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Lossless Source CodingLossless Source Coding

1. Fundamentals
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NotationNotation

• A = discrete (usually finite) alphabet
• α = | A| = size of A  (when finite)
• finite sequence over  A
• infinite sequence over A
• sub-sequence (i sometimes omitted if = 1)
• pX(x) = Prob(X=x) = probability mass function (PMF) on A                 

(subscript X and argument x dropped if clear from context)

• X ∼ p(x) :  X obeys PMF p(x)
• Ep [F] = expectation of F  w.r.t. PMF p   (subscript and [ ] may be dropped)

• empirical distribution obtained from x1
n

• log x = logarithm to base 2 of x, unless base otherwise specified
• ln x = natural logarithm  of x
• H(X), H(p) = entropy of a random variable X or PMF p, in bits;  also
• H(p)  =  − p log p − (1−p) log (1−p),  0 ≤ p ≤ 1 : binary entropy function
• D(p||q) = relative entropy (information divergence) between PMFs p and q
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Coding in a communication/storage systemCoding in a communication/storage system
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Information TheoryInformation Theory

q Shannon, “A mathematical theory of communication,”  Bell Tech. 
Journal, 1948
l Theoretical foundations of source and channel coding
l Fundamental bounds and coding theorems in a probabilistic setting

u in a nutshell: perfect communication in the presence of noise is possible as long as 
the entropy rate of the source is below the channel capacity

l Fundamental theorems essentially non-constructive: we’ve spent the 
last 52 years realizing Shannon’s promised paradise in practice
u very successful: enabled current digital revolution (multimedia, internet, wireless 

communication, mass storage, …)
l Separation theorem: source and channel coding can be done 

independently
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Source CodingSource Coding

Source coding = Data compression Source coding = Data compression 
⇒⇒ efficient use of bandwidth/spaceefficient use of bandwidth/space

source
encoder

data
source

channel
encoder

channelnoise

source
decoder

data
destination

channel
decoder

noiseless
channel



Seroussi/Weinberger – Lossless source coding  26-May-04 7

q Channel:
l Communications channel (“from here to there”)
l Storage channel (“from now to then”)

q Lossless compression: D = D’
q Lossy compression: D’ is an approximation of D under some metric

Data CompressionData Compression

data compressed data decompressed 
data

compressor
(encoder) channel

de-
compressor

(decoder)

D C C D’

)()( DsizeCsize <

1
)(
)(

<=
Dsize
Csize

ρ in appropriate units,
e.g., bits/symbol

the goal:

compression ratio:

q Lossless compression: D = D’ the case of interest here
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Data SourcesData Sources

q Symbols  xi ∈ A = a countable (usually finite) alphabet
q Probabilistic source: xi  are random variables;  x1

n obeys some 
probability distribution P on  An (the ensemble of possible 
sequences emitted by the source)
lwe are often interested in  n→∞ : x1

∞ is a random process
u stationary (time-invariant):  xi

∞ = xj
∞, as random processes, ∀ i,j ≥ 1

u ergodic: time averages converge (to ensemble averages)
umemoryless: xi are statistically independent
u independent, identically distributed (i.i.d.): memoryless, and xi ∼ pX ∀ i

q Individual sequence: xi  are just symbols, not assumed to be a 
realization of a random process. The “data source” will include a 
probability assignment, but it will be derived from the data under 
certain constraints, and with certain objectives

data
source

n
nt xxxxxx 1321 =KK ∆



Seroussi/Weinberger – Lossless source coding  26-May-04 9

q Empirical distributions 

l we can compute empirical statistics of any order  (joint, conditional, etc.)
l sequence probability according to own empirical distribution

l this is the highest probability assigned to the sequence by any
distribution from the model class (maximum likelihood estimator)

l Example:

l Notice that if  x1
n  is in fact the outcome of a random process, then its 

empirical statistics are themselves random variables
l e.g., expressions of the type 

Statistics on Individual SequencesStatistics on Individual Sequences
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Statistical Models for Data SourcesStatistical Models for Data Sources

l i.i.d = Markov of order 0

q Finite State Machine (FSM)
l state space  S = {s0,s1,...,sK-1}
l initial state s0

l transition probability 
q(s |s’,a),    s,s’∈S, a∈A

l output probability  p(a|s),  a∈A, s∈S
l unifilar ⇔ deterministic transitions: 

next-state function  f : S× A→S
l every Markov source is equivalent

to a unifilar FSM with K ≤ |A|k, but in
general, finite state ≠ finite memory

k : finite memory

xt+1xtxt-k+1x1 xt-1

Example
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Statistical Models for Data Sources (cont.)Statistical Models for Data Sources (cont.)

