
changes from string to string

I universality makes sense only w.r.t. a model class

g A code with length function L(X") is pointwise universal w.r.t. a
. 1 .
class Cif R.(L,x")==—[L(x")- rgp L. (X")]® 0 whenn® ¥
N

pointwise
redundancy
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How to Choose a Model Class?

Universal coding tells us how to encode optimally w.r.t. to a class; it
doesn’t tell us how to choose a class!

g Some possible criteria:
I complexity
I prior knowledge on the data
I some popular models were already presented

g We will see that the bigger the class, the slower the best possible
convergence rate of the redundancy to O
I in this sense, prior knowledge is of paramount importance: don’t learn
what you already know!

Ultimately, the choice of model class is an art
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Example: Bernoulli Models

~

A={0,1}, C={P,,ql L=[01]}
% 1.1.d. distribution

with parameter p(1) =q

_ I P
P(x”)_IOgP) (Xn)—nH(x)

q (x")
L ML-estimate of g

Therefore, our goal is to find a code such that

L(:n) : I—)I(x”)® 0

min L. (xX") =minlo
cic c(X7) qi L 9

q Here is atrivial example of a universal code:
Use dog(n+1)( bits to encode n,, and then “tune” your Shannon
code to the parameter g =n,/n, which is precisely the ML-estimate

P this is equivalent to telling the decoder what the best model is!
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Bernoulll Models: Enumerative Code

q The total code length for this code satisfies:

L(X am, o0 o log(n+1)+2 ~ .. log(n+1)+2
( g _0'°9§n Flogae;l q n) CTNL n)
1 %) 1 N ®0_/

I wasteful: knowledge of n, already discards part of the sequences, to
which we should not reserve a code word

aan o _
qg A slightly better code: enumerate all gn Esequences with n,ones,
1

and describe the sequence with an index

L&X 1€ andu n+1 log(n+1)+2
©) 1§ @, dogn+ Dl 30, 100(N+D
n Na &g n n
ano . 2M0eD
Stirling: gn QE \/Zp(nln)/n P for sequences such that n/nis

LD £ i) +%9" L 0a/n)
2n

bounded away from 0 and 1,
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Bernoulli Models: Mixture Code

g The enumerative code length is close to -log Q' (x"), where asl 1

g Is Q() a probability assignment? Q&x ):Enj ::n+1
-1

1 1 a O 1 )

R, (xdg =™ (@-a)*dg =g = x—=Qx") b g Q&x")=1

Q" H gnlg n+1 1 a0

g Ahal!! So we get the same result by mixing all the models in
the class and using the mixture as a model!

g This uniform mixture is very appealing because it can be
sequentially implemented, independent of n:

W ntin! K t o Ny(x) +1
Q(P{x)—(n‘)ﬂ)!—tcz)oqmﬂlx) where q40|x)= 1o

I Laplace’s rule of succession!
I this results in a“plug-in” approach: estimate g and plug it in
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Bernoulli Models: Mixture Code (cont.)

g Maybe we can make Stirling work for us with a different
mixture, that puts more weight in the problematic regions
where n,/napproaches 0 and 17

. . . 1
Consider Dirichlet's densit w(q) =
q Y MO ha o

ny — 4 n —_ 1 < nl'% no'% — qn0+%)qnl+%)
Q') = QR (X')dw(a) = 557 Q1™ (L o)™ da == T,
P by Stirling for the Gamma function, for all sequences x"

L&x") _ 1
o

log QX" £ H (x") + Iozgnn+0(1/ n) Can we do any better?

q This mixture also has a plug-in interpretation:

no(xt)"'%
t+1

Qtx") =0 q¥x., |x) where  q&O|x) =
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Summary of Codes

g Two-part code

I describe best parameter and then code based on it: works whenever
the number of possible optimal codes in the class is sub-exponential

I the most natural approach (akin to Kolmogorov complexity), but not
sequential

I not efficient in the example: can be improved by describing the

parameter more coarsely P trade-off: spend less bits on the parameter
and use an approximation of best parameter

I alternatively, don’t allocate code words to impossible sequences
q Mixture code

I can be implemented sequentially

I a suitable prior on the parameter gave the smallest redundancy
q Plug-in codes

I use a biased estimate of the conditional probability in the model class
based on the data seen so far

I can often be interpreted as mixtures
q But what’s the best we can do?
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Normalized Maximum-Likelihood Code

q Goal: find a code that attains the best worst-case pointwise redundancy

R = mlnmaxRC(Lx)—%mlnmax[L(x) rglpL(x )]

nI An
q Consider the code defined by the probability assignment
2' minLc (x") .
N cc _ rglgL o (X" )l;l
Q=" b R(LX)= —Iogea 2 Y
a 2 d¢ Ex" A" u
1 AN N o J

This quantity depends
only on the class!

q Since the redundancy of this code is the same for all X", it must be
optimal in the minimax sense!
- sequential probability assignment depends on horizon n

q Drawbacks:
- hard to compute
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Example: NML Code for the Bernoulli Class

g We evaluate the minimax redundancy R for the Bernoulli class:

