
Module 8: Trees and Graphs

Theme 1: Basic Properties of Trees

A (rooted)tree is a finite set of nodes such that

� there is a specially designated node called theroot.

� the remaining nodes are partitioned intod disjoint setsT1; T2; : : : ; Td such that each of these

sets is a tree. The setsT1; T2; : : : ; Td are calledsubtrees, andd the degree of the root.

The above is an example of a recursive definition, as we have already seen in previous modules.

Example 1: In Figure 1 we show a tree rooted atA with three subtreesT1, T2 andT3 rooted atB, C

andD, respectively.

We now introduce some terminology for trees:

� A tree consists ofnodesor vertices that store information and often are labeled by a number

or a letter. In Figure 1 the nodes are labeled asA;B; : : : ;M .

� An edgeis an unordered pair of nodes (usually denoted as a segment connecting two nodes).

For example,(A;B) is an edge in Figure 1.

� The number of subtrees of a node is called itsdegree. For example, nodeA is of degree three,

while nodeE is of degree two. The maximum degree of all nodes is called the degree of the

tree.

� A leaf or a terminal node is a node of degree zero. NodesK;L; F;G;M; I andJ are leaves

in Figure 1.

� A node that is not a leaf is called aninterior node or aninternal node (e.g., see nodesB and

D).

� Roots of subtrees of a nodeX are calledchildren of X whileX is known as theparent of its

children. For example,B;C andD are children ofA, whileA is the parent ofB;C andD.

� Children of the same parent are calledsiblings. ThusB;C;D are siblings as well asK andL

are siblings.

� Theancestorsof a node are all the nodes along the path from the root to that node. For example,

ancestors ofM areH;D andA.

� Thedescendantsof a node are all the nodes along the path from that node to a terminal node.

Thus descendants ofB areF;E;K andL.

1

C

G

A

E F

B

LK

JIH

D

M

T1
T2

T3

Figure 1: Example of a tree.

� The level of a node is defined by letting the root to be at level zero1, while a node at levell has

children at levell + 1. For example, the rootA in Figure 1 is at level zero, nodesB;C;D are

at level one, nodesE;F;G;H; I; J ate level two, and nodesK;L;M are at level three.

� The depth of a node is its level number. Theheight of a tree is the maximum level of any

node in this tree. NodeG is at depth two, while nodeM at depth three. The height of the tree

presented in Figure 1 is three.

� A tree is called ad-ary tree if every internal node has no more thand children. A tree is called

a full d-ary tree if every internal node hasexactlyd children. Acomplete treeis a full tree up

the last but one level, that is, the last level of such a tree is not full. Abinary tree is a tree with

d = 2. The tree in Figure 1 is a3-ary tree, which is neither a full tree nor a complete tree.

� An ordered rooted tree is a rooted tree where the children of each internal node are ordered.

We usually order the subtrees from left to right. Therefore, for a binary (ordered) tree the

subtrees are called theleft subtree and theright subtree.

� A forest is a set of disjoint trees.

Now we study some basic properties of trees. We start with a simple one.

Theorem 1. A tree withn nodes hasn� 1 edges.

Proof. Every nodeexceptthe root has exactly one in-coming edge. Since there aren� 1 nodes other

than the root, there aren� 1 edges in a tree.
1Some authors prefer to set the root to be on level one.

2

The next result summarizes our basic knowledge about the maximum number of nodes and the

height.

Theorem 2. Let us consider a binary tree.

(i) The maximum number of nodes at leveli is 2i for i � 0.

(ii) The maximum number of all nodes in a tree of heighth is 2h+1 � 1.

(iii) If a binary tree of heighth hasn nodes then

h � log2(n+ 1)� 1:

(iv) If a binary tree of heighth hasl leaves, then

h � log2 l:

Proof. We first proof (i) by induction. It is easy to see that it is true fori = 0 since there is only one

node (the root) at level zero. Let now, by the induction hypothesis, assume there are no more2i nodes

at leveli. We must prove that at leveli + 1 there are no more than2i+1 nodes. Indeed, every node

at leveli may have no more than two children. Since there are2i nodes on leveli, we must have no

more than2i � 2 = 2i+1 nodes at leveli+ 1. By mathematical induction we prove (i).

