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Lossless Source Coding

1. Fundamentals
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Notation

 A=discrete (usually finite) alphabet
« a=|Al =size of A (when finite)
o X =X =XX%X%KX = finite sequence over A
2 Xf = X" = XXX Kx K= infinite sequence over A
e X' = X%, KX; = sub-sequence (i sometimes omitted if = 1)
* pPy(X) = Prob(X=x) = probability mass function (PMF) on A
(subscript Xand argument xdropped if clear from context)
e X~p(x): Xobeys PMF p(x)
* E,[F] = expectation of F w.r.t. PMF p (subscript and [] may be dropped)
* P,(X) = empirical distribution obtained from x,"
. Iolgx: logarithm to base 2 of x, unless base otherwise specified
* In x= natural logarithm of x
 H(X), H(p) = entropy of arandom variable Xor PMF p, in bits; also
* H(p) = - plogp- (1-p)log (1-p), O£p £ 1: binary entropy function
* D(p||g) =relative entropy (information divergence) between PMFs pand g
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Coding in a communication/storage system

data data

source channel
—.—>
source ; encoder encoder

channel

data source channel
destination jHl decoder decoder
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Information Theory

qg Shannon, “A mathematical theory of communication,” Bell Tech.
Journal, 1948

I Theoretical foundations of source and channel coding

I Fundamental bounds and coding theorems in a probabilistic setting

u in a nutshell: perfect communication in the presence of noise is possible as long as
the entropy rate of the source is below the channel capacity

I Fundamental theorems essentially non-constructive: we've spent the
last 52 years realizing Shannon’s promised paradise in practice

u very successful: enabled current digital revolution (multimedia, internet, wireless
communication, mass storage, ...)

I Separation theorem: source and channel coding can be done
iIndependently
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Source Coding

data source
— —p

source encoder

d_ata_ source

destination decoder

Source coding = Data compression
P efficient use of bandwidth/space

noiseless
channel
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Data Compression

D C C de- D’
—_— c?é?]g;edsesrg)r > channel >| compressor p—>
‘ \ / (decoder) ‘
data compressed data decompressed
data
the goal: sze(C) <size(D)
compression ratio: r = w <1 in appropriate units,
size(D) e.g., bits/symbol

q Channel:
I Communications channel (“from here to there”)
I Storage channel (“from now to then”)

q Lossless compression: D =D’ the case of interest here

g Lossy compression: D’ is an approximation of D under some metric
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Data Sources

data > X1X2X3th I<Xn 2 Xin

source

g Symbols x1 A= acountable (usually finite) alphabet

g Probabilistic source: x are random variables; x," obeys some
probability distribution Pon A" (the ensemble of possible
sequences emitted by the source)

I we are often interested in n® ¥ : x;¥ is arandom process
u stationary (time-invariant): X* = x*, as random processes, " i,j 3 1
u ergodic: time averages converge (to ensemble averages)
u memoryless: X; are statistically independent
u independent, identically distributed (i.i.d.): memoryless, and X, ~py " i

g Individual sequence: x; are just symbols, not assumed to be a
realization of a random process. The “data source” will include a
probability assignment, but it will be derived from the data under
certain constraints, and with certain objectives
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Statistics on Individual Sequences

q Empirical distributions
" 1 A memoryless,
Py (a) = n al A Bernoulli model

I we can compute empirical statistics of any order (joint, conditional, etc.)
I sequence probability according to own empirical distribution

P(x1) Op (%)

I this is the highest probability aSS|gned to the sequence by any
distribution from the model class (maximum likelihood estimator)

I Example: A={0%}, n, =i , n=n-n,=fi|x =1

T | L _ o arnm — oM™
p(O)—F, p(D) = o P(x") = P(0)™ () "

I Notice that if X;" is in fact the outcome of arandom process, then its
empirical statlstlcs are themselves random variables

I eg., expressions of the type Pr (| p(a)- p(a)F e)
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Statistical Models for Data Sources

