Module 8: Trees and Graphs

Theme 1: Basic Properties of Trees

A (rooted)tree is a finite set of nodes such that
¢ there is a specially designated node calledrtios.

¢ the remaining nodes are partitioned intalisjoint setsTy, Ts, ..., Ty such that each of these
sets is atree. The s€f$, Ts, ..., T, are calledsubtrees andd the degree of the root.

The above is an example of a recursive definition, as we have already seen in previous modules.

Example I In Figure 1 we show a tree rooted Atwith three subtree®;, T» and73 rooted atB, C'
andD, respectively.

We now introduce some terminology for trees:

e A tree consists ohodesor vertices that store information and often are labeled by a number
or a letter. In Figure 1 the nodes are labeleddas®, ..., M.

e An edgeis an unordered pair of nodes (usually denoted as a segment connecting two nodes).
For example(A, B) is an edge in Figure 1.

e The number of subtrees of a node is calledligégree For example, nodd is of degree three,
while nodeF is of degree two. The maximum degree of all nodes is called the degree of the
tree.

e A leaf or aterminal node is a node of degree zero. NodB&s L, F, G, M, I andJ are leaves
in Figure 1.

e A node that is not a leaf is called amerior node or aninternal node (e.g., see nodeB and
D).

¢ Roots of subtrees of a nod¢ are callecchildren of X while X is known as thearent of its
children. For exampleB, C and D are children of4, while A is the parent o3, C' and D.

e Children of the same parent are calitlings. ThusB, C, D are siblings as well aK and L
are siblings.

e Theancestorsof a node are all the nodes along the path from the root to that node. For example,
ancestors o/ are H, D and A.

e Thedescendantf a node are all the nodes along the path from that node to a terminal node.
Thus descendants & areF, E/, K and L.

Figure 1. Example of a tree.

e Thelevel of a node is defined by letting the root to be at level zewhile a node at level has
children at level + 1. For example, the root in Figure 1 is at level zero, nodds, C, D are
at level one, nodef, F, G, H, I, J ate level two, and nodek, L, M are at level three.

e Thedepth of a node is its level number. THeeight of a tree is the maximum level of any
node in this tree. Nod€' is at depth two, while nod@/ at depth three. The height of the tree
presented in Figure 1 is three.

e Atree is called al-ary tree if every internal node has no more thahildren. A tree is called
afull d-ary tree if every internal node hasxactlyd children. Acomplete treeis a full tree up
the last but one level, that is, the last level of such a tree is not fuliinAry tree is a tree with
d = 2. The tree in Figure 1 is 3-ary tree, which is neither a full tree nor a complete tree.

e An ordered rooted treeis a rooted tree where the children of each internal node are ordered.
We usually order the subtrees from left to right. Therefore, for a binary (ordered) tree the
subtrees are called theft subtree and theright subtree.

A forest is a set of disjoint trees.

Now we study some basic properties of trees. We start with a simple one.

Theorem 1 A tree withn nodes has — 1 edges.
Proof. Every nodeexceptthe root has exactly one in-coming edge. Since thera ard nodes other
than the root, there are— 1 edges in a tree.

1Some authors prefer to set the root to be on level one.

The next result summarizes our basic knowledge about the maximum number of nodes and the
height.

Theorem 2 Let us consider a binary tree.
(i) The maximum number of nodes at levisi 2° for i > 0.
(i) The maximum number of all nodes in a tree of heighst 2"+ — 1.

(iii) If a binary tree of height: hasn nodes then
h >logy(n+1) — 1.
(iv) If a binary tree of height. hasl leaves, then

h > log, .

Proof. We first proof (i) by induction. It is easy to see that it is true fet 0 since there is only one
node (the root) at level zero. Let now, by the induction hypothesis, assume there are 12 nootes
at leveli. We must prove that at levél+ 1 there are no more thati™! nodes. Indeed, every node
at leveli may have no more than two children. Since there2amodes on level, we must have no
more thar2? - 2 = 2!*! nodes at level 4 1. By mathematical induction we prove (i).

To prove (ii) we use (i) and the summation formula for the geometric progression. Since every
level has at most’ nodes and there are no more titalevels the total number of nodes cannot exceed

h

D 2h =2t

i=0
which proves (ii).

Now we prove (iii). If a tree has heiglt, then the maximum number of nodes by (iipfst — 1
which must be at least be as bigraghat is,

ohtl _ 1 > .
This implies thath > log,(n + 1) — 1, and completes the proof of (iii). Part (iv) can be proved in
exactly the same manner (see also Theorem 3 below).

