Module 6: Basic Counting

Theme 1: Basic Counting Principle

We start with two basic counting principles, namely, oen rule and themultiplication rule .

The Sum Rule If there aren; different objects in the first sed;, ny objects in the
second seHd,, ..., n,, objects in themth setA,,, and if the setsd,, A,,..., A, are
disjoint (i.e., 4; N A; = 0 for anyl < i < j < m), then the total number of ways to
select an object from one of the set is

ny+ng+ -+ Ny
in other words,

|A1UA2UUAm|:|A1|+|A2|++|Am|

The Multiplication Rule : Suppose a procedure can be broken imt@uccessive (or-
dered) stages, with; outcomes in the first stagey, outcomes in the second stage,,

ny,, outcomes in thenth stage. If the number of outcomes at each stage is independent
of the choices in previous stages, and if the composite outcomes are all distinct, then the
total procedure has

nl.nQ...nm

different composite outcomes. Sometimes this rule can be phrased in terms of sets
Aq,..., Ay, as follows

|A1XA2XXAm|:|A1||A2||Am|

Example 1 There arel0 students in an algebra class atidstudents in a geometry class. How many
different students are in both classes combined?

This problem is not well formulated and cannot be answered unless we are told how many students
are taking both algebra and geometry. If there is not student taking both algebra and geometry, then
by the sum rule the answer # + 40. But let us assume that there ai@ students taking both
algebra and geometry. Then there 3destudentsnly in algebra,30 studentonly in geometry, and
10 students irboth algebra and geometry. Therefore, by the sum rule the total number of students is
30 4+ 30 + 10 = 70.

Example 2 There are boxes in a postal office labeled with an English letter (o2é &nglish char-
acters) and a positive integer not exceediigHow many boxes with different labels are possible?



The procedure of labeling boxes consists of two successive stages. In the first stage we assign
26 different English letters, and in the the second stage we asfigratural numbers (the second
stage doesot depend on the outcome of the first stage). Thus by the multiplication rule we have
26 - 80 = 2080 different labels.

Example 3 How many different bit strings are there of length five?
We have here a procedure that assigns two values (i.e., zero or one) in five stages. Therefore, by
the multiplication rule we have® = 32 different strings.

Exercise 6A How many binary strings of lengthare there that start with aand end with &7

Example 4 Counting FunctionsLet us consider functions from a set withelements to a set with
n elements. How many such functions are there?

We can view this as a procedure of successivetages withn outcomes in each stage, where
the outcome of the next stage does not depend on the outcomes of the previous stages. By the
multiplication rule there are - n - - - n = n™ functions.

But, let us now count the number ohe-to-onefunctions from a set ofn elements to the set
of n elements. Again, we deal here with a procedureno$uccessive stages. In the first stage we
can assigm values. But in the second stage we can only assign1 values since for a one-to-
one function we are not allowed to select the value used before. In general, ithtis¢éage we
have onlyn — k 4+ 1 elements at our disposal. Thus by (a generalized) multiplication rule we have
n(n — 1) - (n — m + 1) one-to-one functions.

Let us now consider some more sophisticated counting problems in which one must use a mixture
of the sum and multiplication rules.

Example 5 A valid file name must be six to eight characters long and each hame must have at least
one digit. How many file names can there be?

If IV is the total number of valid file names ang, N; and Ng are, respectively, file names of
length six, seven, and eight, then by the sum rule

N = Ng + N7 + Ng.

Let us first estimatéVs. We compute it in an indirect way using the multiplication rule together with
the sum rule. We first estimate the number of file names of length six without the constraint that there
must be at least one digit. By the multiplication rule there(@fe+ 10)% = 36 file names. Now the
number of file names that consistsanfly letters (no digits) i€6°. We must subtract these since they

are not allowed. Therefore (by the sum rule)

Ng = 36° — 26% = 1867866560.
In a similar way, we compute

N; = 36" —267,
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Ny = 365 — 265,

so that finally
N = Ng + N7 + Ng = 2684483063360.

The next example illustrates the inclusion-exclusion principle that we already mentioned in Mod-
ule 2: For two sets (not necessary disjoidtand B the following holds

|[AUB| = |A[ +[B| - |[AN B| (1)

since in|A| + |B| the part A N B is counted twice, therefore we must subtract it.