é ) n l:l é f %]O - h(L l:l
R =Tlogs & 2% = L10geq & 2 "W = log™ +o(1/n)
n & a GTH dizo &1 g GTZn 2
typical of sufficient statistics: Hint: Stirling +
P (x") = p(x" | s(x" (X" il d
, ()= pOX [ S(x) p, (S(X")) 53 gy =p

P the pointwise redundancy cannot vanish faster than (log n)/2n
(Dirichlet mixture or NML code)
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Parametric Model Classes

g A useful limitation to the model class is to assume C ={P,, ql Qq}

f

a parameter space

g Examples: of dimension d

I Bernoulli: d=1, general i.i.d. model: d=a-1 (a = |A|)
I FSM model with k states: d = k(a-1)
I memoryless geometric distribution on the integersi 3 0: P(i) = ' (1-9)
d=1
qg The dimension of the parameter space (hnumber of one-dimensional
parameters) plays a fundamental role in modeling problems

I with more parameters we can better fit the model to the data (e.g., a
Markov model of higher order P the entropy cannot increase)

I but on the other hand, the class is richer and the redundancy is higher:
e.d., in atwo-part code it takes more bits to describe the best parameter

we will quantify this tradeoff of the model selection step
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Minimax Redundancy for Parametric Classes

) . n\ — n
q For a parametric class, min L.(x") =- log F;)(Xn)(x )

ML-estimate T
of g based on X"

g A code corresponding to a distribution Q(x"), has a redundancy

P .. (x")
log q0C) . and the minimax redundancy (with the NML code) is
Q(x") . .
— 1 €o n\ U
R =—logea R, (X")g
N & an u

I the more sensitive the class to the parameter, the larger the redundancy
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Assumptions on the Parametric Model Classes

g We will assume that each model in the class satisfies the
marginality condition for a random process, namely
Q +1\ —
a P(x"™) =P (x")
Xl A

I this means that each model can be implemented in a strongly

sequential manner
g We will usually assume that the model class is “nice”, including:

I Q,is an open bounded subset of Adwhich includes the ML estimates

Aq 2 n
1 _€12In P, (x")

I the Fisher information matrix | (q) is “nice” 1; (@) =- lIm—Eg
©¥n g 99,99,

u for i.i.d., this is the classical Fisher information

I the maximum-likelihood estimator satisfies the CLT: the distribution of

JIn@ (x") - q)converges to N(O, 14(q))
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Redundancy of NML Code

q Theorem: R. —ilog—+—|0gg AJI1(Q)|dg +0o(1/n)

As expected, R~ grows with the number of parameters

q ldea of the proof:
I partition the parameter space into small hypercubes with sides r :o(l/\/ﬁ)

I represent each hypercube V () by a parameter g" belonging to it

1 associateto V (qf) themass P (q') = a_ P (x")
q(x"V, (q )
1 with aTaonr expansion of P, (X") (as a function of q) around its
maximum q (x") we get the exact asymptotics of R: ® a P (q )
q'

I for each hypercube, approximate P ((") using CLT P integral of a
normal distribution
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Interpretation of NML as a Two-part Code

q Encode X"in two parts:

J/on
I Part I: encode the parameter q' for the hypercube V (q") into which ¢ (X")
falls, with a code tuned to the distribution P@Q f)/é P@Q")
qr

I Part Il: encode X"using the model q},r conditioned on the fact that the
) P
ML estimate belongsto V,.(q") P distribution —qﬂ(—)

R@")
q In earlier two-part codes, the parameters were represented with a

fixed precision O(1/+/n) and then x"was encoded based on the
approximate ML parameter

I evaluating the approximation cost with Taylor, this precision was
shown to be optimal

1 intuitively, 1/+/n is the magnitude of the estimation error in d (x") and
therefore there is no need to encode the estimator with better precision

d
Elog N = MODEL COST
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Redundancy of the Mixture code

Q.() =g, R @)

g As in the Bernoulli example, for any i.i.d. exponential family, and
for Markov models, mixture code also gives the same “magic”
model cost when the distribution w(q) is proportional to /|1(@)]|
(Jeffrey’s prior)

1 in the Bernoulli case, this is precisely Dirichlet’s distribution: 1(Q) =

q(1-q)

I the tool for solving the integral is Laplace’s integration method

g The advantage of mixtures is that they yield sequential horizon-free

codes: é Q.(X) = Qo é P, (x')dw(q) = Qo P (X" ")dw(g) = Q,(x")
ey Qu(X) _ o 1 P.(x™)
= _<W = g d
0, (% [ X77) Q. (X} Qo, Pa (X IX )QQ P (o) w(q)
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Important Example: FSM model classes

g Given FSM Swith Kk states (fixed initial state)
parameters = conditional probabilities per state p(x|s), xT A, sl S

n.(X|s)
ML estimates: BJXn (X[|s) =
n.(s)
target: _min log =log 1 = nI—)I (x"|S)
ol Qua-1) P, (x") Pq)(xn) (x")

mixture distribution:;:

Ny — ~ N n (Xs) S <N, (Xls)
Q.00=9,,, OpxI9 " dua)= O g™ dwia)

