
Module 7: Discrete Probability

Theme 1: Elementary Probability Theory

Probability is usually associated with an outcome of an experiment. For example, the experiment may

be a throw of a coin, while the two possible outcomes are “heads” and “tails”. Roughly speaking,

probability will estimate our chance that the next outcome of this experiment is either a head or a tail

(here we assume that tail and head are equally likely, that is, the probability of tossing a head or a tail

is equal to0:5 or 50%).

An experiment is a procedure that gives a set of possible outcomes. In fact, the set ofall pos-

sible outcomes is called thesample space(e.g., in the experiment with a coin, the sample space=

fhead; tailg). Finally, anevent is a subset of the sample space (e.g., ahead). When there are a finite

number ofequally likelyoutcomes, Laplace suggested the following definition of the probability:

The probability of an eventE � S (which is a subset of a finite sample spaceS) of

equally likely outcomes is

P (E) =
jEj

jSj

wherejEj and jSj are cardinalities of the setsE andS, respectively. We often call the

events inE favorable events, while events inS all possible events.

Example 1: A box has 5 black balls and 7 green balls. What is the probability of selecting a green

ball?

The sample spaceS consists of12 balls. The eventE = fselect a green ballg has seven elements.

ThereforeP (E) = 7=12.

Example 2: Let two dice be rolled (we recall that a die has six sides, and each side has one, or two,

or : : :, six dots). What is the probability that the sum of the numbers on the two dice is11?

Let us first build the probability spaceS. It consists of pairs(i; j) where1 � i; j � 6, so we have

jSj = 36 (since every die has six outcomes, so two of them must have6 � 6 outcomes). The event

E = fsum is equal to 11g consists of

E = f(5; 6); (6; 5)g;

therefore,P (E) = 2=36 = 1=18.

The counting problems encountered so far were very simple. Consider now the following prob-

lem.

Example 3: Find the probability that a hand of five cards in poker contains four cards of one kind?
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We recall that there are52 cards in a deck; there are13 different kinds of cards, with 4 cards of

each kind. These kinds are two’s, three’s,: : :, tens, jacks, queens, kings, and aces. There are also four

suits: spades, clubs, hearts, and diamonds.

The number of ways to choose5 cards out of52 is C(52; 5) (which is a large number). This is

the cardinality of the sample space. Let us now consider the eventE that a hand has four cards of one

kind. By the multiplication rule, a hand of five cards with four cards of the same kind is the number

of ways to pick one kind (C(13; 1) = 13) and the number of ways to pick the fifth card, which is

C(48; 1) (in words, one in every48). Therefore, by the above definition

P (E) =
13 � 48

C(52; 5)
� 0:00024

since there areC(52; 5) possible outcomes andC(13; 1) � C(48; 1) “favorable” outcomes forE.

Sometimes, we know the probability of eventsE1 andE2 and need to know the probability of

combinations of events such asE1 [ E2 (i.e., at least one event occurs),E2 \ E2 (both events must

occur), or �E = S � E (E doesnot occur). Let us start with the probability of the complementary

event �E. We claim that

P ( �E) = 1� P (E):

Indeed, sincej �Ej = jSj � jEj we obtain

P ( �E) =
jSj � jEj

jSj
=
jSj

jSj
�
jEj

jSj
= 1� P (E):

Example 4: What is the probability that among five randomly generated bits at least one is0?

This exactly the case when it easier to compute�E thanE. In this case�E = fall bits are 1g. Since

there are25 possible binary strings of length five, only only one (i.e.,(0; 0; 0; 0; 0)) is the “favorable”

one, we find

P ( �E) =
1

25

since there are25 binary strings of length5 and there is only one string with all1s. Hence

P (E) = 1� P ( �E) = 1� 2�5 =
31

32
:

Let us now computeP (E1 [E2). From previous modules we know that

jE1 [E2j = jE1j+ jE2j � jE1 \E2j

therefore, by the definition of probability

P (E1 [E2) =
jE1 [E2j

jSj

=
jE1j+ jE2j � jE1 \E2j

jSj

=
jE1j

jSj
+
jE2j

jSj
�
jE1 \E2j

jSj

= P (E1) + P (E2)� P (E1 \E2):
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In summary, we prove that

P (E1 [E2) = P (E1) + P (E2)� P (E1 \E2):

In words, the probability of union of two events is the sum of the probability of both events minus

the the probability of product of the events, When the events are disjoint (i.e.,E1 \ E2 = ;), then

P (E1 [E2) = P (E1) + P (E2).

