[40] Homework 5: Big O, Ω .

- [12] Select the best "big Oh" notation for each expression. Justify by showing the constants c and n_0 . Note that f(n) = O(g(n)) if there are constants c > 0 and $n_0 > 0$ so that for all $n \ge n_0$ we have $|f(n)| \le c \cdot g(n)$.
 - 1. $100n^2 + n$.
 - 2. $(15n + \log n)^3$.
 - 3. $3n^5 5n^2 100$.
 - 4. $n^2 \log n + n + \sqrt{n} + \log n.$
- [6] Show the following:

$$5n^2 - n\log n = \Theta(n^2)$$
$$\frac{n^2}{n\log^3 n + 1} = O(n^3)$$

- [8] Justify that $n \log n + \sqrt{n}$ is **not** O(n).
- [14] We say that $f(n) \prec g(n)$ if g(n) grows faster than f(n) (e.g., $\log n \prec n$). Order the following functions by by \prec from the lowest to the highest:

$$\left(\frac{3}{2}\right)^n$$
, 100, $n^2 \log n$, $2^{\log_2 n}$, $\log^2 n$, $2^{2\log_2 n}$, 2^n .

Justify your answer.