Exercise 8A Consider ai- ary tree (i.e., nodes have degree at n)sShow that at levet there are
at mostd* nodes. Conclude the total number of nodes in a tree of haightd" ™! —1)/(d — 1).

Finally, we prove one result concerning a relationship between the number of leaves and the
number of nodes of higher degrees.

Figure 2: lllustration to Theorem 3.

Theorem 3 Let us consider a nonempty binary tree withleaves anch, nodes of degree two. Then
ng = ng + 1.
Proof. Letn be the total number of all nodes, andthe number of nodes of degree one. Clearly
n =ng+ny + ng.

On the other hand, # is the number of edges, then — as already observed in Theorem 1 — we have
n = b+ 1. But also
n=b+1=n;1+2ny+1

Comparing the last two displayed equations we prove out theorem.

In Figure 2 the reader can verify that = 2, ny = 1 andng = 3, henceny = ns + 1 as predicted
by Theorem 3.

Theme 2: Tree Traversals

Trees are often used to store information. In order to retrieve such information we need a procedure to
visit all nodes of a tree. We describe here three such proceduresicaltddr, postordeandpreorder
traversals. Throughout this section we assume that trees are ordered trees (from left to right).

Definition. Let T be an (ordered) rooted tree wilh, T, . . . Ty subtrees of the root.
1. If T'is null, then the empty list is preorder, inorder and postorder travergal of
2. If T consists of a single node, then that node is preorder, inorder and postorder travétsal of

3. Otherwise, lefy, Ty, . . . T; be nonempty subtrees of the root.

start end

T Ty T3 T Ty T3
F
end start
pre-order in-order post-order

Figure 3: lllustration to preorder, inorder and postorder traversals.

e The preorder traversal of nodes inT is the following: the root ofl" followed by the
nodes ofTy in preorder, then nodes @k in preorder traversal,. ., followed by T, in
preorder (cf. Figure 3).

e Theinorder traversal of nodes inT is the following: nodes of} in inorder, followed
by the root ofT, followed by the nodes df,, T3, . .., T, in inorder (cf. Figure 3).

e The postorder traversal of nodes inT" is the following: nodes off} in postorder, fol-
lowed byTs, ..., T, in postorder, followed by the root (cf. Figure 3).

Example 2 Let us consider the treE in Figure 1. The roofd has three subtred§ rooted atB, T,
rooted atC, and subtred3 rooted atD. Thepreordertraversal is

preorder of = {A,B,E,K,L,F,C,G,D,H,M,I,J}

since after the roatl we visit firstT; (so we list the roofB and visit subtrees df), then subtredy
rooted atC' and its subtrees, and finally we visit the subtigaooted D and its subtrees.
Theinorder traversalof T' is

inorder of T={K,FE,L,B,F,A,G,C,M,H,D,I,J}

since we first must traverse inorder the subffgeooted atB. But inorder traversal of, starts by
traversing in inorder the subtree rootedratwhich in turn must start ak’. SinceK is a single node,
we list it. Then we move backward and list the root, whicl¥isand move to the right subtree that
turns out to be a single node Now, we can move up t@, that we list next, and finally nodd.
Then we continue in the same manner.

Finally, the postorder traversal @fis as follows:

postorder of = {K, L, E,F,B,G,C,M,H,I,J, D, A}

5

a-0

b=10

c =110
d=1110
e=1111

Figure 4: A tree representing a prefix code.

since we must first traverse postordgr, which means postorder traversal of a subtree rootdd, at
which leads taF, I, andE. The rest follows the same pattern.

Theme 3: Applications of Trees

We discuss here two applications of trees, namely to build optimal prefix code (known as Huffman’s
code), and evaluations of arithmetic expressions.

Huffman Code

Coding is a mapping from a set of letters (symbols, characters) to a set of binary sequences. For
example, we can set = 01, B = 0 andC = 10 (however, as we shall see this is not a good code).
But why to encode? The main reason is to find a (one-to-one) coding such that the length of the coded
message is as short as possible (this is calltd compressign However, not every coding is good,

since — if we are not careful — we may encode a message that we won'’t be able to decode uniquely.
For example, with the encoding as above, let us assume that we receive the following message

01001.
We can decode in many ways, for example as

BCA or ABA, etc.

In order to avoid the above decoding problems, we need to construct special codes known as
prefix codes

A code is called arefix codeif the bit string for a letter must never occur as the first part
of the bit strings for another letter. In other words, no code is a prefix of another code.
(By a prefix of the stringe1zs . . . 2, we meanzizs . .. z; for somel < i < n.)