Example & How many bit strings of length eight start withor end with two bitsD0?

We consider two tasks. The first one, constructing a string of length eight with the first bit equal
to 1, can be done of” = 128 ways (by the multiplication rule after noticing that the first bit is set to
be 1 and there are only seven “free” stages). In the second task we count the number of strings that
end with00. Again, by the multiplication rule there a8 = 32 strings (since the last two stages are
set to bed0). By adding these two numbers we would over count since both cases occur twice in this
sum. To get it right, let us estimate the number of strings that startslvatid end with00. By the
multiplication rule we hav@® such strings (since three stages are set to be fixed). Therefore, by the
inclusion-exclusion rule we find

27 + 26 — 25 = 160,

that is, it is the sum of strings with the first bit setit@nd the the last two bits set 60, minus the
number of strings with the first first bitand the last bit§0.



Theme 2: The Pigeonhole Principle

Surprisingly many complex problems in combinatorics can be solved by an easy to state and prove
principle called thepigeonhole principle

The Pigeonhole Principle If k£ + 1 objects are placed intb boxes, then there is at least
one box containing two or more of the objects.

This principle is easy to prove by contradiction. Assume to the contrary that all boxes have at
most one object. Since there drdoxes, we will end up with at mogt objects, which contradicts
the assumption stating that we hdve- 1 objects.

Example 7. Consider a set df7 English words. There must be at least two words that begin with the
same letter, since there are oRlyletters in the English alphabet.

In some applications the following generalization of the pigeonhole principle is useful.

Theorem 1[Generalized Pigeonhole Principlg If N objects are placed inté boxes, then there is
at least one box containing at lealsN/k| objects, wheréz] is the smallest integer larger or equal
toz.

Proof. Let us assume contrary that all boxes contain at Mo&tk] — 1 objects. Then the total
number of objects is at most

E([N/k]-1) <k(N/E+1—-1)=N
which is impossible.

Example 8 Consider a group of00 students. Among them there are at least 9 who were born in the
same month. Indeed, by the generalized pigeonhole principle With 100 andk = 12 we have at
least[100/12] people born in the same month.

Finally, we discuss two more sophisticated examples of the pigeonhole principle.

Lemma 1. Among any: + 1 positive integers not exceedig there must be an integer that divides
one of the other integers from the setof- 1 positive integers.

Proof. Let then + 1 integers beyy, ..., a,+1. We represent every such an integer as
aj=2%q;, j=1,2,...,n+1

wherek; is a nonnegative integer agglis an odd integer. For example dif = 20, then we can write
as20 = 22 - 5, while a; =15 = 20 . 15. Certainly, the integersg;, . . ., ¢,.1 are odd integers smaller
than2n. Since there are only odd integers smaller tham, it follows from the pigeonhole principle
that two of the odd integers amongt 1 must be the same. Assume that= ¢; := ¢ for i not equal
to 7. Then

ki

a; = 2%q, aj = 2kﬂ'q.



Clearly, eithera; dividesa; or vice versa since twp'i /28 = 2k =k The proof is completed.

Exercise 6B Justify that in any set af + 1 positive integers not exceedig there must be two that
are relative prime (i.e., the greatest common divisor of both numbers is one).

Example 9 Assume that in a group of six people, each pair of individuals consists of two friends or
two enemies. We will show that there are either three mutual friends or three mutual enemies in the
group.

Indeed, let the group be labeled 4sB,C, D, EF and F. Consider now the person labeled as
A. The remaining five people can be grouped into friends or enemids 6ff the five other people
(other thanA), there are either three or more who are friendg pbr three or more than are enemies
of A. Indeed, when a set &fobjects (persons) is divided into two groups (friends or enemies) there
are at leasf5/2] = 3 elements in one of these groups. Consider first the group of friends Gall
them B, C or D. If any of these three individuals are friends, then these twoAfarm the group
of three mutual friends. Otherwis®, C' and D form a set of three mutual enemies. The proof in the
case of three enemies dfproceeds in a similar manner.

This last example is an instance of an important part of combinatorics ¢adietsey theory In
general, Ramsey theory deals with the distribution of subsets of elements of sets.