q Tree sources (FSMX)
l finite memory ≤ k  (Markov)
l # of past symbols needed to 

determine the state might be < 
k  for some states

l by merging nodes from the full Markov 
tree, we get a model with a smaller 
number of free parameters

l the set of tree sources with unbalanced 
trees has measure zero in the space of 
Markov sources of any given order

l yet, tree source models have proven very 
useful in practice, and are associated 
with some of the best compression 
algorithms to date

l more about this later ...
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0

s0 ↔ 0,    s1 ↔ 01,    s2 ↔ 11

s0
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0 1
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p(0|s0)

p(0|s1) p(0|s2)

s0 s0

p(0|s0) p(0|s0)
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entropy of X  (or of the PMF p(⋅) ), measured in bits

l H measures the uncertainty or  self-information of X
l we also write H(p) : a random variable is not actually needed; p(⋅) could 

be an empirical distribution
Example: A={0,1},  pX(1) = p, pX(0) = 1−p (overloaded notation!)

EntropyEntropy

binary entropy function

H2(p)

p

Main properties:
• H2(p) ≥ 0, H2 (p) is ∩-convex, 0 ≤ p ≤ 1

• H2(p) → 0 as p → 0 or 1, with slope ∞
• H2(p) is maximal at p = 0.5, H2(0.5)=1

⇒ the entropy of an unbiased coin
is 1 bit
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Entropy (cont.)Entropy (cont.)

q For a general finite alphabet A, H(X) is maximal when X ~ pu , where 
pu(a)=1/ |A| for all a∈ A (uniform distribution)

l Jensen’s inequality: if f  is a ∪-convex function, then Ef (X) ≥ f (EX).

l − log x is a ∪-convex function of x

l H(X) = E[log(1/p(X))] = − E[− log(1/p(X))] ≤ log E[1/p(X)] = log |A| = H(pu)

q Empirical entropy

l entropy computed an an empirical distribution
l Example: recall that the probability assigned to an individual binary 

sequence by its own zero-order empirical distribution is

l we have
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Joint and Conditional EntropiesJoint and Conditional Entropies

q The joint entropy of random variables (X,Y) ~ p(x,y) is defined as

l this can be extended to any number of random variables: H(X1,X2,..., Xn)

Notation: H( X1,X2,..., Xn) = joint entropy of X1,X2,..., Xn (0 ≤ H ≤ n log |A|)

H( X1,X2,..., Xn) = H/n = normalized per-symbol entropy  (0 ≤ H ≤ log |A|)

l if (X,Y) are statistically independent, then  H(X,Y) = H(X) + H(Y)
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q The conditional entropy is defined as
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q Chain rule:

q Conditioning reduces uncertainty (on the average):

l but  H(X|Y=y) ≥ H(X)  is possible

)()|( XHYXH ≤
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Entropy RatesEntropy Rates

q Examples:
l X1,X2,... i.i.d.:   H( X1

∞ ) = lim n→∞ H( X1,X2,..., Xn) / n = lim n→∞ nH( X1)/n = H( X1)

l X1
∞ stationary k-th order Markov: 

q Entropy rate of a random process

)(1lim)( 11
n

n
X

n
XH H

∞→

∞ =
in bits/symbol,

if the limit exists!

q A related limit based on conditional entropy
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Theorem: For a stationary random process, both limits exist, and

The theorem provides a very useful tool to compute 
entropy rates for a broad family of source models
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Entropy Rates Entropy Rates -- ExamplesExamples

q Zero-order entropy

H(0.375) =  0.954
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Relative EntropyRelative Entropy

q The relative entropy  (or Kullback-Leibler distance, or information 
divergence) between two PMFs p(x) and q(x) is defined as

Theorem: D(p||q) ≥ 0, with equality iff p = q
u Proof (using strict concavity of log, and Jensen’s inequality):

the summations are over values of x where p(x) q(x) ≠0; other terms contribute 
either 0 or ∞ to D. Since log is strictly concave, equality holds iff p(x)/q(x)=1 ∀x. g

l D is not symmetric, and therefore not a distance in the metric sense
l however, it is a very useful way to express ‘proximity’ of distributions
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Maximal EntropyMaximal Entropy