Example 5: What is the probability that a randomly selected positive integer smaller than equal to

100 is divisible either by2 or by5?

LetE1 that the integer is divisible by2, andE2 the event that the integer is divisible by5. Clearly

jE1j = 50 andjE2j = 20. Observe that the event we are looking for isE1 [E2. In order to compute

it we needjE1 \E2j = 10 since there are ten numbers in the range1 to 100 that are divisible by10.

Therefore, by the definition of probability we have

P (E1 [E2) = P ((E1) + P (E2)� P (E1 \E2)

=
50

100
+

20

100
�

10

100

=
3

5
:

Exercise 7A: What is the probability of generating a binary string(0; 0; 1; 1; 0; 1; 0) of length seven

provided0 and1 are equally likely.
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Theme 2: Probability Theory

In the previous section, we assumed that all outcomes of the sample spaceS are equally likely. This

led us to the Laplace definition of probability. Here we generalize it.

Let S be a probability space. Throughout, we assume thatS is finite, and often we just list all

outcomes (e.g.,S = fs1; : : : ; sng). Any subsetA of S will be called anevent. We now define

probability P as a function from the set of subsets ofS into the interval[0; 1]. If we denote by


 = fA : A � Sg, then

P : 
! [0; 1]

such that the following three properties hold (belowP (A) denotes the probability of the eventA):

1. P (A) � 0;

2. P (S) = 1;

3. if A \B = ;, thenP (A [B) = P (A) + P (B).

The above three properties say that the probability of any event must be nonnegative, that the proba-

bility of a “sure” event (i.e.,S) is equal to one, and finally that the probability of the union of disjoint

events is the sum of the probabilities of the corresponding events.

Using these three assumptions one can prove many properties of probability (that we already

encountered in the previous section). For example, let�A = S � A be the complementary event toA

(that is, �A is the same asnot A). We haveP ( �A) = 1� P (A). Indeed, observe thatS �A andA are

disjoint, hence by (c) we find

1 = P (S) = P ((S �A) [A) = P (S �A) + P (A) = P ( �A) + P (A);

which proves our claim thatP ( �A) = 1� P (A). By the way, as a corollary we see that

P (;) = P ( �S) = 1� P (S) = 0:

Let now all outcomes inS beequally likely. To be more precise, letS = fs1; : : : ; sng and

P (si) =
1

n

since by the second property above we have1 =
Pn

i=1 P (si) = nP (si) (all events sum up to one).

Let nowA = fsi1 ; : : : ; sikg, that isjAj = k. By the third property of the probability definition and

the above we have

P (A) = P (si1 [ si2 [ : : : [ sik)

=
kX

j=1

P (sij ) = kP (s1)

=
k

n
=
jAj

jSj
:
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In the above we first observe that the eventA is a union of the elementary eventsA = si1 [ si2 [

: : :[ sik . All elementary events are disjoint, hence we can sum probabilities, as the second line above

shows. Finally, since every event is equally likely and there aren events, henceP (s1) = 1=n. We

have just recovered Laplace’s definition of probability for equally likely outcomes.

Example 6: Find the probability that a randomly selectedk-digits decimalnumber is also a valid

octal number whose digits are between0 and8.

First, ak digit number can be represented as(x1; x2; : : : ; xk) wherexi 2 f0; 1; : : : ; 9g if the

number is decimal, andxi 2 f0; 1; : : : ; 7g if the number is octal. The number of decimal numbers of

lengthk is 10k (just apply the multiplication rule). The number of valid octal numbers of lengthk is

8k. Therefore, the probability is8
k

10k
=
�
4
5

�k
.