Theme 3: Permutations and Combinations

In computer science one often needs to know in how many ways one can arrange certain objects
(e.g., how many inputs are there consisting of ten digits?). To answer these questions, we study here
permutations and combinations — the simplest arrangements of objects.

A permutation of a set of distinct objects ian ordered arrangementsf these objects. An
ordered arrangements oklements of a set is called arpermutation.

Example 10 Let S = {a,b,c}. Thenabe, ach, bac, bea, cab, cba are permutations of, while ab,
ba, ac, ca, bc andcb are2-permutations of.

It is not difficult to compute the number efpermutations. Lef(n,r) be the number of-
permutations of a set with distinct elements. Observe that we can choose the first element in the
r-permutation im ways, the second element(in — 1) (since after selecting the first element we can
not use it again in the second choice), and so on, finally choosingtthelement im — r + 1 ways.
Therefore, by the multiplication rule the total number-gbermutations is

r—1

P(n,r)=n(n—1)-(n—2)--(n—r+1) =[] (n—1). 2)

1=0

Above we use the product notatien - as - - - a, = [[;_, a; introduced in Module 2.

Example 12 On how many ways one can construct a three digits number with all different digits (e.g.,
142 is a legitimate digit bu223 is not)? We recognize this problem a8-permutation, therefore the
answer isl0 -9 - 8 = 720.

In anr-permutation the order of elements is important (exgis different tharba), while in the
r-combination is not. Anr-combination of elements of a set is anorderedselection of- elements
from the set (i.e.ab andba are the sam@-combinations). The number efcombinations of a set
with n distinct elements is denoted I6)(n, r) or C;,. Thus the number af-permutations is equal to
the number of--combinations times numbers of permutations (within each combinations), that is,

P(n,r) =C(n,r) !

since every-combination leads te! = P(r,r) r-permutations.

Example 12 LetS = {a, b, c}. Consider firsR-combinations. We have the followirlgcombinations:

{a,b},{a,c}, {b,c},

that generate the following sipermutations

(a,b), (b,a), (a,c),(c,a), (b,c),(c,b).



From the previous formula we immediately obtain

P(n,r) n(n—-1)(n-2)---(n—r+1)

Clnr) = P(r,r) r!
_ nn—1)n-2)---(n—r+1)(n—r)!
rli(n —r)!
n!

The first line above follows from the definition pfpermutations, while in the second line we multiply
and divide by(n — r)!, and finally in the third line we observed that

n!=n(n-1)(n—2)--- (n—r+1)(n—r)!' = n(n-1)(n—-2)--- (n—r+1)-(n—r)-(n—r—1)---2-1.

In summary, we prove
C(n,r) = ————. (3)

Exercise 6C In how many ways one can create a four-letter word with all distinct letters (we assume
there are26 letters)?

An astute reader should notice tla¢n, r) was already introduced in Module 4 where we wrote

it as:
n
C) :=C(n,r):= .
(n,r) ( L )

Hereafter, we shall write”'(n,r) for these numbers that are also calleidomial coefficients or
Newton’s coefficients In Module 4 we proved several properties of these coefficients algebraically.
We now re-prove them using counting or combinatorial arguments.

In particular, in Lemma 2 of Module 2 we proved algebraically that

C(n,r)=C(n—1,r)+C(n—1,r —1). 4)

We now re-establish it using counting (combinatorial) arguments. In order to obtato@hbinations
(= C(n,r)) we pick up one element from the set and put it aside. Call iNow we build allr-
combinations from the s&t — {z} of sizen — 1. Clearly, we have&’(n — 1, r) suchr-combinations.
Let us now constructr — 1)-combinations from the sef — {z}. We haveC(n — 1,7 — 1) such
combinations. After adding the elemento such combinations we still hav@(n — 1,7 — 1) r-
combinations, each different than in the first experiment (i.e., without ugingut combining these
two r-combinations we obtaiall possibler-combinations which is equal ©6(n, ). We proved (4).
In a similar fashion we can prove another identity established in Module 4, namely,

C(n,r)=C(n,n —r).
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Indeed, there is one-to-one correspondence betwesmbinations andn — r)-combinations: if
{a,b,...} is anr combination, then the correspondifwg — r)-combination isS — {a, b, ...}.
In Module 4 we also proved that

n

> C(n, k) =2".
k=0
We can re-establish it using counting arguments. Consider & egtardinalityn. From Module 2
we know that there arg” subsets oF. The set of all subsets can be partitioned into subsets of size
which are in fact-combinations. There a@(n,r) combinations and they must sum to all subsets,
which is2™.
Finally, we prove one new identity known ®andermonde’s Identity:

