
Module 6: Basic Counting

Theme 1: Basic Counting Principle

We start with two basic counting principles, namely, thesum rule and themultiplication rule .

The Sum Rule: If there aren1 different objects in the first setA1, n2 objects in the

second setA2, : : :, nm objects in themth setAm, and if the setsA1; A2; : : : ; Am are

disjoint (i.e.,Ai \ Aj = ; for any1 � i < j � m), then the total number of ways to

select an object from one of the set is

n1 + n2 + � � �+ nm;

in other words,

jA1 [A2 [ : : : [Amj = jA1j+ jA2j+ � � �+ jAmj:

The Multiplication Rule : Suppose a procedure can be broken intom successive (or-

dered) stages, withn1 outcomes in the first stage,n2 outcomes in the second stage,: : :,

nm outcomes in themth stage. If the number of outcomes at each stage is independent

of the choices in previous stages, and if the composite outcomes are all distinct, then the

total procedure has

n1 � n2 � � �nm
different composite outcomes. Sometimes this rule can be phrased in terms of sets

A1; : : : ; Am as follows

jA1 �A2 � � � � �Amj = jA1j � jA2j � � � jAmj:

Example 1: There are40 students in an algebra class and40 students in a geometry class. How many

different students are in both classes combined?

This problem is not well formulated and cannot be answered unless we are told how many students

are taking both algebra and geometry. If there is not student taking both algebra and geometry, then

by the sum rule the answer is40 + 40. But let us assume that there are10 students taking both

algebra and geometry. Then there are30 studentsonly in algebra,30 studentsonly in geometry, and

10 students inbothalgebra and geometry. Therefore, by the sum rule the total number of students is

30 + 30 + 10 = 70.

Example 2: There are boxes in a postal office labeled with an English letter (out of26 English char-

acters) and a positive integer not exceeding80. How many boxes with different labels are possible?
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The procedure of labeling boxes consists of two successive stages. In the first stage we assign

26 different English letters, and in the the second stage we assign80 natural numbers (the second

stage doesnot depend on the outcome of the first stage). Thus by the multiplication rule we have

26 � 80 = 2080 different labels.

Example 3: How many different bit strings are there of length five?

We have here a procedure that assigns two values (i.e., zero or one) in five stages. Therefore, by

the multiplication rule we have25 = 32 different strings.

Exercise 6A: How many binary strings of length5 are there that start with a1 and end with a0?

Example 4: Counting Functions. Let us consider functions from a set withm elements to a set with

n elements. How many such functions are there?

We can view this as a procedure of successivem stages withn outcomes in each stage, where

the outcome of the next stage does not depend on the outcomes of the previous stages. By the

multiplication rule there aren � n � � �n = nm functions.

But, let us now count the number ofone-to-onefunctions from a set ofm elements to the set

of n elements. Again, we deal here with a procedure ofm successive stages. In the first stage we

can assignn values. But in the second stage we can only assignn � 1 values since for a one-to-

one function we are not allowed to select the value used before. In general, in thekth stage we

have onlyn � k + 1 elements at our disposal. Thus by (a generalized) multiplication rule we have

n(n� 1) � (n�m+ 1) one-to-one functions.

Let us now consider some more sophisticated counting problems in which one must use a mixture

of the sum and multiplication rules.

Example 5: A valid file name must be six to eight characters long and each name must have at least

one digit. How many file names can there be?

If N is the total number of valid file names andN6, N7 andN8 are, respectively, file names of

length six, seven, and eight, then by the sum rule

N = N6 +N7 +N8:

Let us first estimateN6. We compute it in an indirect way using the multiplication rule together with

the sum rule. We first estimate the number of file names of length six without the constraint that there

must be at least one digit. By the multiplication rule there are(26 + 10)6 = 366 file names. Now the

number of file names that consists ofonly letters (no digits) is266. We must subtract these since they

are not allowed. Therefore (by the sum rule)

N6 = 366 � 266 = 1867866560:

In a similar way, we compute

N7 = 367 � 267;
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N8 = 368 � 268;

so that finally

N = N6 +N7 +N8 = 2684483063360:

The next example illustrates the inclusion-exclusion principle that we already mentioned in Mod-

ule 2: For two sets (not necessary disjoint)A andB the following holds

jA [Bj = jAj+ jBj � jA \Bj (1)

since injAj+ jBj the partjA \Bj is counted twice, therefore we must subtract it.

