
[50] Homework 5. Binary Search and Sorting

Due by: November 13 by the end of the class.

[10] Let A[1::n] be a sorted array of distinct integers. Give a divide-and-conquer algorithm
that �nds an index i such that A[i] = i (if it exists) and runs in time O(logn).

[10] The input set S contain n real numbers. Let x be given.

(a) Design an algorithm that �nds (if exist) two elements of S whose sum is x. The
algorithm should run in time O(n log n).

(b) Suppose now S is given in a sorted order. Find an algorithm that solves the
above problem in O(n) time.

[10] Assume an array A[1 : n] is given. We know that after sorting every element originally
at position i will end up at the �nal position P [i] such that

jP [i] � ij � log3 log n:

Design and eÆcient algorithm to sort A[1 : n]. Then, establish the complexity of the
optimal algorithm. Make sure your algorithm designed above is optimal.

[10] Let a set of n real numbers, say a1; : : : ; an, be given. Assume n is even. Next, we
partition the set into n=2 pairs, and then for every pair we compute the sum of its
numbers. Thus, after such a partition we have n=2 sums s1; : : : ; sn=2. Propose an al-
gorithms running in O(n log n) time that �nds the partition minimizing the maximum

sum. You must prove that your algorithm is correct.

[10] The input is a max-heap of size n (given as an array), and a real number x. Design
an algorithm to determine whether the kth largest element in the heap is less than or
equal to x. The worst-case running time of your algorithm must be O(k) independent
of the size of the heap. Justify your answer!
(Hint: Notice that you do not need to �nd the kth largest element; you need only to
determine its relationship to x.)

1