<] —

WESEAEY .. B

q Markov of order k2 0

~
k: finite memory

P(X.; | %) = P(Xy | X 101), t3 K (some convention for t<K)

Ii.i.d =Markov of order O

g Finite State Machine (FSM)
I state space S= {s,S},---,S.1}
I initial state s,

I transition probability
g(sls.,a), ssl Sal A

I output probability p(als), al A, sl S

I unifilar U deterministic transitions:
next-state function f: S A® S

I every Markov source is equivalent
to a unifilar FSM with K £ |[A[¢, but in

general, finite state * finite memory
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Statistical Models for Data Sources (cont.)

q Tree sources (FSMX)

I finite memory £ k (Markov)

I # of past symbols needed to
determine the state might be <
k for some states

S« 0, s« 01, s« 11

I by merging nodes from the full Markov
tree, we get a model with a smaller
number of free parameters

I the set of tree sources with unbalanced
trees has measure zero in the space of
Markov sources of any given order

I yet, tree source models have proven very
useful in practice, and are associated
with some of the best compression
algorithms to date

P(Olsy) P(Ols,) I more about this later ...

Seroussi/Weinberger — Lossless source coding 26-May-04 11



Entropy

X ~p(x) : H(X)=- &, p(x)log p(x) [0log0 = 0]

entropy of X (or of the PMF p(® ), measured in bits

H(X) =E,[- log p(X)]

I H measures the uncertainty or self-information of X

I we also write H(p) : arandom variable is not actually needed; p(3 could

be an empirical distribution
Example: A={0,1}, py(1) =p, px(0) =1-p

(overloaded notation!)

H,(p) =- plogp- (1- p)log(1-

Main properties:
*H,(p) 2 O,H, (p)is C-convex, 0EpPE1
*H,(p) ® Oas p® Oor 1, with slope ¥

* H,(p) is maximal at p= 0.5, H,(0.5)=1

P the entropy of an unbiased coin
is 1 bit
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Entropy (cont.)

g For a general finite alphabet A, H(X) is maximal when X~p,, where
p,(8)=1/|A|for all al A (uniform distribution)

I Jensen’s inequality: if f is a E -convex function, then Ef (X) 3 f (EX).
I-logxisa E -convex function of x

1 H(X) = E[log(1/p(X))] = - E[- 1og(1/p(X))] £ log E[1/p(X)] = log |A| = H(p,)
g Empirical entropy

I entropy computed an an empirical distribution
I Example: recall that the probability assigned to an individual binary

sequence by its own zero-order empirical distribution is
N ny°n; normalized,

P(x) = P(0)™ p(2) =T in bits/symbol

/

2= H,(p(0)) = H (X))
4]

I we have "
- logPog) =- Plogf S RiogE™
n Ng N n

1 S/ N /7 N e
in fact, - Elog P(x) = H(X]) holds for a large class of probability models
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Joint and Conditional Entropies

q The joint entropy of random variables (X,Y) ~ p(x,y) is defined as

o
H(X.,Y)=-a ., p(xy)logp(xy)
I this can be extended to any number of random variables: H(X;,X,..., X)

Notation: H( X;,X,,..., X.) =joint entropy of X;,X,,..., X, (O£ H £nlog A
H( X1,X,..., X.) = H/N = normalized per-symbol entropy (0£H £ log |A])
I if (X)Y) are statistically independent, then H(X,Y) = H(X) + H(Y)
q The conditional entropy is defined as

HY [X) =& pOOH(Y | X =X) =- E ., log p(Y | X)

g Chain rule: H(X,Y)=H(X)+H(Y | X)

g Conditioning reduces uncertainty (on the average):.
H(X|Y) £ H(X)

I but HXX|Y=y)3 H(X) is possible
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Entropy Rates

q Entropy rate of a random process

yv o1 . in bits/symbol,
H(X7)=lm—H (X)) if the limit exists!

q A related limit based on conditional entropy

in bits/symbol,

Xo 2K XDl it the limit exists!