S,x A d S,x A

P equivalent to doing i.i.d. mixture for every state sub-sequence
P optimal universal probability assignment: (x]9) n, (x|s)+1/2
d.(x]s)=
Krichevski-Trofimov (KT) estimator—T nxt (S) +a/2
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FSM model: Numerical Example

g FSM = First order Markov, initial state O

x=00 111101 111 110000100
1/2 3/4 1/6 1/2 3/4 5/6 1/8 3/8 7/10 3/4 11/14 13/16 5/6 3/20 1/2 7/12 9/14 5/16 5/22 13/18

total probability:

o) =0 Gn(0]|s) +%)G(ln(21| S)+1) _ G(6.5)G(3.5)G(13.45)G(8.5)
45 n(s)!&(3) 911 G(2)

- logQ(x*®) »17.61 b code length: 18 bits

nH (x| S) = 9h(Y/3) +11h(3/'11) » 17.56 bits
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FSM model classes and the Lempel-Ziv algorithm

q The LZ algorithm is universal for ANY class of FSM models (of any
size) b in particular, for all Markov models

lim sup1 L., (Xx") £limsup |‘)| (X" S)
n® ¥ N n® ¥ .
Markov machine

of any order Kk

and for an infinite sequence x*

lim sup1 L, (X") £limlimsup I-)I (x"|S,) = I—)l(x¥)
ne¥y N k®¥ ey

limit exists«T

Markov T
compressibility
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Expected Pointwise Redundancy

q So far, we have considered the code length for individual sequences,
without taking any average

g We have found that for parametric classes, the best we can do is to
achieve a worst-case pointwise redundancy of about (d/2)logn bits

g This means guaranteed performance, but maybe there are only a few
such “unlucky” strings?

g How to weight the redundancies in order to compute an average?
Since we are assuming that the class C :{Pq, gl Qg}isagood
model for the data, it makes sense to assume that the data was
drawn from a source with some distribution Pq inC

q Expected pointwise redundancy of a code

R (L] B L) +log By, ()
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Expected Redundancy

g Maybe there exist codes that are “good” (with expected pointwise
redundancy smaller than (d/2)logn ) for a significant fraction of models
in the class?

g We will be even “larger”: we consider the expected redundancy

R(L,q):%Eq[L(x”)]- H.@)=D,(P Q)

normalized divergence Q(x") =2t
for distr. defined on n-tuples

This is more “liberal” because

H,@)=E,[- logR, 0] 1€, | 10gR, ()

and therefore B
R (LA)£E,[R (Lx")
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Lower Bound on Expected Redundancy

q The pointwise universal codes we saw are - a fortiori - average
universal for all parameters g P this means that the corresponding

distribution Qis “close” to all the models in the class in the sense
that D (R, [[Q)® O

q Still, the answer is that (d/2)logn is about the best we can do for
most models in the class: it's the inevitable cost of universality

qg Theorem:
Assume that either CLT holds for ML estimator of parameters in Q,
or Pr{~/n(d,(x")-q.)2 logn} £d(n) ® 0
Then for all Q and all e> 0,

- n*E,[log Q(x")]

e)

for all points g in Qg except in asetwhose volume ® Oas N® ¥
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Lower Bound (cont.)

q This lower bound parallels Shannon’s coding theorem:
when we consider a model class instead of a single distribution,
a model cost gets added to the entropy

q The bound cannot hold for all models in the family, but it holds for
most

g One interpretation of the lower bound:
If the parameters can be estimated well, they are “distinguishable”

(Pq IS sensitive to ), so the class cannot be coded without a model
cost

Conclusion:
the number of parameters affects the achievable convergence rate
of a universal code length to the entropy
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Variations on the Lower Bound

g Assuming, in addition, that é d (n) <¥ , then the cumulative

n
volume of “bad” parameters for all sufficiently largen® 0P
the “bad” parameters form a set of Lebesgue volume 0

q Strong Redundancy-Capacity Theorem:
Under very mild conditions on the model class,

- n'Ey[log Q(x")] 2% H,(@)+(1- e)C,
_apé.(Q)- ¢ s sam
where C_ Slvjvngn(QW) Qo, H”(q)dw(q)g 0 and Q,, is a mixture,

for all g except for a set B for which w* (B) £ €2 ", where w* is the
density that achieves the supremum

q For parametric classes, C. indeed behaves as (d/2n)logn and w*(B) ® 0
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Optimal Codes for Average Redundancy

g How do we achieve irlf sup {Eq \_L(Xn)J- H, . (Q )} ?

q
We use the mixture Q,, for which the weighted expected redundancy

QQ lEq l_ lOgQw(Xn)]' Hn(CI)]dW(CI) is maximum P C|

P an appropriate mixture is the best one can do to minimize the
expected redundancy for the worst-case parameter (close to
Jeffrey’s prior in the case of exponential families/Markov models)

g In many situations, the minimum expected redundancy (or at least
its main term (d/2)|ogn) can be achieved by a plug-in code of the

form o (x )—O P- (%)

where qt L Is an estlmate of q based on xt!