C(m +mn,r) =Y C(m,r —k)C(n,k).
k=0

(In words, the number af-combinations among: + n elements is the sum of productsiotombi-
nations out of» andr — k-combinations out ofn.) We use a counting argument. Suppose that there
arem items in one set and items in another set. The total number of ways to setétgms from

the union of these sets (m + n,r). Another way of doing the same, is to selédtems from the
second set (we can do it ifi(n, k) ways) andr — k items from the first set (which can be done on
C(m,r — k) ways), where) < k < r. By the multiplication rule these two actions can be done in
C(m,r — k)C(n, k) ways, hence the total number of ways to picklements is the sum over &i|

and the Vandermonde identity is proved.



Theme 4: Generalized Permutations and Combinations

In many counting problems, elements may be used repeatedly. For example {djdits. ., 9}

may be used more than once to form a valid number; letters can be repeatedly used in words (e.g.,
SUCCESS. In the previous section we assumed that the objects were distinguishable, while in this
section we consider the case when some elements are indistinguishable. Finally, we also explain how
to count the ways to place distinguishable elements in boxes (e.g., in how many ways poker hands
can be dealt to four players).

Permutations with Repetition

The aren! permutations of, distinct (distinguishable) elements. But in how many ways we can
obtainr-permutations when objects (elements) can be repeated?

Example 13 How many words o’ characters can be created fr@English letters? Observe that
we do allow repetitions, so thauccEessis a valid word. By the multiplication rule we hav&®
words but there are onB6 - 25 - 24 - 23 - 22 - 21 - 20 words with all different letters.

We can formulate the following general result. Consicdgrermutations of a set with elements
when repetition is allowedl'he number of-permutations of such a set (with repetitions allowed) is

n’.

Indeed, we have stages witth outcomes in each stage, hence by the multiplication rule the number
of outcomes is".

Combinations with Repetitions

How many ways one can pick up (unordereddlements from a set of elements when repetitions
are allowed? This is a harder problem, and we start with an example.

Example 14 In a bag there are money bills of the following denominations:
$1,$2, 85, $10, $20, $50, and$100.

We are asked to selefivebills. In how many ways we can do it assuming that the order in which the
bills are chosen does not matter and there are at least five bills of each types?

It is not C'(7,5) since we can pick up five bills of the same denomination. To solve this problem
we apply an old combinatorial trick: We build an auxiliary device, that of a cash box with seven
compartments, each one holding one type of bill. The bins containing the bills are separated by six
dividers. Observe that selecting five bills corresponds to placing five markers (denoted usually as a
starx) on the compartments holding the bills. For example, the following symbolic figure:



s | [ | o]

corresponds to the case when énebill, three $5 bills, and one$20 bill are selected.

Therefore, the number of ways to select five bills corresponds to the number of ways to arrange
six bars (dividers) and five stars (markers). In other words, this amounts to selecting the position of
the five stars from 1(= 6 + 5) positions. But this can be done in

11!
ways. This is the number of selecting five bills from a bag with seven types of bills.

In general, let us seleetcombinations from a set of elements when repetition of elements is
allowed. We represent this problem as a liskhof 1 bars and- stars. These — 1 bars are used to
markn cells (bins). We assume that tith cell contains a star whenever thk element occurs in the
combination. For instance,tacombination of a set of four elements has three bars and six stars. In
particular,

**‘ ‘*‘***

corresponds to the combination containing exactly two of the first elements, none of the second ele-
ment, one of the third element, and three of the fourth element of the set. In general, each different
list containingn — 1 bars and- stars corresponds to ancombination of the set with elements,

when repetition is allowed. But the number of such lists is

Cn—14mrr) ©)

which is also the number efcombinations from the set af elements when repetitions is allowed.

Example 15 How many solutions does the following equation
T1+xo+ 23+ 714 =15

have, wherex, x5, z3 andz4 are nonnegative integers?