H*(Xf):Li(@rQH(Xn\X

n-1?

Theorem: For a stationary random process, both limits exist, and
H (X!) = H(X)

q Examples:
I X X iiides H(X¥) = 1M gy HO X0 Xoren, X)) /N =1im gy NH(X)/N = H(Xy)

I X;¥ stationary k-th order Markov:

S_@Jsem g%kov g_s\tatic’gnary

H(XG ) EH (X)) = M H (X 1 e X9) S M H (X 1 e X ) S H Ko [ X Xy)

The theorem provides a very useful tool to compute

entropy rates for a broad family of source models
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Entropy Rates - Examples

p(Ols) = 0.5 Steady state
1 é5 3u
pop.p.]=5 & 16 16H [po pl=g5 G4
state probs. symb. probs.

P(Olsy) = 0.9 p(Qls;) =0.1

q Zero-order entropy q Markov process entropy

H(0.375) = 0.954 H(XS)=Q p(s)H(p(O0]s)) =

i=0

5 1 5
“H(0.9)+—H(0.5)+-—H(0.1) » 0.502
3 ( )+16 ( )+16 (0.1

q Individual sequence - fitted with FSM model
0000001111111111100000100000001111111110 & s S,

Empirical entropy:
1

n 16 . n 1 } A
0 =— p(0 =—, p(0 =—, ~ ——- H S) =0.594
pOIs) = o POIS) =2, POIs) = B, 8. P, = 81020 208 IS
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Relative Entropy

q The relative entropy (or Kullback-Leibler distance, or information
divergence) between two PMFs p(x) and q(x) is defined as

p(x) _ = E, P(x)

D |
(plla)= a p(x)log——= a0

Theorem: D(pllg) ® O, with equality iff p=q
u Proof (using strict concavity of log, and Jensen’s inequality):

q(( ))£ oga  p( )q(( )) logq a(x) £0

the summations are over values of x where p(x) g(x) * O; other terms contribute
either O or ¥ to D. Since log is strictly concave, equality holds iff p(x)/q(x)=1" x. g

- D(pllag) = a p(x)log

I Dis not symmetric, and therefore not a distance in the metric sense
I however, it is a very useful way to express ‘proximity’ of distributions

in a sense, D(p||g) measures the inefficiency of

assuming that the distribution is qwhen it is actually p
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Maximal Entropy

Theorem: Let X~pbe aPMFover Z,, such that EX=m. Then H(X) Is
maximized when p(x) =exp (| ,1 ;x) satisfying the constraint

I a similar theorem holds for moments of any order

I Proof: Consider a PMF g satisfying the constraint. Then show H(q) £ H(p)
using non-negativity of D(ql[p), EjX= EX and Ej1=E]l. g

Corollary: For X as above,
H(X) £ (mr+1)log(m+1)- mlogmn
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Source Codes

q A source code C forarandom variable X is a mapping C: A® D*,
where D is a finite coding alphabet of size d, and D* is the set of
finite strings over D

I Definitions: C(x) = codeword corresponding to x, I(x) = |C(X)| (length)
q The expected length of C(x), for X~ p(X), is

L(C) = EJl (0] =S, p(¥) 1(¥)

Examples:
A={ab,cd}, D={0,1} A={ab,c}, D={0,1}
p(a) =1/2 C(a)=0 p(a) =1/3 C(a) =0
p(b) = 1/4 C(b) =10 p(b) = 1/3 C(b) =10
p(c) =1/8 C(c) =110 p(c) =1/3 C(c)=11
p(d) = 1/8 Cld) =111 H(X) = log 3 » 1.58 bits
H(X) = 1.75 bits L(C) = 1.75 bits L(C) = 5/3 » 1.66 bits
In fact, we have I(x) =- log p(x)
for all xI Ain this case
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Source Codes (cont.)

q A code C: A® D* extends naturally to a code C: A°® D" defined by
c@)=1I,
q Cis called uniquely decodable (UD) if its extension C’is injective

C (X %, ...