Conditional Probability

Consider the case when you know that eventB has occurred, and knowing this you want to compute

the probability of eventA. This is known as theconditional probability and denoted asP (AjB).

Example 7: There are five black balls and ten green balls in a box. You select randomly a ball, and it

happens to be a green ball. You donot return this ball to the box. What is the probability that in the

second selection you pick up a green ball? IfA is the event of selecting a green ball in the first pick,

andB is the probability of choosing another green ball in the second pick, then the probability we are

seeking is denoted asP (BjA). In our case it is

P (BjA) =
9

14

since after the first selection there are only nine green balls in the box containing14 balls. (Here we

used explicitly the fact that after picking a geen ball there are only14 balls left with9 green balls.)

We can compute this probability in a different way. Observe thatjSj = 15 andjAj = 10, hence

P (A) =
10

15
:

Let us now compute the probability ofA \B. EventA can occur in10 ways out of15, whileB can

occur9 out of14 since one ball was already taken out from the box in the pick. Hence

P (A \B) =
10

15
�
9

14
;

and then we “define” (see below for additional explanations) the conditional probabilityP (BjA) as

P (BjA) =
P (A \B)

P (A)
=

10

15
�
9

14
�
15

10
=

9

14
:

Thus, we obtain the same result as the one computed directly. It suggests a definition of conditional

probability that we shall discuss next.
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Let us generalize this example. Consider a sample spaceS and two eventsA;B � S. Assume

eventB has occurred. Then the sample spaceS effectively reduces toB, therefore, we must restrict

the occurrence of eventA to those outcomes that fall intoB. In a sense,B is the new sample space.

In other words, the number of “favorable outcomes” is notjAj but jA \ Bj. Therefore for equally

likely events we computeP (AjB) as follows

P (AjB) =
jA \Bj

jBj
:

Observe, however, that

P (AjB) =
jA \Bj

jBj

=
jA \Bj

jSj
�
jSj

jBj

=

jA\Bj
jSj

jBj
jSj

=
P (A \B)

P (B)
:

In the second line above, we multiply and divide byjSj and then observe in the third line that we have

the probabilitiesP (A \B) andP (B).

Actually, the last expression is used as a definition of the conditional probability.

Let A andB be events withP (B) > 0. The conditional probability of A givenB,

denoted asP (AjB), is defined as

P (AjB) =
P (A \B)

P (B)
:

Example 8: A box contains5000 chips,1000 of them made by companyX, the rest by companyY .

It is known that10% = 100 chips made by companyX are defective, while only5% = 200 chips

made by companyY are defective. Compute the probability that if you pick up a defective chips it

comes from companyX.

Let A be the event that a chip is made by companyX andB that a chip is defective. We need

to findP (AjB), that is, the probability that provided a chip is defective it i comes from companyX.

For this we needP (B) andP (A \B). But

P (B) =
100 + 200

5000
= 0:06;

P (A \B) =
100

5000
= 0:02:

Then

P (AjB) =
P (A \B)

P (B)
=

0:02

0:06
=

1

3
;

that is, one out of every three.
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Independence

If P (AjB) = P (A), then the knowledge ofB does not change the probability ofA. We say that

A andB are independent events. Observe that the above condition is equivalent toP (A \ B) =

P (A)P (B), which serves as a definition.

Two eventsA andB are said to beindependentif and only if

P (A \B) = P (A)P (B):

Example 8: Consider a five-bit binary string. The probability of generating a zero is equal top. Bits

are generated independently. What is the probability of getting00111?

Since we have independence we easily compute

P (00111) = P (0) � P (0) � P (1) � P (1) � P (1) = p2(1� p)3

since1� p is the probability of generating a one.

Exercise 7B: Show that ifA andB are independent events, then�A and �B are also independent events.