Example 6: How many bit strings of length eight start with1 or end with two bits00?

We consider two tasks. The first one, constructing a string of length eight with the first bit equal

to 1, can be done on27 = 128 ways (by the multiplication rule after noticing that the first bit is set to

be1 and there are only seven “free” stages). In the second task we count the number of strings that

end with00. Again, by the multiplication rule there are26 = 32 strings (since the last two stages are

set to be00). By adding these two numbers we would over count since both cases occur twice in this

sum. To get it right, let us estimate the number of strings that starts with1 and end with00. By the

multiplication rule we have25 such strings (since three stages are set to be fixed). Therefore, by the

inclusion-exclusion rule we find

27 + 26 � 25 = 160;

that is, it is the sum of strings with the first bit set to1 and the the last two bits set to00, minus the

number of strings with the first first bit1 and the last bits00.
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Theme 2: The Pigeonhole Principle

Surprisingly many complex problems in combinatorics can be solved by an easy to state and prove

principle called thepigeonhole principle.

The Pigeonhole Principle. If k+1 objects are placed intok boxes, then there is at least

one box containing two or more of the objects.

This principle is easy to prove by contradiction. Assume to the contrary that all boxes have at

most one object. Since there arek boxes, we will end up with at mostk objects, which contradicts

the assumption stating that we havek + 1 objects.

Example 7: Consider a set of27 English words. There must be at least two words that begin with the

same letter, since there are only26 letters in the English alphabet.

In some applications the following generalization of the pigeonhole principle is useful.

Theorem 1[Generalized Pigeonhole Principle] If N objects are placed intok boxes, then there is

at least one box containing at leastdN=ke objects, wheredxe is the smallest integer larger or equal

to x.

Proof. Let us assume contrary that all boxes contain at mostdN=ke � 1 objects. Then the total

number of objects is at most

k (dN=ke � 1) < k (N=k + 1� 1) = N

which is impossible.

Example 8: Consider a group of100 students. Among them there are at least 9 who were born in the

same month. Indeed, by the generalized pigeonhole principle withN = 100 andk = 12 we have at

leastd100=12e people born in the same month.

Finally, we discuss two more sophisticated examples of the pigeonhole principle.

Lemma 1. Among anyn+ 1 positive integers not exceeding2n there must be an integer that divides

one of the other integers from the set ofn+ 1 positive integers.

Proof. Let then+ 1 integers bea1; : : : ; an+1. We represent every such an integer as

aj = 2kjqj; j = 1; 2; : : : ; n+ 1

wherekj is a nonnegative integer andqj is an odd integer. For example, ifaj = 20, then we can write

as20 = 22 � 5, while aj = 15 = 20 � 15. Certainly, the integersq1; : : : ; qn+1 are odd integers smaller

than2n. Since there are onlyn odd integers smaller than2n, it follows from the pigeonhole principle

that two of the odd integers amongn+1 must be the same. Assume thatqi = qj := q for i not equal

to j. Then

ai = 2kiq; aj = 2kjq:
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Clearly, eitheraj dividesai or vice versa since two2ki=2kj = 2ki�kj . The proof is completed.

Exercise 6B: Justify that in any set ofn+1 positive integers not exceeding2n there must be two that

are relative prime (i.e., the greatest common divisor of both numbers is one).

Example 9: Assume that in a group of six people, each pair of individuals consists of two friends or

two enemies. We will show that there are either three mutual friends or three mutual enemies in the

group.

Indeed, let the group be labeled asA;B;C;D;E andF . Consider now the person labeled as

A. The remaining five people can be grouped into friends or enemies ofA. Of the five other people

(other thanA), there are either three or more who are friends ofA, or three or more than are enemies

of A. Indeed, when a set of5 objects (persons) is divided into two groups (friends or enemies) there

are at leastd5=2e = 3 elements in one of these groups. Consider first the group of friends ofA. Call

themB;C or D. If any of these three individuals are friends, then these two andA form the group

of three mutual friends. Otherwise,B,C andD form a set of three mutual enemies. The proof in the

case of three enemies ofA proceeds in a similar manner.

This last example is an instance of an important part of combinatorics calledRamsey theory. In

general, Ramsey theory deals with the distribution of subsets of elements of sets.
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Theme 3: Permutations and Combinations

In computer science one often needs to know in how many ways one can arrange certain objects

(e.g., how many inputs are there consisting of ten digits?). To answer these questions, we study here

permutations and combinations – the simplest arrangements of objects.