X) = C(x)) C (%) ...

C (%)

q Cis called a prefix (or instantaneous) code if no codeword of Cis a
prefix of any other codeword

I a prefix code is uniquely decodable
I prefix codes are “self-punctuating”

Code examples

X not UD UD, not prefix prefix code

a 0 10 0

b 010 00 10

C 01 11 110

d 10 110 111

sample | 010—ad |100011000111... 100011000111...
string \b abdbc baa c aa d
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Prefix Codes

q Kraft's inequality
I The codeword lengths [, 1,, ..., |,0f any d-ary prefix code satisfy
m
ad'e1
i=1
Conversely, given a set of lengths that satisfy this inequality,
there exists a prefix code with these word lengths
u the theorem holds also for countably infinite codes
u in fact, the theorem holds for any UD code (McMillan)

Code tree embedded _
@ inner nodes

in full d-ary tree
y @® leaves

of depth | O outside code

g d'm=" £d'm
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The Entropy Lower Bound

q The expected code length L of any prefix code for a PMF p
with probabilities p,, p,, ..., p,, satisfies

_H(p)
logd

L(C) 2 H,(p)

in “dits/symbol”

with equality iff { p}={d i}
u Proof: Let ¢=Sd" i £1(Kraft), g,=cd i (normalized distribution)
L- Hy(p)=a . pli+a plogp =

o]

- a,plog,d" +Q p log,p =

° | 1 1
aipilogd%Hong = D(pllq)+logdg 30 ¢

From now on, we assume d = 2 for simplicity (binary codes)
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Lossless Source Coding

2. Basic coding techniques
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The Shannon Code

q The lower bound L(C) 3 H(p) would be attained if we could
have a code with lengths |.=-1logp;.
But the |, must be integers, and - log p; are generally not

g Simple approximation: take [, =¢é logp,(

Lengths satisfy Kraft: & 271 £ & 2'9Pi=8 p=1
P thereis a prefix code with these lengths (Shannon code)

g Optimal for dyadic distributions: all p’s powers of 2P L =H(p)
I not optimal in general

g In general, the Shannon code satisfies
L=a pé logpuga p(-logp +1)=H(p)+1
P the optimal prefix code satisfies H(p) £ L £ H(p)+1

q Upper bound cannot be improved.:
L3 |;,31butwe can have H(p) ® O
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Huffman Codes

g Shannon codes are very simple but generally sub-optimal. In 1952,
Huffman presented a construction of optimal prefix codes.

Construction of Huffman codes - by example:

Probabilities
030 @
1
Y
0.20 | 1
1 0.60
0.15 @ 030
0 ® 1.00
0.15 @ ® 0
0.40
1 px) C(x) 1(x)
o——
0.15 0.20 0 05 000 3
0 ® 15 001 3
0.05 &—— 15 100 3
15 101 3
.20 01 2
.30 11 2
L=2.5 H =2.433...
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Huffman algorithm

Given p1,ps e s Py

1.k= m+1

2. find smallest pair of
unused p;p,

. form p,= pi+ p,
. mark p;,p; ‘used’

. if only unused is p,
stop

k= k+1, goto 2.




Huffman Codes

Theorem: Codes constructed with the Huffman algorithm are optimal,
l.e., if C"is a Huffman code for a PMF p, and Cis a prefix code with
the same number of words, then L (C") £ L (C).