It is easy to construct prefix codes using binary trees. Let us assume that we want to encode a
subset of English characters. We build a binary tree \e#lveslabeled by these characters and we
label the edges of the tree by bitaind1, say, a left child of a node is labeled byvhile a right child
by 1. The code associated with a letter is a sequence of labels on the path from the root to the leaf
containing this character. \Widbservethat by assigning leaves to characters, we assure the prefix code
property (if we label any internal node by a character, then the path or a code of this node will be a
prefix of all other characters that are assigned to nodes below this internal node).

Example 3 In Figure 4 we draw a tree and the associated prefix code. In particular, we find that
a =20,b=10,c = 110, d = 1110 ande = 1111. Indeed, no code is a prefix of another code.
Therefore, a message like this

0111010101111

can be uniquely decoded as
adbbe.

It should be clear that there are many ways of encoding a message. But intuitively, one should
assign shorter code to more frequent symbols in order to get on average as short code as possible. We
illustrate this in the following example.

Example 4 Lets = {a,b,c,d, e} be the set of symbols that we want to encode. The probabilities
of these symbols and two different codes are shown in Table 1. Observe that both codes are prefix
codes. Let us now compute the average code lengttend L- for both codes. We have

Li = Pla)-3+P(b)-3+P(c)-3+P(d)-3+P(e)-3=3,
Ly = P(a)-3+P®B)-2+P(c)-2+ P(d) -3+ P(e) - 2 =2.2.

Thus the average length of the second code is shorter, and — if there is no other constraint — this code
should be used.

Let us now consider a general case. lfgtl < i < n be symbols with the corresponding
probabilitiesP(f;). For a code” the average code length is defined as

L(C) =Y P(f)IC(f)]
i=1

Table 1: Two prefix codes.

Symbol | Probability | Code 1| Code 2
a 0.12 000 000

b 0.40 001 11

c 0.15 010 01

d 0.08 011 001

e 0.25 100 10

where|C(f;)| is the length of the code assignedfio Indeed, as discussed in Module 7, to compute
the average of the codé we must compute the sum of products “frequenciength”. We want to
find a codeC' such that the average lengttiC') is as short as possible, that is,

mcin{L(C)}.

The above is an example of a simlgtimization problemwe are looking for a code (mapping from
a set of messages to a sequence of binary strings) such that the average code 1&(Gthis the
smallest. It turns out that this problem is easy to solve.

In 1952 Huffman proposed the following solution:

1. Select two symbolg; and f; that have the lowest probabilities, and replace them by a single
(imaginary) symbol, say;;, whose probability is the sum d?(f;) and P(f;).

2. Apply Step 1 recursively until you exhaust all symbols (and the final total probability of the
imaginary symbol is equal to one).

3. The code for the original symbols is obtained by using the codg f¢defined in Step 1) with
0 appended for the code fgf and1 appended for the code fg.

This procedure, which can be proved to be optimal, and it is best implemented on trees, as ex-
plained in the following example.

Example 5 We find the best code for symbafs= {a, b, ¢, d, e} with probabilities defined in Table

1 of the previous example. The construction is shown in Figure 5. We first observe that syrahdls

d have the smallest probabilities. So we join them building a small tree with a new fjpaé the

total probability0.12 + 0.08 = 0.2. Now we have new sef; = {f4,, b, ¢, e} with the probabilities
0.2,0.4,0.15,0.25, respectively. We apply the same algorithm as before. We choose two symbols
with the smallest probabilities (a tie is broken arbitrarily). In our case it happens fg, l@adc. We

build a new nodef,,. of probability0.35 and construct a tree as shown. Continuing this way we end
up with the tree shown in the figure. Now we read:

b = 0

e = 10

c = 110
d = 1110
a = 1111.

This is our Huffman code with the average code length
L=04+4+2-0254+3-0.154+4-0.12+4-0.08 = 2.15.

Observe that this code is better than the other two codes discussed in the previous example.

Evaluation of Arithmetic Expressions

Computers often must evaluate arithmetic expressions like
(A+B)«(C—-DJF) Q)

where A, B, C, D and F' are calledoperandsand+, —, « and/ are called theperators. How to
evaluate efficiently such expressions? It turns out that a tree representation may help transforming
such arithmetic expressions into others that are easier to evaluate by computers.