Binomial Distribution and Bernoulli Trials

In the last example, we generated five bits and asked for the probability of getting00111. However,

if we ask for the probability of generating two0s and three1s, the situation is different. This time we

do not specify where the two0s and three1 are located. Therefore, strings like01011, 11001, etc.

satisfy the description of the event. In fact, we haveC(5; 2) = C(5; 3) ways to select two zeros out

of five. Thus this probability is equal to

C(5; 2)p2(1� p)3 = 10p2(1� p)3;

and this should be compared with the answer to the previous example. For instance, ifp = 0:1, then

the above becomes

C(5; 2)0:12 � 0:93 = 10 � 0:01 � 0:729 = 0:0729:

We shall generalize the last situation, and introduce the so calledBernoulli trials and thebino-

mial distribution . Consider an experiment that has two outcomes calledsuccessesandfailures. Let

the probability of a success bep, while the probability of a failureq = 1 � p. This experiment is

called theBernoulli trial . Let us repeat itn times. Many problems in probability can be solved by

asking what is the probability ofk successes inn Bernoulli trials. The last example can be viewed as

five Bernoulli trials with a success being a generation of a zero.

Let us now considern independentBernoulli trials with the probability of a success equal top.

What is the probability of obtainingk successes. Since the outcomes are independent aparticular trial
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with k successes has the probabilitypk(1� p)n�k. But we can choose onC(n; k) waysk successes

out ofn trials, therefore, the probability ofk successes inn independent Bernoulli trials is

C(n; k)pk(1� p)n�k: (1)

Considered as a function ofk, we call the above function thebinomial distribution and denote it as

b(k;n; p) = C(n; k)pk(1� p)n�k.

Observe that (1) is probability since by the definition of probability it sums up to one. More

precisely, by Newton’s summation formula discussed in Module 5

nX

k=0

C(n; k)pk(1� p)n�k = (p+ 1� p)n = 1n = 1

as needed.1

Example 9: A biased coin is thrown 7 times. The probability of throwing a tail is0:4. What is the

probability of throwing three tails in four trials?

Clearly, we have the Bernoulli trials with the success being a throw of a tail. Hence, the probability

is equal to

C(7; 3)(0:4)3 � 0:6 = 0:1536:

after substitutingp = 0:4 in (1).

Random Variables

Many problems are concerned with a numerical values associated with the outcome of an experiment.

For example, we can assign value1 to the tail when throwing a coin, and value0 when throwing a

head. Such a numerical value assigned to an outcome is known as a random variable.

A random variable is a function from the sample space of an experiment to the set of

real numbers.

Example 10: Let us flip a coin three times. Define a random variableX(t) to be the number of tails

that appear whent is the outcome. We have

X(HHH) = 0;

X(HHT ) = X(HTH) = X(THH) = 1;

X(TTH) = X(THT ) = X(HTT ) = 2;

X(TTT ) = 3:
1We recall that by Newton’s formula

(a+ b)n =

nX

k=0

C(n; k)akbn�k:
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Having defined a random variable, we can now introduce theprobability mass function. Let

At = fs 2 S : X(s) = tg, that is,At is the subset ofS (an event) that assigns valuet of X. Then

P (X = t) = P (At) =
X

s2At

P (s)

sinceAt is disjoint union of elementary eventss such thatX(s) = t.

Let us now discuss an important notion of probability theory, namely, the “expected value” of an

experiment. For example, one expects about50 tails when flipping an unbiased coin100 times. We

are now in a position to definite it precisely.

The expected value(also known as themean value) of a random variableX(s) over

s 2 S taking values int 2 X(s) is defined as

E[X] =
X

s2S

P (s)X(s) =
X

t2X(S)

tP (X = t):

The above formula extends the definition of “average value” known from high school. Indeed, let

all eventsX = t are equally likely, and assume thatt = 1; 2; : : : ; n. WE learned in high school to

compute the average (expected value) as follows

E[X] =
1 + 2 + � � �n

n
= 1 �

1

n
+ 2 �

1

n
+ � � �+ n

1

n
=

nX

t=1

tP (X = t)

which coincides with the above definition.