I Letp;® p,3..2% p, be the probabilities in p
Lemma: For any PMF, there is an optimal prefix code satisfying
1. p>p P £l Huffman codes

satisfy the Lemma
by construction

2. the two longest codewords have the same length, they differ only
in the last bit, and they correspond to the least likely symbols

Proof of the Theorem: By induction on m. Trivial for m=2. Let C be a Huffman code
for p. W.l.0.g., the first step in the construction of C,, merged p,,and p,,,,. Clearly,
the remaining steps constructed a Huffman code C_, ; for a PMF p’ with
probabilities p;, Py, » Prvor PratPm - NOW,

m- 2
L(Cm-l) = a Ii pl +(Im-l_ 1)( pm-1+ pm) = L(Cm) - pm-l_ pm

i=1
Let C' . be an optimal code for p, and satisfying the Lemma. Applying the same
merging on C', we obtain a code C'_, for p’, with L(C' ;) = L(C' .1 )+ Ppm1tPm-
Since C,, is optimal (by ind.), we must have L(C' ;) L(C,.;) P L(C ) L(C,) ¢
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Redundancy of Huffman Codes

g Redundancy: excess average code length over entropy
I the redundancy of a Huffman code for a PMF p satisfies

0£L(C)- H(p) £ 1

I the redundancy can get arbitrarily close to 1 when H(p) ® O, but how

large is it typically?
q Gallager [1978] proved
L(C) - H(p) £ P,+cC
where P, is the probability of the most likely symbol, and
c=1- loge+logloge» 0.086.

For P2 1/2,
L(C)- H(p) £ 2- HyP,)- P,£P;
q Precise characterization of the Huffman redundancy

has been a very difficult problem
I most recent results in [Szpankowsky, IEEE IT '01]
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Example
p(x) C(x)
.05 000
.15 001
.15 100
.15 101
.20 01
30 11

1(x)

NNWWWW

L=2.5 H=2.433...

r=0.067
bound = 0.386




A Coding Theorem

q For a sequence of symbols from a data source, the per-symbol
redundancy can be reduced by using an alphabet extension

A0 ={ (@yay..a) a1 A)

and an optimal code C" for super-symbols (X;,X,,....X.) ~ p(X;,X,....X.) -
Then, H (X, X,,...X) £L(C") £H (X, X,,....X)+1. Dividing by n, we get:

Coding Theorem (Shannon): The minimum expected codeword
length per symbol satisfies

H(X,X,,.. X )E L, £ H(Xl,XZ,...,Xn)+£.
n

Furthermore, if X¥is arandom process with an entropy rate, then
L, ¥23%,® H(XY)

Shannon tells us that there are codes that attain the fundamental

compression limits asymptotically. But, how do we get there in practice?
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Ideal Code Length

q A probability assignment is a function P: A"® [0,1] satisfying
S;aAP(@=1 " sl A,with P()=1
q Pis nota PMF on A’ but itis a PMF on any complete subset of A’
I complete subset = leaves of a complete tree rooted atl, e.g., A"
g The ideal code length for a string x," relative to Pis defined as
I"(x,") = -log P(x,")

g The Shannon code attains the ideal code length for every string x,",
up to an integer-constraint excess o(1) which we shall ignore

I notice that attaining the ideal code length point-wise for every string is
a stronger requirement than attaining the entropy on the average

g The Shannon code, as defined, is infeasible in practice (as would
be a Huffman code on A"for large n)

I while the code length for X," is relatively easy to compute given P(x;"), it
Is not clear how the codeword assignment proceeds

I as defined, it appears that one needs to look at the whole X" before
encoding; we would like to encode sequentially as we get the X

evolution that led to the solution of both issues b arithmetic coding
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The Shannon-Fano Code

q A codeword assignment for the Shannon code
I Let X~P(x) take values in M={0,1,...m1}, P(0)® P(1)3 ...3 P(m1)>0

I Define F(X)= é P(a), xI M F is strictly increasing
a<Xx
q Encode xwith the real number
C(x) = F(x) truncated to