I example: Bernoulli/FSM cases (KT estimator; even Laplace’s estimator
works in the average sense)
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Summary of Codes and Bounds

g Minimax pointwise redundancy: NML code

I for “nice” parametric families with d parameters,
R. —ilog—+—logg JI1(Q)|dg +0o(1/n)
n

I horizon-dependent, mixture code with suitable prior is a good horizon-
free approximation

I in fact, for i.i.d. models with a-1 parameters, it can be shown that

) a y Qun (Xtu) n, (x]s)+1/2

||m XX — m ul AN =
B 4 DX = e QU 0 Y) 1, (9)+a)2
Vi AN- 141 T

KT mixture!
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Summary (cont.)

g Minimax average redundancy: mixture codes with prior such that the
weighted expected redundancy is maximum

C, =SUpEH,(Q.)- ), Hal@)dW@)g

I fori.i.d. exponential families and Markov models, close to Jeffrey’s prior

C,= iIog—+—|og(3 A 1(q)|dg +0o(1/n)

I not only we cannot do better than C_for one parameter (minimax), but for
most parameters

I for “nice” parametric families, d |og n
» —

C,
2 N
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Twice-universal coding

q Consider a model class to be the union of nested classes of
growing dimensionality: Q1 EQE..EQ,E

where Q,1 Q.1 .1 QI

I example: Markov of different order, or FSM

g We seek a code length close to the minimum over the classes of
the universal code length for each class:

1 i d ()
—L(x min min{ H +—Jlogn
- (x") » d IQd: Q) o g r\g

I here, we also try to optimize the model size

I trade-off: first part diminishes with d, second part grows with d

I we answer questions such as: should we model the data as i.i.d. or as
Markov of order 1?

I since the second level of universality is over a discrete set, we expect it
not to affect the main redundancy term
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Mixture Approach to Double-Universality

q Consider the series 1 = é |, where|l >0

i

The probability assignment Q(x") = Q | ,Q, (X")

d universal sequential
code for Qq

is sequential: Q(X") = Q Q(x™)

Xn+1

It is universal as desired: for all d

1 . 1 + logl
- Z10gQ(x") £ - ~logQ, (x") - —=

n n n
g However, it involves an infinite sum

I this can be avoided by modifying Q, so that Q, (X ) =a *for all t £ d:

this way, all models with d 3 nassign the same probability a"and the sum
becomes finite, without affecting universality and sequentiality

<minlog + d logn+O(1/n)
ql Qq F?J(Xn) 2N

I anyway, this is obviously not practical but shows achievability of the goal
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Plug-in Approach to Double-Universality

q The idea: estimate the best model class Q based on X, and plug it
to encode X, with Q,

A
— -1
Q(Xn) - O Qg(xt-l) (X[ | Xt )
t=1
I the decoder can reproduce the process without overhead

q In general, this approach does not work pointwise, but for some
model classes it was shown to work on the average
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Lossless Source Coding

5. Universal Algorithms for Tree Models
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Double-Universality for Tree Models

q Tree sources (FSMX)

I finite memory £ k (Markov)

I # of past symbols needed to
determine the state might be
<k for some states

S« 0, s« 01, s« 11

I by merging nodes from the full Markov
tree, we get a model with a smaller
number of free parameters

I the set of tree sources with unbalanced
trees has measure zero in the space of
Markov sources of any given order:
otherwise, double-universality would
contradict the lower bound!!

I yet, tree models have proven very useful

In practice, partly because there exist
p(Ols,) pP(0ls,) efficient twice-universal, sequential
schemes in the class of tree models of
any size
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Contexts and Trees

g Any suffix of a sequence X' is called a context in which the next

symbol X, occurs
context

v

. 11]0j0f1{of ...

U

next input
bit

g For afinite-memory process P, the conditioning states (Xt are
contexts that satisfy P(a|x') = P(a|us(x")), "ul A* al A

q # of parameters: a-1 per leaf of the tree

I assume minimal parametrization: sibling states with identical
conditional distribution are “merged”
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Two-pass Context Algorithm

q First pass: gather all the context statistics for X"in a tree
I O(n) complexity with suffix tree methods a
q After the first pass, associate to each node acost L(S)+——

KT codelength for symbolsoccurring at S: 4 i
includes penalty for over parametrization

and “prune” the tree to find a subtree T with total minimum cost for
the leaves (dynamic programming algorithm)

q The total cost for T is:
#leavesinT #nodesinT
L, I

a
L (xX")+—"—=L_(x")+n, +—
+(X7) - +(X7) +n; 71
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Two-pass Context Algorithm (cont.)

g Second pass: describe T to the decoder using N; bits and encode
X" conditioned on T with KT P by definition, we have the best tree

Lioy=2L (xy+ < A o 1T)+ 8 o0+ o)
n n n 2N
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Pruning of Context Trees: Example
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Drawbacks of Two-pass Approach

g Non-sequential

q The scheme has asymptotically minimum pointwise redundancy,
but is redundant (given the tree, not all X" are possible)

_ n _ n _ _ n o _ n
Q(Xn):2 L(X):2 LT(X)2nT =2 LT(X)IT<aIT2 Ly (x7)
T

P mixture with weights | is better!

q Can the mixture be efficiently done?
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Mixture Approach: Context Tree Weighting

g CTW: An efficient implementation of the mixture for the class of
binary tree models of maximum length bounded by m

I there exist extensions for non-binary and unbounded, but not as elegant
q Probability assignment associated with a node sof the tree
f Q” (s) +Q"(s0)Q"(sD)
S m=3 Q (s) = 2
A 1Qt” (s) if depth(s)=m