Example 11: We shall continue Example 10 assuming that the coin is fair (i.e., probability of a head

or a tail is0:5). From the previous example we find that

P (X = 0) =
1

8
;

P (X = 1) =
3

8
;

P (X = 2) =
3

8
;

P (X = 3) =
1

8
;

since, for example,fX = 1g = fHHT; THH;HTHg, thus we have three out of23 = 8 outcomes

satisfyingX = 1 (i.e., the number of tails is equal to one). Therefore,

E[X] = 0 �
1

8
+ 1 �

3

8
+ 3 �

3

8
+ 3 �

1

8
=

15

8
;

that is, on average we have178 tails per three throws.
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Let us now compute the expected value of the binomial distribution defined above. We defineX

as the number of successes inn Bernoulli trials. Then2

E[X] =
nX

k=0

kP (X = k) =
nX

k=0

kC(n; k)pk(1� p)n�k

=

nX

k=0

k
n!

k!(n� k)!
pk(1� p)n�k

=

nX

k=1

n
(n� 1)!

(k � 1)!(n� k)!
pk(1� p)n�k

= np

nX

k=1

C(n� 1; k � 1)pk�1(1� p)(n�1)�(k�1)

= np

n�1X

j=0

C(n� 1; j)pj(1� p)n�1�j

= np(p+ 1� p)n�1

= np:

The first line is just the definition of the binomial distribution and the expected value. In the third line

we use the following property of the binomial coefficients (see Module 4 and 6):

kC(n; k) =
kn!

k!(n� k)!
= n

(n� 1)!

(k � 1)!(n� k)!
= nC(n� 1; k � 1):

In the fourth line above we change the index of summation fromk to j = k�1, while in the fifth line

we apply the Newton summation formula, discussed in Module 4 which we recall below

(a+ b)n =
nX

k=0

C(n; k)akbn�k:

(In our case,a = p andb = 1� p.)

Expectation has some nice properties. For example,

E[X + Y ] = E[X] +E[Y ];

this is, the expectation of the sum of random variables is the sum of expectations. This is very

important result! Let us derive it. We have

E[X + Y ] =
X

s2S

P (s)[X(s) + Y (s)]

=
X

s2S

P (s)X(s) +
X

s2S

P (s)Y (s)

= E[X] +E[Y ]:
2This derivation is quite long and can be omitted in the first reading. We shall re-derive the same result in Example 13

using simpler arguments.
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Example 13: We just computed thatE[X] = np for binomially distributedX. We needed a long

chain of computations. But we can prove the same result using the above property in a much easier

way. Observe that

X = X1 +X2 + � � � +Xn

whereXi is equal to1 when a success occurs and0 otherwise. Such a random variable is called

the Bernoulli random variable or, more precisely, Bernoulli distributed random variable. Clearly,

E[Xi] = 1 � p + 0 � (1 � p) = p. Since the expectation of a sum of random variables is the sum of

expectations, we have

E[X] = E[X1] +E[X2] + � � �+E[Xn] = np;

as before, but this time we derive it in a simple way.

However, in generalE[XY ] is not equal toE[X]E[Y ]. To assure this is true one must assumeX

andY are independent defined as follows:

Two random variablesX andY on the same sample spaceS areindependentif

P (X(s) = t; Y (s) = r) = P (X(s) = t) � P (Y (s) = r):

Example 14: Let us roll two dice. What is the probability of getting6 on the die and5 on the second

die. LetX represent the number obtained on the first die andY the number rolled on the second die.

Since the events are independent, we have

P (X = 6; Y = 5) = P (X = 6) � P (Y = 5) =
1

6
�
1

6
=

1

36
:

We now prove the following result

Theorem 1LetX andY are independent random variables. Then

E[XY ] = E[X]E[Y ]:

Proof. We have

E[XY ] =
X

t;r

t � rP (X = t; Y = r)

=
X

t;r

t � rP (X = t)P (Y = r)

=
X

t

tP (X = t)
X

r

rP (Y = r)

= E[X]E[Y ];
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where in the second line we used independence, while in the third line we computed two independent

sums.