F(m-1) _,—/ |, =& logP(X)(] bits
(digits to the right of the binary point)
FOGHL) oo }_P(x) I Cis prefix-free
) I C(x) is in the interval
F(2) 7 F(x-1) < C(X) £ F(X)
F(1) Example:
}P(O) ' x P F I, CK)
F(0) 5 1 y X 0 0.5 0] 1 0
i 1 025 05 2 .10
2 0.125 0.75 3 .110
3 0.125 08/5 3 111
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Elias Coding - Arithmetic Coding

g To encode x,"we take M = A", ordered lexicographically

I to compute F(x,") directly, we would need to add an exponential number
of probabilities, and compute with huge precision -- infeasible

q Sequential probability assignment

PO = PO HP(x, [ X1 QF(X+1)
! ! )\( I ) what the model will [

\ provide at each step

q Sequential encoding

FO) = a Py)) = é PO+ a PXty) F (X" +1)
v < Thexg” oy n P(Xln'l)< I}P(Xln)
b |FOE) = F(xf' >+P<x:'1>a P(y|x"Y)
F(x')

The “active” interval shrinks, it has width P(x,"),
and, as N® ¥, it converges to the real number F(x¥) \

X,* is encoded by means of one real number, computed "F(xln'l)
sequentially by arithmetic operations

P arithmetic coding

Seroussi/Weinberger — Lossless source coding 26-May-04 31



Arithmetic Coding - Example

P(0) =0.25 P(1)=0.75 (static i.i.d. model)

1.0 S S
.762
g y 0762605 )
v 3l ﬁ
3/4 1
3/4 Y v 0.68359 Code = .1100
0.578125
s M — 0.4375
I a80 1_ 81
o 1 0.25 P(X) =622 == =0,0791
» edg 4 1024
00 il 1 1 1 1 O
ilmtei?\llal Input sequence No. codebits = G log, P(Xf)l': 4

g Computational challenges
I precision of floating-point operations — register length

I active interval shrinks, but small numerical changes can lead to changes in
many bits of the binary representation — carry-over problem

I encoding/decoding delay —how many cycles does it take since a digit
enters the encoder until it can be output by the decoder?
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Arithmetic Coding

q Arithmetic coding [Elias ca.’60, Rissanen ‘75, Pasco ‘76]
solves problems of precision and carry-over in the sequential

computation of F(x,"), making it practical with bounded delay and
modest memory requirements

I refinements and contributions by many researchers in past 25 years
g When carefully designed, AC attains a code length

-log P(x,") + O(1),

Ideal up to an additive constant

q It reduces the lossless compression problem to one of finding the
best probability assignment for the given data X;", that which will
provide the shortest ideal code length

the problem is not to find the best code for a given probability distribution,

it is to find the best probability assignment for the data at hand
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Lossless Source Coding

4. Lempel-Ziv coding
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The Lempel-Ziv Algorithms

g A family of data compression algorithms first presented in

[LZ77] J. Zivand A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Trans. Inform.Theory, vol. IT-23, pp. 337-343, May 1977

[LZ78] J. Ziv and A. Lempel, “Compression of individual sequences via variable
rate coding,” IEEE Trans. Inform. Theory, vol. IT-24, pp. 530-536, Sept. 1978.

g Many desirable features, the conjunction of which was unprecedented
I simple and elegant

I universal for individual sequences in the class of finite-state encoders
u Arguably, every real-life computer is a finite-state automaton

I convergence to the entropy for stationary ergodic sources
I string matching and dictionaries, no explicit probability model

I very practical, with fast and effective implementations applicable to a wide
range of data types
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Two Main Variants

q [LZ77] and [LZ78] present different algorithms with common
elements

I The main mechanism in both schemes is pattern matching: find string
patterns that have occurred in the past, and compress them by
encoding areference to the previous occurrence

o | | |
...restore one stone...

q Both schemes are in wide practical use
I many variations exist on each of the major schemes

I we focus on LZ78, which admits a simpler analysis with a stronger
result. The proof here follows [Cover & Thomas ‘91] , attributed to
[Wyner & Ziv]. It differs from the original proof in [LZ78].