Theorem: Let  X ~ p be a PMF over  Ζ>0 such that  EpX=µ . Then H(X) is 
maximized when p(x) = exp ( λ0

+λ1 x) satisfying the constraint
la similar theorem holds for moments of any order
l Proof: Consider a PMF q satisfying the constraint. Then show H(q) ≤ H(p)

using non-negativity of D(q||p), EpX= EqX and Ep1= Eq1. g

Corollary: For  X as above, 
µµµµ log)1log()1()( −++≤XH
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Source CodesSource Codes

q A source code  C  for a random variable X  is a mapping C : A→D*, 
where D  is a finite coding alphabet of size d, and D* is the set of 
finite strings over D
l Definitions: C(x) = codeword corresponding to x , l(x) = |C(x)| (length)

q The expected length of C(x),  for X ~ p(x), is

L(C) = Ep[l (x)] = Σx p(x) l(x)

A={a,b,c},  D = {0,1}

p(a) = 1/3 C(a) = 0
p(b) = 1/3 C(b) = 10
p(c) = 1/3 C(c) = 11

H(X) = log 3 ≈ 1.58 bits   
L(C) = 5/3    ≈ 1.66 bits

A={a,b,c,d},  D = {0,1}

p(a) = 1/2 C(a) = 0
p(b) = 1/4 C(b) = 10
p(c) = 1/8 C(c) = 110
p(d) = 1/8 C(d) = 111

H(X) = 1.75 bits   L(C) = 1.75 bits

in fact, we have l(x) = − log p(x)
for all x∈ A in this case

Examples:
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Source Codes (cont.)Source Codes (cont.)

q A code C : A→D* extends naturally to a code C*: A*→D* defined by
C*(λ) = λ, C*(x1 x2 ... xn) = C(x1) C (x2) ... C (xn)

q C is called uniquely decodable (UD) if its extension C* is injective
q C is called a  prefix (or instantaneous) code if no codeword of C is a 

prefix of any other codeword
l a prefix code is uniquely decodable
l prefix codes are “self-punctuating”

all
codes

UD
codes
prefix
codes

11111010d
100011000111...
b aa c  aa d 

100011000111...
a  b   d   b  c  ...

010     ad
b

sample
string

110
10
0
prefix code

1101c
00010b
100a
UD, not prefixnot UDX

Code examplesCode examples

0

a 0

1

b 0

1

c

1

d
a prefix code can always
be described by a tree with 
codewords at the leaves
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q Kraft’s inequality
l The codeword lengths  l1, l2 , ..., lm of any d-ary prefix code satisfy

Conversely, given a set of lengths that satisfy this inequality,
there exists a prefix code with these word lengths
u the theorem holds also for countably infinite codes
u in fact, the theorem holds for any UD code (McMillan)

Prefix CodesPrefix Codes
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of depth lmax

inner nodes
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outside code
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The Entropy Lower BoundThe Entropy Lower Bound

q The expected code length L of any prefix code for a PMF p
with probabilities p1, p2 , ..., pm satisfies 

with equality iff { pi } = { d − li }

u Proof: Let  c = Σ d − li ≤ 1 (Kraft),  qi = c-1d − li (normalized distribution)
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From now on, we assume d = 2 for simplicity (binary codes)



Seroussi/Weinberger – Lossless source coding  26-May-04 23

Lossless Source CodingLossless Source Coding

2. Basic coding techniques
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The Shannon CodeThe Shannon Code

q The lower bound  L(C) ≥ H(p) would be attained if we could 
have a code with lengths  li = −log pi .
But the li must be integers, and −log pi are generally not

q Simple approximation: take
Lengths satisfy Kraft: ∑ 2 -l i  ≤  ∑ 2 log p i = ∑ pi = 1 
⇒ there is a prefix code with these lengths (Shannon code)

qOptimal for dyadic distributions: all pi’s powers of 2 ⇒ L = H(p) 
l not optimal in general

 ii pl log−=

q In general, the Shannon code satisfies

⇒ the optimal prefix code satisfies  H(p) ≤ L ≤ H(p)+1
q Upper bound cannot be improved: 

L ≥ lmin ≥1 but we can have H(p) →0
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Huffman CodesHuffman Codes

q Shannon codes are very simple but generally sub-optimal. In 1952, 
Huffman presented a construction of optimal prefix codes. 