Let us start with a computer representation. We restrict our discussionaoy operators(i.e.,
such that need two operands, likex B). Then we build a binary trees such that:

1. Every leaf is labeled by an operand.

2. Every interior node is labeled by an operator. Suppose a node is labeled by a binary déperand
(where® = {4+, —,/,«}) and the left child of this node represents expresdipnwhile the right
child expressionF,. Then the node labeled by represents expressiqi;) © (E2). The tree
representindA + B) « (C — D/F) is shown in Figure 6.

Let us have a closer look at tlexpression treeshown in Figure 6. Suppose someone gives to
you such a tree. Can you quickly find the arithmetic expression? Indeed, you can! Let us traverse
inorder the tree in this figure. We obtain:

(A+ B) +(C = (D/F)),

thus we recover the original expression. The problem with this approach is that we need to keep
parenthesis around each internal expression. In order to avoid them, we chainfix thetation to

0.12 0.4 0.15 0.08 0.25 0.2 0.4 0.15 0.25

o o o J [fd e o J
a b C d e b c e
d a
0.35
f dac
c

Figure 5: The construction of a Huffman tree and a Huffman code.

10

Figure 6: The expression tree fod + B) « (C — D/F).

eitherPolish notation (also calledorefix notation) or toreverse Polish notation(also calledoostfix
notation), as discussed below.

Let us first introduce some notation. As before, we wiife= {+, —, *, *x}) (herexx denotes the
power operation) as an operand, whife and £, are expression. The standard way of representing
arithmetic expressions as shown above are called the infix notation. This can be written symbolically
as(E) O (E2). In theprefix notation(or Polish notation) we shall write

OF1Es
while in thepostfix notationor reverse Polish notation) we write
E E>0
Observe that parenthesis arat necessary. For the expression shown in (1) we have

postfix notation = AB + CDF/ — x,
prefix notation = *+ AB — C/DF.

How can we generate prefix and postfix notation from the infix notation. Actually, this is easy. We
first build the expression tree, and then traverse it in preorder to get the prefix notation, and postorder
to find the postfix notation. Indeed, consider the expression tree shown in Figure 6. The postorder
traversal gives

AB+ CDF/ —

11

which agrees with the above. The preorder traversal leads us to
x+ AB — C/DF
which is the same as above.

Exercise 8B Write the following expression
AxB+C/D

in the postfix and prefix notations.

Theme 4: Graphs

In this section we present basic definitions and notations on graphs. As we mentioned in the Overview
graphs are applied to solve various problems in computer science and engineering such as finding the
shortest path between cities, building reliable computer networks, etc. We postpone an in-depth
discussion of graphs to IT 320.

A graph is a set of points (calledertices) together with a set of lines (callesdges.
There is at most one edge between any two vertices. More formally, a GrapliV, E)
consists of a pair of sefg and E, whereV is a set of vertices anf C V x V is the set
of edges.

Example & In Figure 7 we present some graphs that will be used to illustrate our definitions. In
particular, the first graph, say;, = (V1, E1) hasVy = {1,2,3,4} andE; = {{1,2},{1,3},{1,4},
{2,3},{2,4},{3,4}}. The second graph (that turns out to be a tree)Bay- (V, E»), consists of

Vo ={1,2,3,4,5,6,7} andEy = {{1,2},{1,3},{2,4},{2,5},{3,6},{3,7}}.

Now we list a number of useful notations associated with graphs.
e Two vertices are said to badjacent if there is an edge between them. An edgev} is

incident to verticesu andv. For example, in Figure 7 verticdd } and{2} are adjacent, while
the edge{2, 3} is incident to{2} and{3}.

e A multigraph has more than one edge between some vertices. Two edges between the same
two vertices are said to lygarallel edges.

e A pseudograph is a multigraph with loops. An edge isl@op if its start and end vertices are
the same vertex.

e A directed graph or digraph has ordered pairs of directed edges. Each edge)(has a start
vertexv, and an end vertew. For example, the last graph in Figure@; = (V3, E3), has
Vs = {1,2,3} and the set of edges 153 = {(1,2), (2,1),(2,3)}.

12

Figure 7: Examples of graphs.