To prove (ii) we use (i) and the summation formula for the geometric progression. Since every

level has at most2i nodes and there are no more thanh levels the total number of nodes cannot exceed

hX

i=0

2i = 2h+1 � 1;

which proves (ii).

Now we prove (iii). If a tree has heighth, then the maximum number of nodes by (ii) is2h+1 � 1

which must be at least be as big asn, that is,

2h+1 � 1 � n:

This implies thath � log2(n + 1) � 1, and completes the proof of (iii). Part (iv) can be proved in

exactly the same manner (see also Theorem 3 below).

Exercise 8A: Consider ad- ary tree (i.e., nodes have degree at mostd). Show that at levelk there are

at mostdk nodes. Conclude the total number of nodes in a tree of heighth is (dh+1 � 1)=(d � 1).

Finally, we prove one result concerning a relationship between the number of leaves and the

number of nodes of higher degrees.

3

C

B

A

FE

D

Figure 2: Illustration to Theorem 3.

Theorem 3. Let us consider a nonempty binary tree withn0 leaves andn2 nodes of degree two. Then

n0 = n2 + 1:

Proof. Letn be the total number of all nodes, andn1 the number of nodes of degree one. Clearly

n = n0 + n1 + n2:

On the other hand, ifb is the number of edges, then — as already observed in Theorem 1 — we have

n = b+ 1. But also

n = b+ 1 = n1 + 2n2 + 1

Comparing the last two displayed equations we prove out theorem.

In Figure 2 the reader can verify thatn2 = 2, n1 = 1 andn0 = 3, hencen0 = n2+1 as predicted

by Theorem 3.

Theme 2: Tree Traversals

Trees are often used to store information. In order to retrieve such information we need a procedure to

visit all nodes of a tree. We describe here three such procedures calledinorder, postorderandpreorder

traversals. Throughout this section we assume that trees are ordered trees (from left to right).

Definition. LetT be an (ordered) rooted tree withT1; T2; : : : Td subtrees of the root.

1. If T is null, then the empty list is preorder, inorder and postorder traversal ofT .

2. If T consists of a single node, then that node is preorder, inorder and postorder traversal ofT .

3. Otherwise, letT1; T2; : : : Td be nonempty subtrees of the root.

4

T1 T2 T3 T1 T2 T3 T1 T2 T3

pre-order in-order post-order

start

end start

end

Figure 3: Illustration to preorder, inorder and postorder traversals.

� The preorder traversal of nodes inT is the following: the root ofT followed by the

nodes ofT1 in preorder, then nodes ofT2 in preorder traversal,: : :, followed byTd in

preorder (cf. Figure 3).

� The inorder traversal of nodes inT is the following: nodes ofT1 in inorder, followed

by the root ofT , followed by the nodes ofT2; T3; : : : ; Td in inorder (cf. Figure 3).

� The postorder traversal of nodes inT is the following: nodes ofT1 in postorder, fol-

lowed byT2; : : : ; Td in postorder, followed by the root (cf. Figure 3).

Example 2: Let us consider the treeT in Figure 1. The rootA has three subtreesT1 rooted atB, T2

rooted atC, and subtreeT3 rooted atD. Thepreordertraversal is

preorder of T= fA;B;E;K;L; F;C;G;D;H;M; I; Jg

since after the rootA we visit firstT1 (so we list the rootB and visit subtrees ofT1), then subtreeT2

rooted atC and its subtrees, and finally we visit the subtreeT3 rootedD and its subtrees.

The inorder traversalof T is

inorder of T= fK;E;L;B; F;A;G;C;M;H;D; I; Jg

since we first must traverse inorder the subtreeT1 rooted atB. But inorder traversal ofT2 starts by

traversing in inorder the subtree rooted atE, which in turn must start atK. SinceK is a single node,

we list it. Then we move backward and list the root, which isE, and move to the right subtree that

turns out to be a single nodeL. Now, we can move up toB, that we list next, and finally nodeA.