A permutation of a set of distinct objects isan ordered arrangementsof these objects. An

ordered arrangements ofr elements of a set is called anr-permutation.

Example 10: Let S = fa; b; cg. Thenabc, acb, bac, bca, cab, cba are permutations ofS, while ab,

ba, ac, ca, bc andcb are2-permutations ofS.

It is not difficult to compute the number ofr-permutations. LetP (n; r) be the number ofr-

permutations of a set withn distinct elements. Observe that we can choose the first element in the

r-permutation inn ways, the second element in(n� 1) (since after selecting the first element we can

not use it again in the second choice), and so on, finally choosing ther-th element inn� r+1 ways.

Therefore, by the multiplication rule the total number ofr-permutations is

P (n; r) = n(n� 1) � (n� 2) � � � (n� r + 1) =

r�1Y
i=0

(n� i): (2)

Above we use the product notationa1 � a2 � � � an =
Qn

i=1 ai introduced in Module 2.

Example 11: On how many ways one can construct a three digits number with all different digits (e.g.,

142 is a legitimate digit but223 is not)? We recognize this problem as a3-permutation, therefore the

answer is10 � 9 � 8 = 720.

In anr-permutation the order of elements is important (e.g.,ab is different thanba), while in the

r-combination is not. Anr-combination of elements of a set is anunorderedselection ofr elements

from the set (i.e.,ab andba are the same2-combinations). The number ofr-combinations of a set

with n distinct elements is denoted byC(n; r) orCr
n. Thus the number ofr-permutations is equal to

the number ofr-combinations times numbers of permutations (within each combinations), that is,

P (n; r) = C(n; r) � r!

since everyr-combination leads tor! = P (r; r) r-permutations.

Example 12: LetS = fa; b; cg. Consider first2-combinations. We have the following2-combinations:

fa; bg; fa; cg; fb; cg;

that generate the following six2-permutations

(a; b); (b; a); (a; c); (c; a); (b; c); (c; b):
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From the previous formula we immediately obtain

C(n; r) =
P (n; r)

P (r; r)
=
n(n� 1)(n� 2) � � � (n� r + 1)

r!

=
n(n� 1)(n� 2) � � � (n� r + 1)(n� r)!

r!(n� r)!

=
n!

r!(n� r)!
:

The first line above follows from the definition ofr-permutations, while in the second line we multiply

and divide by(n� r)!, and finally in the third line we observed that

n! = n(n�1)(n�2) � � � (n�r+1)(n�r)! = n(n�1)(n�2) � � � (n�r+1)�(n�r)�(n�r�1) � � � 2�1:

In summary, we prove

C(n; r) =
n!

r!(n� r)!
: (3)

Exercise 6C: In how many ways one can create a four-letter word with all distinct letters (we assume

there are26 letters)?

An astute reader should notice thatC(n; r) was already introduced in Module 4 where we wrote

it as:

Cr
n := C(n; r) :=

 
n

k

!
:

Hereafter, we shall writeC(n; r) for these numbers that are also calledbinomial coefficients or

Newton’s coefficients. In Module 4 we proved several properties of these coefficients algebraically.

We now re-prove them using counting or combinatorial arguments.

In particular, in Lemma 2 of Module 2 we proved algebraically that

C(n; r) = C(n� 1; r) + C(n� 1; r � 1): (4)

We now re-establish it using counting (combinatorial) arguments. In order to obtain allr-combinations

(= C(n; r)) we pick up one element from the set and put it aside. Call itz. Now we build allr-

combinations from the setS �fzg of sizen� 1. Clearly, we haveC(n� 1; r) suchr-combinations.

Let us now construct(r � 1)-combinations from the setS � fzg. We haveC(n � 1; r � 1) such

combinations. After adding the elementz to such combinations we still haveC(n � 1; r � 1) r-

combinations, each different than in the first experiment (i.e., without usingz). But combining these

two r-combinations we obtainall possibler-combinations which is equal toC(n; r). We proved (4).

In a similar fashion we can prove another identity established in Module 4, namely,

C(n; r) = C(n; n� r):
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Indeed, there is one-to-one correspondence betweenr-combinations and(n � r)-combinations: if

fa; b; : : :g is anr combination, then the corresponding(n� r)-combination isS � fa; b; : : :g.
In Module 4 we also proved that

nX
k=0

C(n; k) = 2n:

We can re-establish it using counting arguments. Consider a setS of cardinalityn. From Module 2

we know that there are2n subsets ofS. The set of all subsets can be partitioned into subsets of sizer,

which are in factr-combinations. There areC(n; r) combinations and they must sum to all subsets,

which is2n.