Here is a solution to this problem. We assume we have four types labeled, z5 and z4.
There arel5 items or units (since we are looking for an integer solution). Every time an item (unit)
is selected it adds one to the type it picked it up. Observe that a solution corresponds to a way of
selectingl5 items (units) from a set of four elements. Therefore, it is equabtoombinations with
repetition allowed from a set with four elements. Thus by (5) we have

18-17-16
C(4+15—-1,15) = C(18,15) = C(18,3) = —%3 - 816

solutions. (We recall that'(n, k) = C(n,n — k).)
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Permutations of Sets with Indistinguishable Objects

When counting some care must be exercised to avoid counting indistinguishable objects more than
once.

Example 18 How many different strings can be made by reordering the letters of the word TOT-
TOS?

If all letters in the word TOTTOS would be different, then the answer would!t®it then we
would over count. To avoid it, we observe that theretgpesitions. The lettef’ can be placed among
these six positions i'(6, 3) times, while the lette) can be placed in the remaining positions in
C'(3,2) ways; finally.S can be put inC(1, 1) ways. By the multiplication rule we have

6! 31 1!
6!
T
orderings, where we used the formula
n!
G k) = T =

learned before.

We can obtain the same result in a different way. Observe that thef®@ pegmutations of six
letters, however, there aB permutations in which permuting the lettErresult in the same word;
there2! permutations of lette@ that results in the same word. In summary, the number of different

words is
6!

312111

as before.

Let us now generalized the above example. Assume therne @gects withn, indistinguishable
objects of type 1ns objects of type 2, .., n, indistinguishable objects of type The number of

different permutations are
n!
175! 1 6)
nN1ng--+-Nk:

There are many ways to prove this result. For example, we know that#thg@ermutations, but
many of these permutations are the same since we halasses of indistinguishable objects. How
many permutations are the same duertdndistinguishable objects. Obviously, there aré such
permutations of type Ino! of type 2,..., ni! of typek. Thus the result follows.

Balls-and-Urns Model

Finally, we consider throwing distinguishable balls (objects) infodistinguishable urns (boxes).
The combinatorial model will answer such questions as in how many ways five cards from a deck of
52 cards can be distributed to four players.

11



Consider the following example. There ateballs, and three boxes. We want to know in how
many ways we can throw theseballs such that there arg balls in the first boxy. in the second
box, andngs balls in the third box. Of course, there arén, n,) of ways puttingn; balls from a set
of n balls into the first box. For every such an arrangement, the remaining; balls can be thrown
in C(n —nq1,n9) ways into the second box so that it containsballs. Finally, the last box will have
ng balls onC(n — ny — n9, ng) ways. Therefore, by the multiplication rule we have

n! (n —mnq)! (n —ny —ng)!

Cn,m)C(n = n1,n9)Cn —ny = nz,nz) = nil(n —ni)!nal(n —ny —ng)! nz(n —ny — ny — ng)!

n!
’I’Ll!nzlng! '

In general, letr distinguishable objects be thrown intaistinguishable boxes with; objects in

theisth box,: = 1,2, ..., k. Then, generalizing our example, we obtain
n! 7
nylng! - nilin —ny —ng — ... — my)! (7)

ways to distribute these objects among: boxes.

Example 17 In how many ways we can distribute handssatards to each of four players from the
deck of52 cards?
We may represent this problem as throwiigyobjects into four boxes each containibgards.

Thus the solution is
52!

51515151321
since every hand hdscards, and after the distribution ¢f 5 cards there remais cards.
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Theme 5: Linear Recurrences

Consider the following problem, which was originally posed by Leonardo di Pisa, also known as
Fibonacci, in the thirteenth century in his bobleber abaci A young pair of rabbits (one of each

sex) is placed on an island. A pair of rabbits does not reproduce until they are 2 months old. After
they are 2 month old, each pair of rabbits produces another pair each month. Bgribéeenumber

of pairs of rabbits aften months, e.g.Fy = F», = 1, F3 = 2, F, = 3, etc. (At the end of the first

and second month there is only one pair, but at the end of the third, there is another one and at the
end of the fourth once again, an additional one.) To find the number of pairs:aftenths we just

have to add the number of rabbits in the previous moath,;, and the number of newborn pairs,
which equalsF;, _», since each newborn pair comes from a pair at least 2 month old. Consequently,
the sequence;, satisfies the recurrence relation

Fn: n71+Fn72

for n > 3 together with the initial conditiod; = 1 and F, = 2. Of course, this recurrence relation
and the initial condition uniquely determines the sequehge It should be mentioned that these
numbers

1,1,2,3,5,8,13,21,34,55,89,. ..

are calledibonacci numbersSometimes the initial conditions for the Fibonacci numberdgre 0
andF; = 1 (this has some theoretical advantages) but this causes just a shift of 1 in the index.