Then we continue in the same manner.

Finally, the postorder traversal ofT is as follows:

postorder of T= fK;L;E; F;B;G;C;M;H; I; J;D;Ag

5

a

b

c

d e

1

1

1

10

0

0

0

a - 0
b = 10
c = 110
d = 1110
e = 1111

Figure 4: A tree representing a prefix code.

since we must first traverse postorderT1, which means postorder traversal of a subtree rooted atE,

which leads toE;L, andE. The rest follows the same pattern.

Theme 3: Applications of Trees

We discuss here two applications of trees, namely to build optimal prefix code (known as Huffman’s

code), and evaluations of arithmetic expressions.

Huffman Code

Coding is a mapping from a set of letters (symbols, characters) to a set of binary sequences. For

example, we can setA = 01; B = 0 andC = 10 (however, as we shall see this is not a good code).

But why to encode? The main reason is to find a (one-to-one) coding such that the length of the coded

message is as short as possible (this is calleddata compression). However, not every coding is good,

since – if we are not careful – we may encode a message that we won’t be able to decode uniquely.

For example, with the encoding as above, let us assume that we receive the following message

01001:

We can decode in many ways, for example as

BCA or ABA; etc:

6

In order to avoid the above decoding problems, we need to construct special codes known as

prefix codes.

A code is called aprefix codeif the bit string for a letter must never occur as the first part

of the bit strings for another letter. In other words, no code is a prefix of another code.

(By a prefix of the stringx1x2 : : : xn we meanx1x2 : : : xi for some1 � i � n.)

It is easy to construct prefix codes using binary trees. Let us assume that we want to encode a

subset of English characters. We build a binary tree withleaveslabeled by these characters and we

label the edges of the tree by bits0 and1, say, a left child of a node is labeled by0 while a right child

by 1. The code associated with a letter is a sequence of labels on the path from the root to the leaf

containing this character. Weobservethat by assigning leaves to characters, we assure the prefix code

property (if we label any internal node by a character, then the path or a code of this node will be a

prefix of all other characters that are assigned to nodes below this internal node).

Example 3: In Figure 4 we draw a tree and the associated prefix code. In particular, we find that

a = 0, b = 10, c = 110, d = 1110 ande = 1111. Indeed, no code is a prefix of another code.

Therefore, a message like this

0111010101111

can be uniquely decoded as

adbbe:

It should be clear that there are many ways of encoding a message. But intuitively, one should

assign shorter code to more frequent symbols in order to get on average as short code as possible. We

illustrate this in the following example.

Example 4: Let s = fa; b; c; d; eg be the set of symbols that we want to encode. The probabilities

of these symbols and two different codes are shown in Table 1. Observe that both codes are prefix

codes. Let us now compute the average code lengthsL1 andL2 for both codes. We have

L1 = P (a) � 3 + P (b) � 3 + P (c) � 3 + P (d) � 3 + P (e) � 3 = 3;

L2 = P (a) � 3 + P (b) � 2 + P (c) � 2 + P (d) � 3 + P (e) � 2 = 2:2:

Thus the average length of the second code is shorter, and – if there is no other constraint – this code

should be used.

Let us now consider a general case. Letfi, 1 � i � n be symbols with the corresponding

probabilitiesP (fi). For a codeC the average code length is defined as

L(C) =

nX

i=1

P (fi)jC(fi)j

7

Table 1: Two prefix codes.

Symbol Probability Code 1 Code 2

a 0.12 000 000

b 0.40 001 11

c 0.15 010 01

d 0.08 011 001

e 0.25 100 10

wherejC(fi)j is the length of the code assigned tofi. Indeed, as discussed in Module 7, to compute

the average of the codeC we must compute the sum of products “frequency� length”. We want to

find a codeC such that the average lengthL(C) is as short as possible, that is,

min
C
fL(C)g:

The above is an example of a simpleoptimization problem: we are looking for a code (mapping from

a set of messagesS to a sequence of binary strings) such that the average code lengthL(C) is the

smallest. It turns out that this problem is easy to solve.