Finally, we prove one new identity known asVandermonde’s Identity:

C(m+ n; r) =

rX
k=0

C(m; r � k)C(n; k):

(In words, the number ofr-combinations amongm+ n elements is the sum of products ofk combi-

nations out ofn andr � k-combinations out ofm.) We use a counting argument. Suppose that there

arem items in one set andn items in another set. The total number of ways to selectr items from

the union of these sets isC(m+ n; r). Another way of doing the same, is to selectk items from the

second set (we can do it inC(n; k) ways) andr � k items from the first set (which can be done on

C(m; r � k) ways), where0 � k � r. By the multiplication rule these two actions can be done in

C(m; r � k)C(n; k) ways, hence the total number of ways to pickr elements is the sum over allk,

and the Vandermonde identity is proved.
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Theme 4: Generalized Permutations and Combinations

In many counting problems, elements may be used repeatedly. For example, digitsf0; 1; : : : ; 9g
may be used more than once to form a valid number; letters can be repeatedly used in words (e.g.,

SUCCESS). In the previous section we assumed that the objects were distinguishable, while in this

section we consider the case when some elements are indistinguishable. Finally, we also explain how

to count the ways to place distinguishable elements in boxes (e.g., in how many ways poker hands

can be dealt to four players).

Permutations with Repetition

The aren! permutations ofn distinct (distinguishable) elements. But in how many ways we can

obtainr-permutations when objects (elements) can be repeated?

Example 13: How many words of7 characters can be created from26 English letters? Observe that

we do allow repetitions, so thatSUCCESSis a valid word. By the multiplication rule we have726

words but there are only26 � 25 � 24 � 23 � 22 � 21 � 20 words with all different letters.

We can formulate the following general result. Considerr-permutations of a set withn elements

when repetition is allowed.The number ofr-permutations of such a set (with repetitions allowed) is

nr:

Indeed, we haver stages withn outcomes in each stage, hence by the multiplication rule the number

of outcomes isnr.

Combinations with Repetitions

How many ways one can pick up (unordered)r elements from a set ofn elements when repetitions

are allowed? This is a harder problem, and we start with an example.

Example 14: In a bag there are money bills of the following denominations:

$1; $2; $5; $10; $20; $50; and$100:

We are asked to selectfivebills. In how many ways we can do it assuming that the order in which the

bills are chosen does not matter and there are at least five bills of each types?

It is not C(7; 5) since we can pick up five bills of the same denomination. To solve this problem

we apply an old combinatorial trick: We build an auxiliary device, that of a cash box with seven

compartments, each one holding one type of bill. The bins containing the bills are separated by six

dividers. Observe that selecting five bills corresponds to placing five markers (denoted usually as a

star?) on the compartments holding the bills. For example, the following symbolic figure:
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? ? ? ? ?

corresponds to the case when one$1 bill, three$5 bills, and one$20 bill are selected.

Therefore, the number of ways to select five bills corresponds to the number of ways to arrange

six bars (dividers) and five stars (markers). In other words, this amounts to selecting the position of

the five stars from11(= 6 + 5) positions. But this can be done in

C(11; 5) =
11!

5!6!
= 462

ways. This is the number of selecting five bills from a bag with seven types of bills.

In general, let us selectr-combinations from a set ofn elements when repetition of elements is

allowed. We represent this problem as a list ofn � 1 bars andr stars. Thesen� 1 bars are used to

markn cells (bins). We assume that theith cell contains a star whenever theith element occurs in the

combination. For instance, a6-combination of a set of four elements has three bars and six stars. In

particular,

?? ? ? ? ?

corresponds to the combination containing exactly two of the first elements, none of the second ele-

ment, one of the third element, and three of the fourth element of the set. In general, each different

list containingn � 1 bars andr stars corresponds to anr-combination of the set withn elements,

when repetition is allowed. But the number of such lists is

C(n� 1 + r; r) (5)

which is also the number ofr-combinations from the set ofn elements when repetitions is allowed.

Example 15: How many solutions does the following equation

x1 + x2 + x3 + x4 = 15

have, wherex1; x2; x3 andx4 are nonnegative integers?

