1.

10.

Divide-and-conquer, binary search, sorted array A, # of element is N.

Basicidea:
N L eNC
Find middle element of array A with index >
3case:
ENC ENC _
cael: A > 5 , find. Return 1. (found)
ENC éNC _ ) _ ENC
case2: A - < > , recursive on right half array exclusing A >
ENC éNC _ _ ENC
cae3: A — > > , recursive on left half array exclusing A -
base case:
N =0. Return—1 ( No found)
Pseudo algorithm :

a

find ( A, head, tail, size) {
if (sze=0) return -1,
_ _ ENC
int k= >
If (A[k] =k) returnK;
dseif (A[K] <k)
find ( A, k+1, tail, size-k );
ese
find ( A, head, k-1, size-k);
}

running time binary search. O (log n)

Input set S, n real numbers. x is given.
Set Sis unsorted.
Basicidea:

Let'sbe an array of size n. Perform merger sort on S. Had S sorted. This
Take O (nlog n) time. Now weget sortedset S. Leta=§i]. Letb=[j],i =0,
J=n-1initidly and based on the value of (a+b), we do following 3 operation :

1) casel. if atb=x return (i,)).

2) case2. if atb>x then wedecreasej by 1, i.e. j--;
3) case3. if atb<x thenweincreasei by 1, i.e.i++;
4) basecase: if | =], return No_Found

repeat step 2 and 3 until program return ( eight 1 or 3 be executed ). This
find algorithm run O(n) time, so the total run timeis O(n log n).

Pseudo Algorithm :

Mergesort(S); (you can find it at any algorithm book)



find(S,x,n){

i=0,]=n1l,

while (i !=) {
a=gi];
b=S[jJ;
if (atb=x) return(i,));
dseif (atb>x) j--;
else i++

}

return No_Found,;

}

b. Since Sisgivenin asorted order, the “find” agorithm in part (a) run in time
O(n). refer to the above agorithm!
Problem # 3
Let a=log®log(n)
We know that an element in position “i” has an actual position of
i—a<=PFli]<=i+a
Hence if we sort a“2a’ length then element “i” will find its correct location.
Algorithm:
Dividethe array into “n/ & divisons each of length “a’
Starting from one side sort the first “ 2a elements’
Thisresultsin putting the first “a” elements in thelir correct positions

Now from “a+1%” element repeat this process. Incrementing by “a’ on each step
Thefinal result is a sorted array

grODNE

Complexity:

Use merge sort to sort the blocks of “2a elements’ : O(alog(a) )
Dothis“n/a“ times:

=> complexity: O(n log(a) )



Problem # 4:
There are two steps for doing this.

1. Sort the input array
2. Fordl i sum up the element i with n+1-i element. (first with last, second with
second last and so on).

Complexity:

Sorting: O(nlog(n) )
Suminaloop: O (n)

=> complexity isO(n log(n) )
Verification by contradiction:

Assume that we do not sum up the smallest element with the largest element then this
would mean that an element greater than the smallest element will be paired up with the
last element. Thiswill give asum which will be greater than (or equal to) the sum of the
smallest and largest element because the new element that we chose was bigger than (or
equal to) the smallest element. To generalize this result, assume each instance of the
problem as in input to our algorithm. Hence at each instance step 2 will give the best
solution.

Problem # 5
Do adepth first search on the tree with the following rules:

1. Keep acount of the number of nodes visited.

2. Do not traverse a node with value less than x (hence if root is smaller than “x”
then it goes without saying that the k™ largest element will be smaller too!)

3. Stop traversing when the count of nodes visited becomes “k”

4. If you are ableto traverse “k” elements (which are al larger than “x” as given by
rule 2) then the k™ largest element is greater than “x” (or equal to “x” if the last
element you found was equal to “Xx”

5. If you had to stop traversing before the node traversal count reached “k” this
would mean that k™ largest element is smaller than “x”, as you found only “&’
elements larger than “x” where* a<k”

Complexity: Step 3 enforces that time complexity is O (k).