In 1952 Huffman proposed the following solution:

1. Select two symbolsfi andfj that have the lowest probabilities, and replace them by a single

(imaginary) symbol, sayfij, whose probability is the sum ofP (fi) andP (fj).

2. Apply Step 1 recursively until you exhaust all symbols (and the final total probability of the

imaginary symbol is equal to one).

3. The code for the original symbols is obtained by using the code forfij (defined in Step 1) with

0 appended for the code forfi and1 appended for the code forfj.

This procedure, which can be proved to be optimal, and it is best implemented on trees, as ex-

plained in the following example.

Example 5: We find the best code for symbolsS = fa; b; c; d; eg with probabilities defined in Table

1 of the previous example. The construction is shown in Figure 5. We first observe that symbolsa and

d have the smallest probabilities. So we join them building a small tree with a new nodefda of the

total probability0:12 + 0:08 = 0:2. Now we have new setS1 = ffda; b; c; eg with the probabilities

0:2; 0:4; 0:15; 0:25, respectively. We apply the same algorithm as before. We choose two symbols

with the smallest probabilities (a tie is broken arbitrarily). In our case it happens to befda andc. We

8

build a new nodefdac of probability0:35 and construct a tree as shown. Continuing this way we end

up with the tree shown in the figure. Now we read:

b = 0

e = 10

c = 110

d = 1110

a = 1111:

This is our Huffman code with the average code length

L = 0:4 + 2 � 0:25 + 3 � 0:15 + 4 � 0:12 + 4 � 0:08 = 2:15:

Observe that this code is better than the other two codes discussed in the previous example.

Evaluation of Arithmetic Expressions

Computers often must evaluate arithmetic expressions like

(A+B) � (C �D=F) (1)

whereA;B;C;D andF are calledoperandsand+;�; � and= are called theoperators. How to

evaluate efficiently such expressions? It turns out that a tree representation may help transforming

such arithmetic expressions into others that are easier to evaluate by computers.

Let us start with a computer representation. We restrict our discussion tobinary operators(i.e.,

such that need two operands, likeA �B). Then we build a binary trees such that:

1. Every leaf is labeled by an operand.

2. Every interior node is labeled by an operator. Suppose a node is labeled by a binary operand�

(where� = f+;�; =; �g) and the left child of this node represents expressionE1, while the right

child expressionE2. Then the node labeled by� represents expression(E1) � (E2). The tree

representing(A+B) � (C �D=F) is shown in Figure 6.

Let us have a closer look at theexpression treeshown in Figure 6. Suppose someone gives to

you such a tree. Can you quickly find the arithmetic expression? Indeed, you can! Let us traverse

inorder the tree in this figure. We obtain:

(A+B) � (C � (D=F));

thus we recover the original expression. The problem with this approach is that we need to keep

parenthesis around each internal expression. In order to avoid them, we change theinfix notation to

9

b

e

c

d a

1

1

1

10

0

0

0

c

d a

e

c

d a

1

1

1

d a

0.12 0.4 0.15 0.08 0.25

a b c d e
f_da

0.2 0.4 0.15 0.25

 b c e

0.4 0.25

b e

0.35

f_dac f_dace

0.60 0.4

b

Figure 5: The construction of a Huffman tree and a Huffman code.

10

*

A

*

+

B

FD

C /

-

Figure 6: The expression tree for(A+B) � (C �D=F).

eitherPolish notation (also calledprefix notation) or to reverse Polish notation(also calledpostfix

notation), as discussed below.