I the scheme is based on the notion of incremental parsing

Seroussi/Weinberger — Lossless source coding 26-May-04 36



Incremental Parsing

g Parse the input sequence X;" into phrases, each new phrase being
the shortest substring that has not appeared so far in the parsing

X"=10,11,01010,00,10,... (assume A={0,1})
12 3 4 5 6 7

q Each new phrase is of the form wb, w = a previous phrase, bl {0,1}
I anew phrase can be described as (i,b) , where i = index (w) (phrase #)
1 in the example: (0,1), (0,0), (1,1), (2,1), (4,0), (2,0),(1,0) (phrase#0=1)
I let c(n) = number of phrases in X;"
I a phrase description takes £ 1+log c(n) bits

I in the example, 28 bits to describe 13 : bad deal! it gets better as Nn® ¥
I decoding is straightforward

I in practice, we do not need to know c¢(n) before we start encoding
u use increasing length codes that the decoder can keep track of

Lemma: c(n) £ A , e ®0as n® ¥
(1- e,)logn

k .
Proof: ¢(n) is max when we take all phrases as short as possible. Let N, = é j2l =(k- D2** +2,
j=1

with n £ n<n,,,. Then c(n) £ n/(k-1) = n/[(1- €) log n] with e = O(loglog n/ log n). n
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Universality of LZ78

D 3 |
q Let Qk(X-(k-l)i""X—l’XO’Xi""’Xn):Q(X-O(k-l))O Q(X, |XJJ-_i
j=1

be any k-th order Markov probability assignment for x,", with
arbitrary initial state (X .1y, Xo)

g Assume X,"Is parsed into distinct phrases y,, y,,....y. . Define:

WSl IV =indexof startofy, = (X, ... X, 1)

\?vree 1S=(X,. 5 X, .1) = the kK bits preceding y;in X", $;= (X gy s Xo)

gQirr‘lg I ¢, = number of phrases y, of length | and preceding state sl {0,1}k
wit
NIRGIEd ! we have S cs=c and S;glgs=n

Ziv's inequality: For any distinct parsing of x,", and any Q,, we have

IOng(Xl""’Xn |S_L) £ - é CIslogcls
l,s

The lemma upperbounds the probability of any sequence under any

probability assignment from the class, based on properties of any
distinct parsing of the sequence (including the incremental parsing)
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Universality of LZ78 (proof of Ziv's inequality)

Proof of the Ziv's inequality:

i=1
o}

=a alogQ(y |s)

[,s i:ly;|=l,5=s

o

o) o) 1
=a G a —10gQ(y |s)

s iylEls=s Gs

Jensen
 tlclof & Lawys)

5
s i-y;=.s=s Qs o

Since the Y; are distinct, we have é Q(y. [s)EL

Iy f=1 5 =s

° 1
P 1ogQ. (X, X,,..., ansl)anslogq—
l,s

S
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Universality for Individual Sequences: Theorem

Theorem: For any sequence x;"and for any k-th order probability

assignment Q, , we have
c(n)logc(n 1 . 1+01k aebolo no
(Mloge() £ 11006 (xr |s) + LMK , sgtoglogn

n n logn logn g

°C

Proof: Lemma b 10gQ(x/|s) £ - a Cslog—=- qs =-clogc- ca Pslogp,, Pis=
We have S, ;p=1 and S| ps=n/c. Define rv.’s U,S~P(U=1,S=9)=p

1 ; c c c c
Then, EU= n/cand - ﬁIogQ(x1 |s)? ﬁlogc- HH(U V)3 ﬁlogc- H(H U)+H(V))

Now, H(V) £ k, and by the maximum entropy theorem for mean-constrained r.v.’s,

H(U)£g—+1 90gZ +12- —Iog— b SHUV)ESKk+Slogl +0(1)
(%) eC g C n n n C

Recall ¢/n £ (1+o(1))/logn b EIogﬂ£anmgmgng
n ~c logn g

)3 clogc (1+o())k anboglogng n
n n logn g

1 :
P - ~logQX|s
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Universality for Individual Sequences: Discussion

g The theorem holds for any k-th order probability assignment Q,,
and in particular, for the k-th order empirical distribution of x;",
which gives an ideal code length equal to the empirical entropy

: %Iog BOE) = A ()

g The asymptotic O(log log n/log n) term in the redundancy has been
improved to O(1/log n) — no better upper bound can be achieved

I obtained with tools from renewal theory
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Compressibility

Q, is optimized for X;",

g Finite-memory compressibility / for each k

. 1 . .
we must have FM, (') = inf 8“? —Iong(xln |51)9 k-th order, finite sequence
N® ¥ before Qese N a

k® ¥, otherwise EEVHCSE Iimsup(FMk(xln)) k-th order, infinite sequence

n® ¥

definitions are
meaningless!