Construction of Huffman codes - by example:

0.20

0.30

0.40

0.60

0.30

0.20

0.15

0.15

0.15

0.05

Probabilities

1.00

0

0

0

0
0

1

1

1

1
1

p(x) C(x)   l(x)
.05 000     3
.15       001     3
.15       100     3
.15 101     3
.20 01       2
.30       11       2
L=2.5  H =2.433...

Huffman algorithm
Given p1,p2 ,... , pm :
1. k ← m+1
2. find smallest pair of 

unused  pi,pj

3. form pk= pi+ pj

4. mark pi,pj ‘used’
5. if only unused is pk

stop
6. k ← k + 1,  go to 2.
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Huffman CodesHuffman Codes

l Let p1 ≥ p2 ≥... ≥ pm  be the probabilities in p
Lemma: For any PMF, there is an optimal prefix code satisfying

1. pi > pj ⇒ li ≤ lj
2. the two longest codewords have the same length, they differ only 

in the last bit, and they correspond  to the least likely symbols

Theorem: Codes constructed with the Huffman algorithm are optimal; 
i.e., if C * is a Huffman code for a PMF p, and C is a prefix code with 
the same number of words, then Lp(C * ) ≤ Lp(C ).

Proof of the Theorem: By induction on m. Trivial for m=2. Let Cm be a Huffman code 
for p. W.l.o.g., the first step in the construction of Cm merged pm and pm-1. Clearly, 
the remaining steps constructed a Huffman code Cm-1 for a PMF p’ with 
probabilities p1 , p2 ,... , pm-2, pm-1+pm . Now,

Let C’m be an optimal code for p, and satisfying the Lemma. Applying the same 
merging on C’m , we obtain a code C’m-1 for p’, with L(C’m ) = L(C’m-1 )+ pm-1+pm . 
Since Cm-1 is optimal (by ind.), we must have L(C’m-1)≥L(Cm-1 ) ⇒ L(C’m)≥ L(Cm )   g
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Huffman codes 
satisfy the Lemma 
by construction
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Redundancy of Huffman CodesRedundancy of Huffman Codes

q Redundancy: excess average code length over entropy
l the redundancy of a Huffman code for a PMF p satisfies

0 ≤ L(C) − H(p) ≤  1
l the redundancy can get arbitrarily close to 1 when H(p) →0, but how 

large is it typically?

qGallager [1978] proved
L(C) − H(p) ≤  P1 + c

where P1 is the probability of the most likely symbol, and 

c = 1 − log e + log log e ≈ 0.086.
For P1 ≥ 1/2,

L(C) − H(p) ≤  2 − H2(P1 ) − P1 ≤ P1

Example
p(x) C(x)   l(x)
.05 000     3
.15       001     3
.15       100     3
.15 101     3
.20 01       2
.30       11       2
L=2.5  H =2.433...

r = 0.067
bound = 0.386

q Precise characterization of the Huffman redundancy
has been a very difficult problem
lmost recent results in [Szpankowsky, IEEE IT ’01]
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A Coding TheoremA Coding Theorem

q For a sequence of symbols from a data source, the per-symbol
redundancy can be reduced by using an alphabet extension

An = { (a1,a2,...,an) | ai ∈ A }

and an optimal code C n for super-symbols (X1,X2,...,Xn) ∼ p(x1,x2,...,xn) .
Then,  H (X1,X2,...,Xn) ≤ L(C n ) ≤ H (X1,X2,...,Xn)+1. Dividing by n, we get:

Coding Theorem (Shannon): The minimum expected codeword 
length per symbol satisfies 