Internet Exercise: Find on the internet two new applications of Fibonacci numbers and post a para-
graph to the forum what you found out.

The Fibonacci numbers occur in various counting problems.

Example 18 Let a,, denote the number of binary strings of lengtlwith the property that there are
no two subsequent ones:

ap =2: 0,1
as =3 00,01, 10
a3 =95: 000, 010,001,100, 101

Again you can find a recurrence relation tgy. If the last bit of a sequence of length(of that kind)
is 0, then there are exactly, ; possible ways for the firsi — 1 bits. However, if the last bit is 1
then the(n — 1)st bit has to be 0 and, hence, there are exagtly, possible ways for the first — 2

This material is more advanced and the student should take time to study it carefully.
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letters. (For example, there aig = 5 strings among which, = 3 ends with0 anda; = 2 with 1.)
Consequently one obtains

Qp = 0p_1+ Gp_2

for n > 3. This is the same recurrence relation as for the Fibonacci numbers. Only the initial
condition is different.a; = F3 anday; = Fy. This implies a shift by two, that is,

an = Fpio

foralln > 1.

More generally we define:

A linear homogeneous recurrence relation of degkewith constant coefficients a
recurrence relation of the form

Gpn = ClQp—1 + C2Qp—2 + -+ + Cpln_k,
wherecy, ca, . . ., ¢ are real numbers, ang # 0.

The recurrence relation Igear since the right-hand side is a sum of multiples of terups- 7.
The recurrence relation lfFomogeneousince no terms occur that are not multiples of éhe. The
coefficientsc; are allconstant rather than functions that dependenThedegrees £ because,, is
expressed in terms of the previokiserms of the sequence.

It is clear (by induction) that a sequence satisfying the recurrence relation in the definition is
uniquely determined by its recurrence relation andktligtial conditions

ap = Cp,a1 = Cy,... a1 = Ck_1.

That is, once we set the firkt— 1 values, then the next valueg for n > &k can be computed from
the recurrence.

Example 19 The recurrence relatiom, = v/2 a,,_; is a linear homogeneous recurrence relation of
degree one. The recurrence relatign= a, 1 + a,,_2 iS a linear homogeneous recurrence relation
of degree two. The recurrence relatiop = a,,_5 is a linear homogeneous recurrence relation of
degree five.

Example 2Q The recurrence relation, = a,, 1 + a%_Q is not linear because there is ten%l_z.
The recurrence relatiom, = 2a,,_1 + 1 is linear but not homogeneous because of the tefwhich

is not a multiply ofa,). The recurrence relatiom, = na,_; is linear but does not have constant
coefficients.

Exercise 60 Is the following recurrence
anp = 6ap—1+ (N —2)ap_o+5

14



linear, homogeneous, with constant coefficients?

The basic approach for solving linear homogeneous recurrence relations is to look for solutions
of the form

ap = Irna

wherer is a constant. Note that, = " is a solution of the recurrence relatiap = cia,—1 +
CoGn_o + -+ cpay, g if and only if

= o™ 2 4 ™R

When both sides of this equation are dividedy* and the right-hand side is subtracted from the
left, we obtain the equivalent equation

rk — clrk_l — CQ’f'k_Z — 1T —c = 0.

Consequently, the sequengg = r" is a solution if and only if- is a solution of this last equation,
which is called theharacteristic equationof the recurrence relation. The solutions of this equation
are called theharacteristic rootof the recurrence relation. As we will see, these characteristic roots
can be used to give an explicit formula for all solutions of the recurrence relation.

We will consider in details the case of degkee- 2. The general case is similar but more involved
and thus we will not stated. Fér= 2 the characteristic equation is just a quadratic equation of the
form r? — ¢;r — co = 0. We recall that the quadratic equatioh— c;r — ¢, = 0 has two solutions

RO/
1,2 = 3
if c% +4co > 0;if c% + 4¢y = 0, then the equation has one solutian= ¢; /2; otherwise there is no
real solution to this equation.
First, we consider the case when there are two distinct characteristic roots.