" _ Q) _ Q1)
qCTW (Xt |X1X2".Xt_l) QCTW (Xt_l) Qtv-vl(l )

q Theorem: Let T have | leaves (P N, = 2| -1) M, leaves at level m

QCTW (X ) a 2 2| ; +1+m+ QKT (X ) p CTW (X ) £ LKT (X )+n

KT prob. assignment T
conditioned on T forany T
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CTW: “Proof” by Example

qlet m=2 1Q7(8) +Q/"(s0)Q ()
Q' (s) =i 2
Q1) +Q%(0)Q" (D) 1 Q" (s) if depth(s)=m
Q"(I)= ;
_Q7(), [0 +Q"00)Q"(0y][Q" @ +Q"10)Q" ()]
2 8
_Q“(1), [Q7(0+Q (00)Q" (0)][Q*" () + Q' (10)Q* (11)]
2 8 -

_Q7 (1), Q7 (9Q" (@ , Q" (0)Q" A0)Q™ (11)

2 8 8
root /\ b N-Mm;=3 O\D Nn.-M=3

, Q7(MQT(01)Q*(00) , Q(00)Q" (01)Q (10)Q (11) |
8

A ° >
/\ p nT'mT:3 /\% p n-l—-m-l—:3

J
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CTW: Practical Issues

q Finite precision: - as node probabilities get smaller they cannot be
stored P may need to re-compute from counts
- probability assignment is a ratio of vanishing
numbers

q In general, mneeds to be assumed large, and complexity raises

q Binary only

g However, there are good implementations of CTW which provide
the best compression ratios on text and binary file compression

g From a practical viewpoint, a plug-in approach is more appealing
I however, universality is only shown on an average sense

Seroussi/Weinberger — Lossless source coding 26-May-04 44



Plug-in Approach

d In a plug-in approach, the idea is to encode X, by selecting a
context from X! that strikes the “right balance” between conditional
entropy and model cost

I along context reduces entropy by introducing more conditioning

I but the longer the context, the smaller occurrence counts it has and the
statistics that we learn from them are less reliable

I for each time , it is only necessary to select a context in the path
X X1 X ..., NOt the whole tree

g A plug-in twice-universal scheme consists of a context selection
rule, and a coding scheme based on the statistics stored at the
selected context (e.g., KT estimator)

g The context selection rule is also a tool for model selection for
purposes other than data compression
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Context Algorithm

q The algorithm consists of three interleaved stages:

I growing of a tree that captures, essentially, all occurrences of each
symbol at each node

I a context selection rule that selects for X, ; a context s, (X) from the tree
T, grown by Xt

I a KT sequential probability assignment for X, ; based on the counts
stored at S, (X))

q For each new symbol, we first encode, then update T, ® T, ; (think
of the decoder!)

I the update consists of incrementing the occurrence counts for all the
nodes in the path X, X ; X, ...

I when we get to a leaf that was already visited, we extend the tree one

level and initialize the count of X, ; to 1 (the others remain 0) b
only a few initial occurrences are missing, so we can basically assume
that for all nodes sand all symbols a, the count n (a|s) is available

I nodes in other paths don’t need to be visited
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Context Selection Rule

q Basic principle:
The node which would have assigned the shortest code length for
its symbol occurrences in the past string should be selected

g Most intuitive choice: find minimum cost tree 'Ilt for all times t, and
do KT-coding for X, conditioned on the context X X_; X5 ...IN 'Ilt

I unlike two-pass, the cost should not include tree description: the
decoder already has it !

I very complex and was not shown to be asymptotically optimal, even on
the average

q Another possibility: for each node sb1 T,, b1 Adefine

= - L.C
Dt (Sb) L‘ (Sb) L‘t (S) KT codelength for symbolsoccurring
at sb based on countsgathered at s

KT codelength for symbolsoccurring at sb
Choose the deepest node sbin T, such that D,(sb) <0
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Universality of Context Algorithm

q Easier to analyze: |‘j) (alsn)

@) t a
D, (sb) = (a]sh)log—3}
(D) maAnX(aI )log 2 @ls)

the selected tree T, is the smallest complete super-tree of
{ the deepest nodes win T, s.t. D,(w)3 Clog (t+1) }

g Theorem: For any minimal complete tree T with kleaves defining a

tree source P; (X") with probabilities bounded away from

0, if C>2(a+1) then the probability assignment Q of
Context Algorithm satisfies

1 P (x") . logn
- E. [log - % )] £k(@-»u +0O(1/n)
and, moreover,
1 P (x") log n
nIog Q(x" £k(@-121 o +0O(1/n)

with P; -probability 1
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ldea of the Proof

q The proof is based on the fact that
¥
Q P{x'|T, 1 T}logt<¥

t=1
and so the contribution of the “bad” sequences is O(1/n)

g Two (non-disjoint) classes of errors:

I overestimation: the selected tree contains an internal node which is a
leaf of the true tree; taken care of by the penalty term

I underestimation: a leaf of the selected tree is an internal node of the
true tree; requires large deviation techniques
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PPM algorithm

g A context selection rule very popular in the data compression
community: choose the shortest context that occurred more than
a certain number of times