Let us first introduce some notation. As before, we write�(= f+;�; �; ��g) (here�� denotes the

power operation) as an operand, whileE1 andE2 are expression. The standard way of representing

arithmetic expressions as shown above are called the infix notation. This can be written symbolically

as(E1) � (E2). In theprefix notation(or Polish notation) we shall write

�E1E2

while in thepostfix notation(or reverse Polish notation) we write

E1E2�

Observe that parenthesis arenot necessary. For the expression shown in (1) we have

postfix notation = AB + CDF=� �;

prefix notation = �+AB � C=DF:

How can we generate prefix and postfix notation from the infix notation. Actually, this is easy. We

first build the expression tree, and then traverse it in preorder to get the prefix notation, and postorder

to find the postfix notation. Indeed, consider the expression tree shown in Figure 6. The postorder

traversal gives

AB + CDF=� �

11

which agrees with the above. The preorder traversal leads us to

�+AB � C=DF

which is the same as above.

Exercise 8B: Write the following expression

A � B + C=D

in the postfix and prefix notations.

Theme 4: Graphs

In this section we present basic definitions and notations on graphs. As we mentioned in the Overview

graphs are applied to solve various problems in computer science and engineering such as finding the

shortest path between cities, building reliable computer networks, etc. We postpone an in-depth

discussion of graphs to IT 320.

A graph is a set of points (calledvertices) together with a set of lines (callededges).

There is at most one edge between any two vertices. More formally, a graphG = (V;E)

consists of a pair of setsV andE, whereV is a set of vertices andE � V � V is the set

of edges.

Example 6: In Figure 7 we present some graphs that will be used to illustrate our definitions. In

particular, the first graph, sayG1 = (V1; E1) hasV1 = f1; 2; 3; 4g andE1 = ff1; 2g; f1; 3g; f1; 4g;

f2; 3g; f2; 4g; f3; 4gg. The second graph (that turns out to be a tree), sayG2 = (V2; E2), consists of

V2 = f1; 2; 3; 4; 5; 6; 7g andE2 = ff1; 2g; f1; 3g; f2; 4g; f2; 5g; f3; 6g; f3; 7gg.

Now we list a number of useful notations associated with graphs.

� Two vertices are said to beadjacent if there is an edge between them. An edgefu; vg is

incident to verticesu andv. For example, in Figure 7 verticesf1g andf2g are adjacent, while

the edgef2; 3g is incident tof2g andf3g.

� A multigraph has more than one edge between some vertices. Two edges between the same

two vertices are said to beparallel edges.

� A pseudograph is a multigraph with loops. An edge is aloop if its start and end vertices are

the same vertex.

� A directed graph or digraph has ordered pairs of directed edges. Each edge (v; w) has a start

vertexv, and an end vertexw. For example, the last graph in Figure 7,G3 = (V3; E3), has

V3 = f1; 2; 3g and the set of edges isE3 = f(1; 2); (2; 1); (2; 3)g.

12

1

2 3

4

1

2 3

4 65 7

1

2

3

Figure 7: Examples of graphs.

13

� A labeled graph is a one-to-one and onto mapping of vertices to a set of unique labels, e.g.,

name of cities.

� Two graphsG andH areisomorphic, writtenG �= H, iff there exists a one-to-one correspon-

dence between their vertex sets which preserves adjacency. Thus

A D

B

E C

F

A E F

B C D

≅

are isomorphic since they have the same set of edges.

� A subgraphS of G is a graph having all vertices and edges inG; G is then asupergraph of

S. That is,S = (VS ; ES) is a subgraph ofG = (V;E) if VS � V andES � E. A spanning

subgraph is a subgraph containing all vertices ofG, that is,VS = V andES � E. For

example, n graphG1 in Figure 7 the graphS1 = (V1; E1) with V = f1; 2g andE1 = ff1; 2gg

is a subgraph.

� If vi is a vertex and ifn � 0, we say that (v0; v1; : : : ; vn) is a trail if all edges are distinct, a

path if all the vertices are distinct, and acycle if the walk is a path andv0 = vn. The length

is n. It must hold that if0 � i < n then (vi; vi+1) 2 E. In G1 in Figure 7(f1g; f3g:f4g) is a

trail and a path.

� A graph isconnectedif there is a path between any two vertices of the graph. A vertex is

isolated if there is no edge having it as one of its endpoints. Thus a connected graph has no

isolated vertices. In Figure 7 graphsG1 andG2 are connected.