Finally, we shall discussvariance. The expected value of a random variable tells us its average

value but says nothing about variability of it. The reader should not forget thatX is a random variable

and it (randomly)varies. While we would like to find one synthetic number (e.g., the expected value)

to describe this random variable, such a characterization is usually very poor. Therefore, we try to

introduce some parameters that can tall us (in a simplified way) more about the random variable.

The variance, roughly speaking, determines how widely a random variable is distributed around the

expected value. Formally:

Let X be a random variable defined on a sample spaceS. Thevariance of X, denoted

asVar[X], is

Var[X] =
X

s2S

P (s)(X(s)�E[X])2 = E[(X �E[X])2]:

That is, the variance is theexpected valueof the following random variable:(X �E[X])2. Since we

expect thatX is more likely to concentrate aroundE[X], the random variable(X � E[X])2 tells us

about variations ofX around the expected value.

We can compute the variance using the following formula

Var[X] = E[X2]�E[X]2: (2)

Indeed,

E[(X �E[X])2] = E[X2 � 2XE[X] +E[X]2]

= E[X2]� 2E[X]E[X] +E[X]2

= E[X2]�E[X]2

where above we used the fact that the expected value of a sum of random variables is the sum of the

expected values and the following identity (let’s call it the “square of sum identity”)

(a+ b)2 = a2 + 2ab+ b2

known from high school.

Example 15: Consider a Bernoulli random variableX taking value1 with probability p and zero

otherwise. What is the variance ofX?

We observe first thatE[X] = 1 � p+ 0 � (1� p) = p. Then we compute

E[X2] = 12 � p+ 02 � (1� p) = p:
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Thus, a straightforward computation gives us

Var[X] = E[X2]�E[X]2 = p� p2 = p(1� p) = p � q:

Unlike the expectation the variance of a sum of two random variables isnot the sum of variances.

For this to hold, we need additional assumptions, as shown below.

Theorem 2. LetX andY be independentrandom variables. Then

Var[X + Y ] = Var[X] +Var[Y ]:

In general, ifXi, i = 1; 2; : : : ; n are pairwise independent random variables, then

Var[X1 +X2 + � � �+Xn] = Var[X1] +Var[X2] + � � �+Var[Xn]:

Proof. From (2) we have

Var[X + Y ] = E[(X + Y )2]�E[X + Y ]2:

But

E[(X + Y )2] = E[X2 + 2XY + Y 2]

= E[X2] + 2E[XY ] +E[Y 2]

= E[X2] + 2E[X]E[Y ] +E[Y 2]

where in the second line we use the identity(a+ b)2 = a2 + 2ab+ b2 and in the third line we apply

independence ofX andY . Summing up, we obtain

Var[X + Y ] = E[(X + Y )2]�E[X + Y ]2

= E[(X + Y )2]� (E[X] +E[Y ])2

= E[X2] + 2E[X]E[Y ] +E[Y 2]�E[X]2 � 2E[X]E[Y ]�E[Y ]2

= (E[X2]�E[X]2) + (E[Y 2]�E[Y ]2

= Var[X] +Var[Y ];

which completes the proof. In the first line we use the fact thatVar[X] = E[X2] � E[X]2 (derived

above), then we use again the square of sum identity, then we rearrange terms of the sum, and finally

obtain the desired identity.

Example 16: Let us compute the variance of the binomial distribution. We use the representation of

binomial distribution from Example 13, that is,

X = X1 + � � � +Xn
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whereXi are Bernoulli distributed withVar[Xi] = p(1� p) as computed in Example 15. Therefore,

by the last theorem

Var[X] = Var[X1 + � � �+Xn] = Var[X1] + � � � +Var[Xn] = np(1� p):

That is, the variance of the sum of Bernoulli distributed random variables is the sum of variances of

individual random variables, and it is equal tonp(1� p).
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