I rationale: the context gathered enough statistics in order to bereliable

I the ruleis totally ad hoc: if the best tree model is short, it will tend to
overestimate (think of data generated by an i.i.d. source!)

q A family of algorithms based on variations of this selection rule is
called PPM (Prediction by Partial Matching)

I itis avery popular scheme for text compression and yields some of the
best compression ratios

I however, algorithms with a stronger theoretical basis tend to do better
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Application to Statistics: the MDL Principle

g Model selection is probably the most important problem in statistical
inference

g Minimum Description Length (MDL) principle of statistical inference:
choose the model class that provides the shortest code length for
the model and the data in terms of the model b universal coding
theory provides the yardstick to measure this code length

g Rationale: models serve as tools to describe regularities in the data
I we should use the simplest explanation for the data, but not too simple

q Strong consistency shown in various settings, solves problem of
model order selection avoiding the use of artificial penalty terms

q Bayesian interpretation through mixture codes
I however, NML code cannot be explained as a mixture

q Other interpretations: maximum-entropy principle
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Lossless Source Coding

6. Sequential Decision Problems
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The Sequential Decision Problem

g The framework
I observations: X"= X; X, ... X, X1 A
I corresponding actions: b"=b, b, ... b.,b1 B

I instantaneous losses I(b,, X) accumulate over time:
o Q
L(x")=a (b.x)
t=1

q On-line (sequential) strategy
I {b}, action b, is decided before observing X,
I possibly randomized: { p, (b, | xt1, bt1) }

g The goal: as n® ¥, approximate performance of best strategy in a

given reference class, for arbitrary X" (deterministic setting)
I excess loss w.r.t. reference: regret or redundancy
I the reference class (or expert set) may reflect limited resources
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Prediction with expert advice

Expert 1

Xy X e X

Expert 2

Expert b

Score
Score
Winner
I—min (Xn)
Score Goal:

On-line Lggq (X7)

I—seq (Xn) £ I—min (Xn)+e(n)

g Most general setting: reference class = set of generic “experts”

q Basic principle for on-line strategy

select an expert’s prediction randomly, with probability dependent

on its accumulated loss
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Sequential Decision Problem: Examples

q Binary prediction with Hamming loss
I X, X, ... X is a binary sequence (|A|=2)
I the action: predict either b,= 0 or 1 (deterministic), or assign a probability
P, to 1 (randomized strategy) (|B|=2)

I the loss:
deterministic strategy: I(b,, x) =0if b,= X and 1 otherwise
P accumulated loss = total # of prediction errors
randomized strategy: E[ 1(b,, X)] = | X - p;|

q A less trivial example: lossless data compression
I X, X, ... X, is the data to encode, finite alphabet A

I the (deterministic) action b, is a probability distribution assigned to X,
b, ={pP, (X|X; X, ... X_1)} (B continuous and vectorial!)

I the loss: I(b,, x) =-log p, (X | X; X, ... X_,) (given the assigned
distribution, an encoder can generate a code word of length 1(b,, X))

I the accumulated loss (total code length) is - log of the probability
assigned to X; X, ... X,
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Exponential-Weighting Algorithm

g The most general scheme for on-line expert selection
I here, we will assume A, B finite and loss bounded by I __

q L (X) =loss of expert F1 F accumulated through time t
At time t+1 choose the action suggested by expert F with probability

e'hLF(Xt)
Pt+1(|:) - (o) -hL (Xt)
a e F¢

FEF

some given positive constant
| — number of experts

o . . Inb nhl 2
Lew(x)£rg|FnLF(x)+ - + 3

: 1 : :
P with h =|\/(8|n b)/n, normalized excess loss over best expert is

max

Then,

| \/(In b)/(2n) (horizon-dependent scheme)
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Horizon-Free Exponential Weighting

q Horizon-free variant: divide the data into blocks of exponentially
growing size, and apply the horizon-dependent

algorithm to each block P it is easy to see that
the overall loss increases only by a constant

factor for all n
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Example: Binary Prediction with Constant Experts

q Two experts: one always says “0”, the other always says “1”
I analogous to memoryless model in data compression

gL, x)=min(n,,n) P_(0) = 1
tr 1+ g M) m G

Horizon-free approximation:
2P,(0)-11 Choose the current winner except if
1 up to e(t) from tie, with &t) = O(/1/n),
in which case randomize P
similar redundancy, different constant

>

&) Do

g Minimum worst-case redundancy: draw X, X.., ... X,at random and
predict the winner in the overall sequence of length n-1

Seroussi/Weinberger — Lossless source coding 26-May-04 58



FS reference strategies (L-Z framework)

g A given FSM is driven by the observations { X}
S=set of states f = next-state function

s,= fixed initial state S,,= (S, X)

Reference strategy is allowed to vary following the FSM: b= g(s)
I example: one-state machine = constant strategy

q Best g for the specific X" :
g(s) =argming [1(b,x) |s]

bl B
expectation w.r.t. _1
conditional empirical distribution

P normalized regret vanishes by applying single- state strategy to sub-
sequences at each state

g Take best FSM for X", consider normalized loss for n® ¥, and |[§ ® ¥

q For log loss: FS “compressibility” of an infinite individual sequence
I efficiently achievable: LZ data compression scheme
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FS Predictability

g Similarly, FS “predictability”