Here is a solution to this problem. We assume we have four types labeledx1; x2; x3 andx4.

There are15 items or units (since we are looking for an integer solution). Every time an item (unit)

is selected it adds one to the type it picked it up. Observe that a solution corresponds to a way of

selecting15 items (units) from a set of four elements. Therefore, it is equal to15-combinations with

repetition allowed from a set with four elements. Thus by (5) we have

C(4 + 15� 1; 15) = C(18; 15) = C(18; 3) =
18 � 17 � 16

2 � 3 = 816

solutions. (We recall thatC(n; k) = C(n; n� k).)
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Permutations of Sets with Indistinguishable Objects

When counting some care must be exercised to avoid counting indistinguishable objects more than

once.

Example 16: How many different strings can be made by reordering the letters of the word TOT-

TOS?

If all letters in the word TOTTOS would be different, then the answer would be5! but then we

would over count. To avoid it, we observe that there are6 positions. The letterT can be placed among

these six positions inC(6; 3) times, while the letterO can be placed in the remaining positions in

C(3; 2) ways; finallyS can be put inC(1; 1) ways. By the multiplication rule we have

C(6; 3)C(3; 2)C(1; 1) =
6!

3!3!

3!

2!1!

1!

1!0!

=
6!

3!2!1!
= 60

orderings, where we used the formula

C(n; k) =
n!

k!(n� k)!

learned before.

We can obtain the same result in a different way. Observe that there are6! permutations of six

letters, however, there are3! permutations in which permuting the letterT result in the same word;

there2! permutations of letterO that results in the same word. In summary, the number of different

words is
6!

3!2!1!

as before.

Let us now generalized the above example. Assume there aren objects withn1 indistinguishable

objects of type 1,n2 objects of type 2,: : :, nk indistinguishable objects of typek. The number of

different permutations are
n!

n1!n2! � � � nk! : (6)

There are many ways to prove this result. For example, we know that theren! permutations, but

many of these permutations are the same since we havek classes of indistinguishable objects. How

many permutations are the same due ton1 indistinguishable objects. Obviously, there aren1! such

permutations of type 1,n2! of type 2,: : :, nk! of typek. Thus the result follows.

Balls-and-Urns Model

Finally, we consider throwingn distinguishable balls (objects) intok distinguishable urns (boxes).

The combinatorial model will answer such questions as in how many ways five cards from a deck of

52 cards can be distributed to four players.
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Consider the following example. There aren balls, and three boxes. We want to know in how

many ways we can throw thesen balls such that there aren1 balls in the first box,n2 in the second

box, andn3 balls in the third box. Of course, there areC(n; n1) of ways puttingn1 balls from a set

of n balls into the first box. For every such an arrangement, the remainingn�n1 balls can be thrown

in C(n� n1; n2) ways into the second box so that it containsn2 balls. Finally, the last box will have

n3 balls onC(n� n1 � n2; n3) ways. Therefore, by the multiplication rule we have

C(n; n1)C(n� n1; n2)C(n� n1 � n2; n3) =
n!

n1!(n� n1)!

(n� n1)!

n2!(n� n1 � n2)!

(n� n1 � n2)!

n3(n� n1 � n2 � n3)!

=
n!

n1!n2!n3!
:

In general, letn distinguishable objects be thrown intok distinguishable boxes withni objects in

theith box,i = 1; 2; : : : ; k. Then, generalizing our example, we obtain

n!

n1!n2! � � �nk!(n� n1 � n2 � : : :� nk)!
(7)

ways to distribute thesen objects amongk boxes.

Example 17: In how many ways we can distribute hands of5 cards to each of four players from the

deck of52 cards?

We may represent this problem as throwing52 objects into four boxes each containing5 cards.

Thus the solution is
52!

5!5!5!5!32!
:

since every hand has5 cards, and after the distribution of4 � 5 cards there remain32 cards.
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Theme 5: Linear Recurrences1

Consider the following problem, which was originally posed by Leonardo di Pisa, also known as