FM (X)) = lim FM, (x) FM compressibility

g Lempel-Ziv compression ratio

LZ(x) = c(n)(loge(n) +1) finite sequence

LZ(x )= Iimsup(LZ(xln)) LZ compression ratio

n® ¥

Theorem: For any sequence x.¥, LZ(x )£ FM(x)
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Probabilistic Setting

Theorem: Let X7¥, be a stationary ergodic random process. Then,

LZ(X,) £ H(X,) with probability 1

Proof: via approximation of the stationary ergodic process with Markov processes
of increasing order, and the previous theorems

D A .
QX XN =P (X)) O Pe(x; IX]), X ~ Py
=1

/ H(x, | X)) %a%a® H(X)

Markov k-th order
approximation
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The Parsing Tree

X"=10,110101000,10,...

1
/4\1cno1.l>oor\>|—\o

I coding could be made more efficient by “recycling”
codes of nodes that have a complete set of children
(e.g., 1, 2 above)

I will not affect asymptotics

I many (many many) tricks and hacks exist in practical
implementations
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0,1
0,0
1,1
2,1
4,0
2,0
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SN
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The LZ Probability Assignment

X"=10,1101010, ... g Slightly different tree evolution
anticipatory parsing
g A weight is kept at every node

I number of times the node was
traversed through + 1

d A node act as a conditioning state,
assigning to its children
probabilities proportional to their

L weight
o q Example: string s=101101010
P(O|s) = 4/7
P(1[s0) = 3/4
P(1/s01) = 1/3
P(011]s) = (4/7)*(3/4)*(1/3) = 1/7

Notice ‘telescoping’
P(x) = P(s011) = 1/7!
(c(n) +1)! q P(sOLD) = 1/7

q In general,

- logP :c(n)logc(n)+o(c(n)|ogc(n)) LZ codelength!

every lossless compression algorithm defines

a prob. assignment, even if it wasn’t meant to!
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Other Properties

q Individual sequences result applies also to FSM probability
assignments

qg The “worst sequence”
I counting sequence 01000110 11 000 001 010011 100101110111 ..
I maximizes c(n) b incompressible with LZ78

q Generalization to larger alphabets is straightforward

g LZW modification: extension symbol b not sent. It is determined by
the first symbol of the next phrase instead [Welch 1984]

I dictionary is initialized with all single-symbol strings
I works very well in practice
I breakthrough in popularization of LZ, led to UNIX compress

q In real life we use bounded dictionaries, and need to reset them
from time to time
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Lempel-Ziv 77

g Exhaustive parsing as opposed to incremental

I anew phrase is formed by the longest match anywhere in a finite past
window, plus the new symbol

I a pointer to the location of the match, its length, and the new symbol
are sent

q Has a weaker proof of universality, but actually works better in
practice

1,0,11010100010101,11011,..
21) (32) (42) (65) (14,5)

offset back match length

Seroussi/Weinberger — Lossless source coding 26-May-04 47



Lempel-Ziv in the Real World

g The most popular data compression algorithm in use
I virtually every computer in the world runs some variant of LZ

I LZ78
u compress
u GIF
u TIFF
u V.42 modems

N LZ77
u gzip, pkzip (LZ77 + Huffman for pointers and symbols)
u png
I many more implementations in software and hardware
u MS Windows dll - software distribution
u tape drives
u printers
u network routers
u various comemrcially available VLSI designs

Seroussi/Weinberger — Lossless source coding 26-May-04 48