13

¢ A labeled graph is a one-to-one and onto mapping of vertices to a set of unique labels, e.g.,
name of cities.

e Two graphsG and H areisomorphic, written G = H, iff there exists a one-to-one correspon-
dence between their vertex sets which preserves adjacency. Thus

are isomorphic since they have the same set of edges.

e A subgraph S of G is a graph having all vertices and edgesanG is then asupergraph of
S. Thatis,S = (Vs, Es) is a subgraph off = (V, E) if V¢ C V andEg C E. A spanning
subgraph is a subgraph containing all vertices @f that is,Vs = V and Es C E. For
example, n graplé7; in Figure 7 the grapl$; = (V1, E;) with V = {1,2} andE; = {{1,2}}
is a subgraph.

e If v; is a vertex and ifn > 0, we say that+y,v1,...,v,) is atrail if all edges are distinct, a
path if all the vertices are distinct, andaycleif the walk is a path andy, = v,. Thelength
ism. It must hold that if0 < ¢ < nthen @;,v;11) € E. In Gy in Figure 7({1},{3}.{4}) isa
trail and a path.

e A graph isconnectedif there is a path between any two vertices of the graph. A vertex is
isolated if there is no edge having it as one of its endpoints. Thus a connected graph has no
isolated vertices. In Figure 7 graptis andG, are connected.

e Thegirth of a graph denoted by(G) is the length of the shortest cycle. In gra@h of Figure 7
we haveg(G;) = 3.

e Thecircumference of a graph denoted by(G), is the length of any longest cycle, and is
undefined if no cycle of7 exists. In graplG, of Figure 7 we have(G,) = 4.

e A graph is calledplanar if it can be drawn in the plane so that two edges, intersect only at
points corresponding to nodes of the graph.

e Letd(u,v) be the shortest length path between verticesdv, if any. Then for allu, v, w in
V.

1. If (u,v) € E thend(u,v) = d(v,u) = 1.

14

2. d(u,v) < 0with d(u,v) = 0iff u=wv.
3. d(u,v) = d(v,u).
4. d(u,v) +d(v,w) > d(u,w) {Triangular inequality.

Thus,d(u, v) defines a distance on graphs.

e A degreeof a vertexv, denoted ageg(v) is the number of edges incident#o

> deg(v) =2|E],

veV
that is, the sum of vertex degrees is equal to twice the number of edges. The reader should
verify it on Figure 7.

e AgraphG isregular of degreer- if every vertex has degree Graph(G, in Figure 7 is3-regular.

e A completegraph K,, = (V, E) on n vertices has an edge between every pair of distinct
vertices. Thus a complete graptj, is regular degree of — 1, and has:(n — 1)/2 edges.
Observe thaf(s is a triangle. In Figure &7, = Kj.

e A bipartite graph, also refereed to as “bicolorable”mgraph, is a graph whose vertex set can
be separated into two disjoint sets such that there is no edge between two vertices of the same
set. Thus a graply is a bigraph ifG = (V; U V4, E) suchV; NV, = () and for each edge (w)
in E, eitherv € V; andw € V3, orv € Va andw € V;. A bigraphK,, , is such thatn = |V |
andn = |Va.

Vi

Vo

e A free tree (“unrooted tree”) is a connected graph with no cycl@ss a free tree if

1. G is connected, but if any edge is deleted the resulting graph is no longer connected.
2. If v andw are distinct vertices off, then there is exactly one simple path frerno w.

3. G has no cycles and h3g| — 1 edges.

e A graph isacyclicif it contains no cycles.

¢ In a digraph the out-degree, denotég,(v) of a vertexv is the number of edges with their
initial vertex beingv. Similarly the in-degree of a vertexis the number of edges with their
final vertex being. Clearly for any digraph

Z dout(v) = Z din (U)a

veEV veV

15

that is, the sum of in-degrees over all vertices is the sum of out-degrees over all vertices (cf.
Figure 7 forG3). An acyclic digraph contains no directed cycles, and has at least one point of
out-degree zero and at least on point of in-degree zero.

A directed graph is said to ksrongly connectedif there is an oriented path fromto w and
from w to v for any two vertices # w. GraphGj3 in Figure 7 isnot strongly connected since
there is no path between vertgxand1.

If a graph contains a walk that traverses each edge exactly once, goes through all the vertices,
and ends at the starting point, then the graph is said tBuderian. That is, it contains an
Eulerian trail . None of the graphs in Figure 7 has an Eulerian trail.

If there is a path through all vertices that visit every vertex once, then it is caliegiraltonian
path. If it ends in the starting point, then we havelamiltonian cycle. The Hamiltonian cycle

in Figure 7 is({1}, {2}, {3}, {4}).

ThesquareG? of agraphG' = (V, E) is G?(V, E') whereE' contains an edge:(v) whenever
there is a path 67 such thatd(u,v) < 2. The powerss3, G*, ... are defined similarity. Thus
G™ is a graph which contains edgés, v) between any two vertices that are connected by a
path of length smaller than or equal#dn G. SoG!VI~! is a graph which contains an edge
between any two vertices that are connected by a path of any lengthTihe graphG!VI-1 is
called thetransitive closure of G.

16