Furthermore, if  X ∞ is a random process with an entropy rate,  then

.1),...,,(),...,,( 21
*

21 n
XXXHLXXXH nnn +≤≤

)(* ∞
∞→ → XHL nn

Shannon tells us that there are codes that attain the fundamental 
compression limits asymptotically. But, how do we get there in practice? 
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Ideal Code LengthIdeal Code Length

q A probability assignment is a function  P : A* → [0,1]  satisfying
Σa∈A P(sa) = 1   ∀ s ∈ A*, with P(λ) = 1

q P is not a PMF on A*, but it is a PMF on any complete subset of A*

l complete subset = leaves of a complete tree rooted at λ,  e.g., An

q The ideal code length for a string  x1
n  relative to P is defined as

l* (x1
n)  =  −log P(x1

n)
q The Shannon code attains the ideal code length for every string x1

n, 
up to an integer-constraint excess o(1) which we shall ignore
l notice that attaining the ideal code length point-wise for every string is 

a stronger requirement than attaining the entropy on the average
q The Shannon code, as defined, is infeasible in practice (as would 

be a Huffman code on An for large n )
l while the code length for x1

n is relatively easy to compute given P(x1
n), it 

is not clear how the codeword assignment proceeds
l as defined, it appears that one needs to look at the whole x1

n before 
encoding; we would like to encode sequentially as we get the xi

evolution that led to the solution of both issues ⇒ arithmetic coding
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The ShannonThe Shannon--Fano CodeFano Code

q A codeword assignment for the Shannon code
l Let X ~ P(x) take values in  M={0,1,...,m-1},   P(0)≥ P(1) ≥ ... ≥ P(m-1) > 0
l Define

q Encode x with the real number 
C(x) = F(x) truncated to

(digits to the right of the binary point)
lC is prefix-free
lC(x) is in the interval     

F(x-1) < C(x) ≤ F(x)

MxaPxF
xa

∈= ∑
<

,)()( F is strictly increasing

  bits   )(log xPlx −=

0 1 x m-1. . . . . .

P(x)

F(0)

F(1)

F(2)

F(x)

F(m-1)

F(x+1)

P(0)

Example:

x        P F            lx       C(x)

0        0.5       0             1      .0
1        0.25     0.5          2      .10
2        0.125   0.75        3      .110
3        0.125   0.875      3      .111
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q To encode  x1
n  we take M = An, ordered lexicographically

l to compute F(x1
n) directly, we would need to add an exponential number 

of probabilities, and compute with huge precision -- infeasible
q Sequential probability assignment

q Sequential encoding 

Elias Coding Elias Coding -- Arithmetic CodingArithmetic Coding

)|()()( 1
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1
11

−−= n
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nn xxPxPxP
what the model will
provide at each step
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nnn xyPxPxFxF⇒

)1( 1
1 +−nxF

)( 1
1

−nxF

)( 1
1

−nxP

)( 1
nxF

)( 1
nxP

)1( 1 +nxF

The “active” interval shrinks, it has width P(x1
n),

and, as n→∞, it converges to the real number F(x1
∞)

x1
∞ is encoded by means of one real number, computed

sequentially by arithmetic operations
⇒ arithmetic coding
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Arithmetic Coding Arithmetic Coding -- ExampleExample

q Computational challenges
l precision of floating-point operations – register length
l active interval shrinks, but small numerical changes can lead to changes in 

many bits of the binary representation – carry-over problem
l encoding/decoding delay – how many cycles does it take since a digit 

enters the encoder until it can be output by the decoder?

1.0

0.0

3/4

1/4

0.25

0.4375
0.578125

0.68359

0.762695

3/4

1/4

1 1 1 1
“0”

“1”

0

0.75

Code =  .1100

P(0) = 0.25   P(1) = 0.75  (static i.i.d. model)

Initial
interval Input sequence   4)(log codebits No.

0791.0
1024

81
4
1

4
3)(

5
12

4
5
1

=−=

==⋅





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Arithmetic CodingArithmetic Coding

q Arithmetic coding [Elias ca.‘60, Rissanen ‘75, Pasco ‘76]
solves problems of precision and carry-over in the sequential 
computation of F(x1

n), making it practical with bounded delay and 
modest memory requirements
l refinements and contributions by many researchers in past 25 years

qWhen carefully designed, AC attains a code length

−log P(x1
n) + O(1),

ideal up to an additive constant
q It reduces the lossless compression problem to one of finding the 

best probability assignment for the given data  x1
n , that which will 

provide the shortest ideal code length

the problem is not to find the best code for a given probability distribution, 
it is to find the best probability assignment for the data at hand
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Lossless Source CodingLossless Source Coding

4. Lempel-Ziv coding
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The LempelThe Lempel--Ziv AlgorithmsZiv Algorithms

q A family of data compression algorithms first presented in

[LZ77] J. Ziv and A. Lempel, “A universal algorithm for sequential data 
compression,” IEEE Trans. Inform.Theory, vol. IT-23, pp. 337–343, May 1977