I sequential “LZ-like” decision scheme performs essentially as well as
the best FSM (of any size!) for the sequence

q Example: x#2=010100010011

“context” at which 8th decision is made

|
/A/\Z\Alf%lll/g§.4 1
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Average Loss

g When the goal is to minimize the average number of prediction errors,
the redundancy can be made much smaller than the worst pointwise
case

I this is different from data compression (log loss)!

q For example, for binary prediction and two constant experts, “0” and
“1”, the redundancy is given by nE [#errors]-min(q,1-g) and it is O(1/n)
for a majority predictor without randomization

Proof: Assuming (without loss of generality) p(1) =q<0.5,

P(error) =qR{% =0 +(1- q)P{% =3 =q + (- 9)P{% =1 P
E_[#errors| = & P(error) =nq +(1- )& P{% =1 b

I~ vanishes exponentially fast (Chernoff)

%Eq |#errors]- q < (- 2q) an¥_ P{n.(®)?3 n,(0)}=0(@1/n)

t=1
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Lossless Source Coding

7. Lossless image compression
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Lossless Image Compression (the real thing...)

Input

B

Compress

010010...
|

Store,
transmit

010010...

Output

De-
compress

-8

g Some applications of lossless image compression:

I Images meant for further analysis and processing (as opposed to just
human perception)

u Medical, space

I Images where loss might have legal implications

u Medical

I Images obtained at great cost

I Applications with intensive editing and repeated
compression/decompression cycles

I Applications where desired quality of rendered image is unknown at time

of acquisition

g A new international standard (ISO/IEC: “JPEG Committee): JPEG-LS
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Universality vs. Prior Knowledge

q Application of universal algorithms for tree models directly to real
Images yields poor results

I some structural symmetries typical of images are not captured by the
model

I auniversal model has an associated “learning cost:” why learn
something we already know?

g Modeling approach: limit model class by use of “prior knowledge”

I for example, images tend to be a combination of smooth regions and
edges

I predictive coding was successfully used for years:
it encodes the difference between a pixel and a predicted value of it

I prediction errors tend to follow a Laplacian distribution P
AR model + Laplacian, where both the center and the decay
are context dependent

I Prediction = fixed prediction + adaptive correction
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Models for Images

q Continuous tone images [123] [255] [ 8] [ 15] ...

I Gray scale: a 2D array of pixel intensity values 0] [128] [200] [217] ---
(integers) in a given range [0..(a -1)] (often a=256)

I Color: a 2D array of vectors (e.g. triplets) whose coordinates represent
intensity in a given color space (e.g., RGB, YUV); similar principles

Causal template

q In practice, contexts are formed out of a finite c b d
subset of the past sequence al x
N\
q Conditional probability model for prediction errors: Current sample
two-sided geometric distribution (TSGD)
A A P
P(€)=ca”, ql (0.1), sl [0) =P
TSGD f

I “discrete Laplacian”

I shift Sconstrained to [0,1) by integer-valued adaptive
correction (bias cancellation) on the fixed predictor N

-1 -s
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Complexity Constraints

q Are sophisticated models worth the price in complexity?

I Algorithm Context and CTW are linear time algorithms for tree sources of
limited depth, but quite expensive in practice

I even arithmetic coding is not something that a practitioner will easily buy in
many applications!

q Is high complexity required to approach the best possible
compression?

g The idea in JPEG-LS: apply judicious modeling to reduce complexity,
rather than to improve compression

the modeling/coding separation paradigm is less neat without
complex models or arithmetic coding
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The LOCO-I algorithm

q JPEG-LS is based on the LOCO-I algorithm:
LOw COmplexity LOssless COmpression of Images

q Basic components:
I Fixed + Adaptive prediction
I Conditioning contexts based on quantized gradients
I Two-parameter conditional probability model (TSGD)

I Low complexity adaptive coding matched to the model (variants of
Golomb codes)

I Run length coding in flat areas to address drawback of symbol-by-
symbol coding
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JPEG-LS (LOCO-I Algorithm): Block Diagram

=T T T T T T T T T T T T e T e e e e e e m— e m— - — - - —=n i 1
i context i pred ! E
i image pred. S :
! sam%lee L\ error Context FRSSCCECOEN Golomb i
: o —------T i Modeler [ id Coder :
1 4 ! ' :
: predicted | ! :
L Gradients values | ! :
i Adaptive i | i
! Correction ! ' !
T [ T S  Predictor ! | compressed
. *ﬁ) regular | : eeleibit-stream
I' 1 ! 1 ‘>
image mode ~ ?run image irun lengths; rune = i
samples samples  Run icode spec. R Run :
| g Counter | i Coder :
Modder Coder
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Fixed Predictor

q Causal template for prediction and conditioning

Past sequence

c|b|d

al®
T~ X. 41 next pixe

min(a,b) if c3 max(a,b)
max(a,b) if cE min(a,b)
a+b- c otherwise

median of a, b,

predicted
and at+b-c

|
|
value 7 gi““l _%
g Nonlinear, has some “edge detection” capability:
I Predicts bin “vertical edge”
I Predicts ain ‘““horizontal edge”
I Predicts at+b-cin “smooth region”
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Parameter Reduction and Adaptivity

qg The goal in selecting the number of parameters: capture high order
dependencies without excessive model cost

q Adaptive coding is needed, but arithmetic coding ruled out (if
possible...) due to complexity constraints

g A solution that addresses both issues:

Model prediction residuals with a TSGD P(e)

I only two parameters per context
u “sharpness’ (rate of decay, variance, etc.)
u shift (often non-zero in a context-dependent scheme)

I allows for large number of contexts (365 in JPEG-LS)
I suited to low complexity adaptive coding

P(e)=cg®, ql (0,2), sl [0])
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Context Determination

Causal template: cibld

al| ® <— X nextpixd

g Look at the gradients g, = (d-b), g, =(b-c), g;=(c-a),
I gradients capture the level of activity (smoothness, edginess) surrounding a pixel

I 0,, 0,, g; quantized into 9 regions determined by 3 thresholds S, S, S;

I maximum information on X, ; suggests equiprobable regions

-4 -3 -2 -1 P 1 2 3 £
[
0

g Symmetric contexts merged:
P(e|[a, 0 dsl ) « P(-€[[-ay, -0 -3l )

q A fixed number of contexts: (93 + 1)/2 = 365
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Coding of TSGD’s: Golomb Codes

q Optimal prefix codes for TSGDs are built out of the Golomb codes
for nonnegative integers

g Given a code parameter m and an integer |,
j ® {jmodm (in binary), §/mi(in unary) }

I example: =19, m=4: 19mod4=3 &19/40=4
11 00001

I Golomb codes are optimal for geometric distributions
I JPEG-LS uses the subfamily of Golomb power-of-2 (PO2) codes: m= 2%

Gk:n®{(nmod 2'), 'e'n/2kC} ns3o

’ (binary) (unary) K = code parameter

I Encoding is very simple and explicit: no tables
I Very suited for adaptive coding: adapt K
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Adaptive Coding of TSGD's in JPEG-LS

q Optimal prefix codes for TSGD’s are approximated in JPEG-LS
by applying the Golomb-PO2 subfamily to a mapped error value:
e® M(e)ore® M(-1-e)

0,-1,+1,-2+2,...® 0,1, 2, 3, 4,... (Rice mapping), or
-1,0-2+1,-3,... ® 0,1, 2, 3, 4, ...
q Adaptive code selection (parameter k, mapping)

I approximation of optimal strategy based on ML estimation for TSGD
parameters q, Sthrough sufficient statistics

A = accumulated sum of error magnitudes
N_=number of negative samples

q Assumption s1 [0,1) satisfied through the use of adaptive
correction of the predictor, using also

B = accumulated sum of error values
N = total number of samples
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Adaptive Coding (cont.)

q For the Golomb-PO2 code with parameter k applied on remapped
prediction errors

I compute the expected code length explicitly as a function of q, S, and k

I replace (the unknown) g and sby their ML estimates as a function of
sufficient statistics

q Optimal decision regions for kresult in
ILlet j =(/5+1)/2»1618 (golden ratio)

IIfA-N_£Nj, use N_to
u choosek=0o0rk=1
u choose S3 Y20r s<%if k=0 (irrelevant if K > 0)

IIfA- N_>Nj , choose ksuch that

1 _A-N_, 1 o1
p* -1 N pc-1
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Approximation of Decision Regions

q Observe j 2 -1»2%Inj
Inj »0.48» 05

T 1+O.5 is always close to a power of 2
J -

g Since N_/N » 05, k can be approximated by k @elog, (A/N) u

— Estimate k using the trivial loop
for (k=0; (N<<k)< A, k++);

I If k=0 and s<-1/2, encode M(-e-1), otherwise M(e)
I Only 4 variables per context are needed
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Embedded Run-length Coding

g Aimed at overcoming the basic limitation of 1 bit/pixel inherent to
pixel-wise prefix codes, most damaging in low-entropy regions

q Creates super-symbols representing runs of the same pixel value
in the “flat region” a=b=c=d P special context

[0;,0,,05]=[0,0,0]

g A run of a is counted and the count is encoded using block-
MELCODE, a fast adaptation technique for Golomb-type codes
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LOCO-I in One Page

loop:

q Get context pixels a, b, ¢, d, next pixel x

g Compute gradients d-b, b-c, c-a and quantize b [q,, g,, 45, Sign]
d[d,, 9, 03] =07 YES: Process run state NO: Continue
O Xpreq = Predict (a, b, c)

q Update correction value for context. Correct x
O €=X-Xyeq - If siIgn <0 then e=-e

q Estimate k for the context

gRemape® M(e)ore® M (-1-e)

g Encode M with Golomb-PO2(k)

q Back to loop

run state:

g Countrun of auntil x* a P runlengthL

g Encode L using block-MELCODE

q Update MELCODE state

pred

Seroussi/Weinberger — Lossless source coding 26-May-04 77



Compression/Complexity trade-off

8 + A CALIC-A

6 + A JSLUG
S+ A JPEG-A

45 | ALCM
4+ W CALICH

15 | LOCO-| FELICS

Relative running time (approx.) .

3.00 3.25 3.50 3.75 4.00 4.25

Average bits/symbol on benchmark image set
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