� Thegirth of a graph denoted byg(G) is the length of the shortest cycle. In graphG1 of Figure 7

we haveg(G1) = 3.

� The circumference of a graph denoted byc(G), is the length of any longest cycle, and is

undefined if no cycle ofG exists. In graphG1 of Figure 7 we havec(G1) = 4.

� A graph is calledplanar if it can be drawn in the plane so that two edges, intersect only at

points corresponding to nodes of the graph.

� Let d(u; v) be the shortest length path between verticesu andv, if any. Then for allu; v; w in

V :

1. If (u; v) 2 E thend(u; v) = d(v; u) = 1.

14

2. d(u; v) � 0 with d(u; v) = 0 iff u = v.

3. d(u; v) = d(v; u).

4. d(u; v) + d(v; w) � d(u;w) fTriangular inequalityg.

Thus,d(u; v) defines a distance on graphs.

� A degreeof a vertexv, denoted asdeg(v) is the number of edges incident tov.
X

v2V

deg(v) = 2jEj;

that is, the sum of vertex degrees is equal to twice the number of edges. The reader should

verify it on Figure 7.

� A graphG is regular of degreer if every vertex has degreer. GraphG1 in Figure 7 is3-regular.

� A complete graphKn = (V;E) on n vertices has an edge between every pair of distinct

vertices. Thus a complete graphKn is regular degree ofn � 1, and hasn(n � 1)=2 edges.

Observe thatK3 is a triangle. In Figure 7G1 = K4.

� A bipartite graph, also refereed to as “bicolorable” orbigraph, is a graph whose vertex set can

be separated into two disjoint sets such that there is no edge between two vertices of the same

set. Thus a graphG is a bigraph ifG = (V1[V2; E) suchV1\V2 = ; and for each edge (v; w)

in E, eitherv 2 V1 andw 2 V2, or v 2 V2 andw 2 V1. A bigraphKm;n is such thatm = jV1j

andn = jV2j.

V1

V2

� A free tree (“unrooted tree”) is a connected graph with no cycles.G is a free tree if

1. G is connected, but if any edge is deleted the resulting graph is no longer connected.

2. If v andw are distinct vertices ofG, then there is exactly one simple path fromv tow.

3. G has no cycles and hasjV j � 1 edges.

� A graph isacyclic if it contains no cycles.

� In a digraph the out-degree, denoteddout(v) of a vertexv is the number of edges with their

initial vertex beingv. Similarly the in-degree of a vertexv is the number of edges with their

final vertex beingv. Clearly for any digraph
X

v2V

dout(v) =
X

v2V

din(v);

15

that is, the sum of in-degrees over all vertices is the sum of out-degrees over all vertices (cf.

Figure 7 forG3). An acyclic digraph contains no directed cycles, and has at least one point of

out-degree zero and at least on point of in-degree zero.

� A directed graph is said to bestrongly connectedif there is an oriented path fromv tow and

from w to v for any two verticesv 6= w. GraphG3 in Figure 7 isnot strongly connected since

there is no path between vertex3 and1.

� If a graph contains a walk that traverses each edge exactly once, goes through all the vertices,

and ends at the starting point, then the graph is said to beEulerian. That is, it contains an

Eulerian trail . None of the graphs in Figure 7 has an Eulerian trail.

� If there is a path through all vertices that visit every vertex once, then it is called aHamiltonian

path. If it ends in the starting point, then we have aHamiltonian cycle. The Hamiltonian cycle

in Figure 7 is(f1g; f2g; f3g; f4g).

� ThesquareG2 of a graphG = (V;E) isG2(V;E0) whereE0 contains an edge (u; v) whenever

there is a path inG such thatd(u; v) � 2. The powersG3, G4; : : : are defined similarity. Thus

Gn is a graph which contains edges(u; v) between any two vertices that are connected by a

path of length smaller than or equal ton in G. SoGjV j�1 is a graph which contains an edge

between any two vertices that are connected by a path of any length inG. The graphGjV j�1 is

called thetransitive closure of G.

16