[LZ78] J. Ziv and A. Lempel, “Compression of individual sequences via variable 
rate coding,” IEEE Trans. Inform. Theory, vol. IT-24, pp. 530–536, Sept. 1978.

qMany desirable features, the conjunction of which was unprecedented 
l simple and elegant
l universal for individual sequences in the class of finite-state encoders

u Arguably, every real-life computer is a finite-state automaton
l convergence to the entropy for stationary ergodic sources
l string matching and dictionaries, no explicit probability model
l very practical, with fast and effective implementations applicable to a wide 

range of data types
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Two Main VariantsTwo Main Variants

q [LZ77] and [LZ78] present different algorithms with common 
elements
l The main mechanism in both schemes is pattern matching: find string 

patterns that have occurred in the past, and compress them by 
encoding a reference to the previous occurrence

q Both schemes are in wide practical use
l many variations exist on each of the major schemes
l we focus on LZ78, which admits a simpler analysis with a stronger 

result. The proof here follows [Cover & Thomas ‘91] , attributed to
[Wyner & Ziv]. It differs from the original proof in [LZ78].

l the scheme is based on the notion of incremental parsing

... r e s t o r e o n e s t o n e ... 
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Incremental ParsingIncremental Parsing

q Each new phrase is of the form wb, w = a previous phrase, b∈ {0,1}
l a new phrase can be described as  (i,b) , where i = index (w)  (phrase #) 
l in the example: (0,1), (0,0), (1,1), (2,1), (4,0), (2,0),(1,0) (phrase #0 = λ)
l let c(n) = number of phrases in x1

n

l a phrase description takes  ≤ 1+log c(n) bits
l in the example, 28 bits to describe 13 : bad deal!  it gets better as n→∞
l decoding is straightforward
l in practice, we do not need to know c(n) before we start encoding

u use increasing length codes that the decoder can keep track of

q Parse the input sequence x1
n into phrases, each new phrase being 

the shortest substring that has not appeared so far in the parsing

x1
n = 1 0 1 1 0 1 0 1 0 0 0 1 0  ...         (assume A={0,1}),

1

Lemma:

Proof: c(n) is max when we take all phrases as short as possible. Let

with nk ≤ n <nk+1 . Then c(n) ≤  n/(k-1) = n/[(1−ε) log n] with ε =  O(loglog n/ log n). n

∞→→
−

≤ n
n

nnc n
n

  as  0,
log)1(

)( ε
ε

,22)1(2
1

1∑
=

+ +−==
k

j

kj
k kjn

,
2

,
3

,
4

,
5

,
6

,
7



Seroussi/Weinberger – Lossless source coding  26-May-04 38

Universality of LZ78Universality of LZ78

q Let

be any k-th order Markov probability assignment for x1
n, with 

arbitrary initial state  (x-(k-1) ,..., x0) 
q Assume x1

n is parsed into distinct phrases y1, y2,...,yc . Define:
l vi = index of start of yi = (xvi

,..., xvi+1-1)
l si = (xvi − k ,..., xvi −1) = the k bits preceding yi in x1

n ,  s1 = (x-(k-1) ,..., x0)
l cls = number of phrases yi of length l and preceding state s∈{0,1}k

l we have  Σl,s cls = c  and    Σl,s l cls = n

∏
=

−
−−−

∆

−−− =
n

j

j
kjjknkk xxQxQxxxxxQ

1

10
)1(101)1( )|()(),...,,,,...,(

where 
are
we 
going
with
all this?

Ziv’s inequality: For any distinct parsing of x1
n , and any Qk , we have

∑−≤
sl

lslsnk ccsxxQ
,

11 log)|,...,(log

The lemma upperbounds the probability of any sequence under any 
probability assignment from the class, based on properties of any
distinct parsing of the sequence (including the incremental parsing)
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Universality of LZ78 Universality of LZ78 (proof of (proof of Ziv’sZiv’s inequality)inequality)
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Proof of the Ziv’s inequality:

Since the yi are distinct, we have
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Universality for Individual Sequences: TheoremUniversality for Individual Sequences: Theorem

Proof: Lemma ⇒

We have Σl,s πls = 1 and    Σl,s l πls = n/c. Define r.v.’s U,S ~ P(U=l,S=s)= πls