Theorem 2 Letc; andc, be real numbers. Suppose thdt— c;r — ¢, = 0 has two distinct roots;
andrsy. Then the sequeneg, is a solution of the recurrence relation
Gp = ClOp—1 + C20p—2
if and only if
Qp = al'rﬂlz + 012’)”3, n Z 07 (8)
wherea; anday are constants.

Proof. We must do two things to prove the theorem. First, it must be shown thagifidr, are the
roots of the characteristic equation, andandca; are constants, then the sequeage= a;r} +asry
is a solution of the recurrence relation. Second, it must be shown that if the segyea@esolution,
thena,, = aqr] + aory for some constants; andas.
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Now we will show that ifa,, = a1 + aory, then the sequenes, is a solution of the recurrence
equation. We have

n—1 n—1 n—2 n—2
c1ap-1+c20n2 = cilair! " +agry ) +ca(oqr] “+ agry )

2 2
= a1y “(er1 +c2) + aorh “(cra + c2)
= oyr! + aory

= Gp.

where the third lines is a consequence of the fact that sine@dr, are roots of-> — ¢;r — ¢y = 0,
thenr? = ¢ir1 + co andr2 = ¢ + co. This shows that the sequenegwith a,, = a7} + aorll is
a solution of the recurrence relation.

To show that every solution,, of the recurrence relatiom, = c¢ia, 1 + c2a,_o is of the form
an = air? + agry for some constants; andasy, suppose that, is a solution of the recurrence
relation, and the initial conditions atg = Cy anda; = C. It will be shown that there are constants
a; anday so that the sequeneg, with a,, = a17] + aory satisfies the same initial conditions. This
requires that

ap = Cp = oy + az,

a) = Cl = 1T + aoT9.

We can solve these two equations fgrandas and get

C1 — Cors
o) = —————
T —1r2
and
Cor1 — C
Qg = )
r —T9

where these expressions depend on the factrthed r. (Whenr; = r, this theorem is not true.)
Hence, with these values far; andasg, the sequence,, and the sequenae; r} + aqry satisfy the
two initial conditionsay = Cy anda; = C;. Since the recurrence relation and these initial conditions
uniquely determine the sequence, it follows that= a7 + aary.

Example 21 We derive an explicit formula for the sequence of Fibonacci numbgdefined by the
recurrence relatiodr,, = F,,_1 + F,,_ with initial conditionsFy = 0 andF} = 1.
The characteristic equation of the Fibonacci recurreneé isr — 1 = 0. Its solution is

1+VIF4d 1+45 _1-+5
- 2 2 2

Therefore, from (8) it follows that the Fibonacci numbers are given by

(57 (15
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for some constants; andas. The initial conditionsFy = 0 and F}, = 1 can be used to find these
constants. We have

Fy = oa1+ay=0,

Fi = m <1+\/g>+a2 (1_\/5> =1.
2 2

The solution of these simultaneous equations is given by

1 1

o = ——= g = ———.
"5 NV

Consequently, the Fibonacci numbers can be explicitly expressed as
oL (151 (1B
"5 2 NG 2

Now we discuss the case when the characteristic equation has only one rooet(e.gr, + 1 =
(r — 1)2 = 0). We shall omit the proof.

Theorem 3 Letc¢; andc; real numbers. Suppose that — ¢, — ¢ = 0 has only one root,. Then
the sequence,, is a solution of the recurrence relatiar), = cia,_1 + c2a,_o if and only if

ap = air( + agnry

(for n > 0), wherea; and ay are constants.

Example 22 What is the solution of the following recurrence relation
ap = 6a,_1 — 9a,_9

with initial conditionsag = 1 anda; = 6?
The only root ofr? — 6r + 9 = (r — 3)2 = 0isr = 3. Hence, the solution to this recurrence
relation is

a, = 13" + agn3”
for some constants; andas. Using the initial conditions, it follows that
ap = 1= a,

a] = 6 :3011 +3012.

Solving these two equations shows that = 1 anday = 1. Consequently, the solution to this
recurrence relation is
ap =3"4+n3"=3"(n+1).
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