Then, EU= n/c and

Now, H(V) ≤ k, and by the maximum entropy theorem for mean-constrained r.v.’s, 

Recall c/n ≤ (1+o(1))/log n  ⇒
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Theorem: For any sequence x1
n and for any k-th order probability

assignment Qk , we have
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q The theorem holds for any k-th order probability assignment Qk,
and in particular, for the k-th order empirical distribution of x1

n, 
which gives an ideal code length equal to the empirical entropy

q The asymptotic  O(log log n/log n) term in the redundancy has been 
improved to O(1/log n) – no better upper bound can be achieved
l obtained with tools from renewal theory

Universality for Individual Sequences: DiscussionUniversality for Individual Sequences: Discussion

)(ˆ)(ˆlog1
11
nn xHxP

n
=−



Seroussi/Weinberger – Lossless source coding  26-May-04 42

q Finite-memory compressibility

CompressibilityCompressibility
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q Lempel-Ziv compression ratio
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we must have 
n→∞ before 
k→∞, otherwise 
definitions are 
meaningless!

Qk is optimized for x1
n, 

for each k
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Probabilistic SettingProbabilistic Setting

Theorem: Let be a stationary ergodic random process. Then,

1    )()( 11 yprobabilit with∞∞ ≤ XHXLZ

∞
∞−X

Proof: via approximation of the stationary ergodic process with Markov processes 
of increasing order, and the previous theorems
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The Parsing TreeThe Parsing Tree

x1
n = 1 0 1 1 0 1 0 1 0 0 0 1 0  ...  

λ

0

code   phrase
0 λ1

1

,

1 0,1
0

2

,

2 0,0

3

,

1

3 1,1
4

,

1

4 2,1

,

0

5
5 4,0

6

,

0

6 2,0

dictionary

… …

,

0

7

7 1,0
l coding could be made more efficient by “recycling”

codes of nodes that have a complete set of children
(e.g., 1, 2 above)
lwill not affect asymptotics
lmany (many many) tricks and hacks exist in practical

implementations
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The LZ Probability AssignmentThe LZ Probability Assignment

q Slightly different tree evolution
anticipatory parsing

q A weight is kept at every node
l number of times the node was 

traversed through + 1
q A node act as a conditioning state, 

assigning to its children 
probabilities proportional to their 
weight

q Example:  string s=101101010
P(0|s) = 4/7
P(1|s0) = 3/4
P(1|s01) = 1/3
P(011|s) = (4/7)*(3/4)*(1/3) = 1/7

Notice `telescoping’
q P(s011) = 1/7!
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q In general,

every lossless compression algorithm defines 
a prob. assignment, even if it wasn’t meant to!
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Other PropertiesOther Properties

q Individual sequences result applies also to FSM probability 
assignments

q The “worst sequence”
l counting sequence 0 1 00 01 10 11 000 001 010 011 100 101 110 111 ..
l maximizes c(n) ⇒ incompressible with LZ78

qGeneralization to larger alphabets is straightforward
q LZW modification: extension symbol b not sent. It is determined by 

the first symbol of the next phrase instead [Welch 1984]
l dictionary is initialized with all single-symbol strings
l works very well in practice
l breakthrough in popularization of LZ, led to UNIX compress

q In real life we use bounded dictionaries, and need to reset them 
from time to time
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LempelLempel--Ziv 77Ziv 77

q Exhaustive parsing as opposed to incremental
l a new phrase is formed by the longest match anywhere in a finite past 

window, plus the new symbol
l a pointer to the location of the match, its length, and the new symbol 

are sent
q Has a weaker proof of universality, but actually works better in

practice

1,0,1 1 0 1 0 1 0 0 0 1 0 1 0 1 1 1 0 1 1 ...

offset back match length

,
(2,1)

,
(3,2)

,
(4,2)

,
(6,5)

,
(14,5)
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LempelLempel--Ziv in the Real WorldZiv in the Real World

q The most popular data compression algorithm in use
l virtually every computer in the world runs some variant of LZ
l LZ78

u compress
u GIF
u TIFF
u V.42 modems

l LZ77
u gzip, pkzip (LZ77 + Huffman for pointers and symbols)
u png

l many more implementations in software and hardware
u MS Windows dll - software distribution
u tape drives
u printers
u network routers
u various comemrcially available VLSI designs
u ...