Fibonacci, in the thirteenth century in his bookLieber abaci. A young pair of rabbits (one of each

sex) is placed on an island. A pair of rabbits does not reproduce until they are 2 months old. After

they are 2 month old, each pair of rabbits produces another pair each month. DenoteFn the number

of pairs of rabbits aftern months, e.g.F1 = F2 = 1, F3 = 2, F4 = 3, etc. (At the end of the first

and second month there is only one pair, but at the end of the third, there is another one and at the

end of the fourth once again, an additional one.) To find the number of pairs aftern months we just

have to add the number of rabbits in the previous month,Fn�1, and the number of newborn pairs,

which equalsFn�2, since each newborn pair comes from a pair at least 2 month old. Consequently,

the sequenceFn satisfies the recurrence relation

Fn = Fn�1 + Fn�2

for n � 3 together with the initial conditionF1 = 1 andF2 = 2. Of course, this recurrence relation

and the initial condition uniquely determines the sequenceFn. It should be mentioned that these

numbers

1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89; : : :

are calledFibonacci numbers. Sometimes the initial conditions for the Fibonacci numbers areF0 = 0

andF1 = 1 (this has some theoretical advantages) but this causes just a shift of 1 in the index.

Internet Exercise: Find on the internet two new applications of Fibonacci numbers and post a para-

graph to the forum what you found out.

The Fibonacci numbers occur in various counting problems.

Example 18: Let an denote the number of binary strings of lengthn with the property that there are

no two subsequent ones:

a1 = 2 : 0; 1

a2 = 3 : 00; 01; 10

a3 = 5 : 000; 010; 001; 100; 101

� � � � � � :

Again you can find a recurrence relation foran. If the last bit of a sequence of lengthn (of that kind)

is 0, then there are exactlyan�1 possible ways for the firstn � 1 bits. However, if the last bit is 1

then the(n� 1)st bit has to be 0 and, hence, there are exactlyan�2 possible ways for the firstn� 2

1This material is more advanced and the student should take time to study it carefully.
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letters. (For example, there area3 = 5 strings among whicha2 = 3 ends with0 anda1 = 2 with 1.)

Consequently one obtains

an = an�1 + an�2

for n � 3. This is the same recurrence relation as for the Fibonacci numbers. Only the initial

condition is different:a1 = F3 anda2 = F4. This implies a shift by two, that is,

an = Fn+2

for all n � 1.

More generally we define:

A linear homogeneous recurrence relation of degreek with constant coefficientsis a

recurrence relation of the form

an = c1an�1 + c2an�2 + � � �+ ckan�k;

wherec1; c2; : : : ; ck are real numbers, andck 6= 0.

The recurrence relation islinear since the right-hand side is a sum of multiples of termsan � i.

The recurrence relation ishomogeneoussince no terms occur that are not multiples of theajs. The

coefficientscj are allconstant, rather than functions that depend onn. Thedegreeis k becausean is

expressed in terms of the previousk terms of the sequence.

It is clear (by induction) that a sequence satisfying the recurrence relation in the definition is

uniquely determined by its recurrence relation and thek initial conditions

a0 = C0; a1 = C1; : : : ; ak�1 = Ck�1:

That is, once we set the firstk � 1 values, then the next valuesan for n > k can be computed from

the recurrence.

Example 19: The recurrence relationan =
p
2 an�1 is a linear homogeneous recurrence relation of

degree one. The recurrence relationan = an�1 + an�2 is a linear homogeneous recurrence relation

of degree two. The recurrence relationan = an�5 is a linear homogeneous recurrence relation of

degree five.

Example 20: The recurrence relationan = an�1 + a2n�2 is not linear because there is terma2n�2.

The recurrence relationan = 2an�1 + 1 is linear but not homogeneous because of the term1 (which

is not a multiply ofan). The recurrence relationan = nan�1 is linear but does not have constant

coefficients.

Exercise 6D: Is the following recurrence

an = 6an�1 + (n� 2)an�2 + 5
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linear, homogeneous, with constant coefficients?

The basic approach for solving linear homogeneous recurrence relations is to look for solutions

of the form

an = rn;

wherer is a constant. Note thatan = rn is a solution of the recurrence relationan = c1an�1 +

c2an�2 + � � � ckan�k if and only if

rn = c1r
n�1 + c2r

n�2 + � � �+ ckr
n�k:

When both sides of this equation are divided byrn�k and the right-hand side is subtracted from the

left, we obtain the equivalent equation

rk � c1r
k�1 � c2r

k�2 � � � � ck�1r � ck = 0:

Consequently, the sequencean = rn is a solution if and only ifr is a solution of this last equation,

which is called thecharacteristic equationof the recurrence relation. The solutions of this equation

are called thecharacteristic rootsof the recurrence relation. As we will see, these characteristic roots

can be used to give an explicit formula for all solutions of the recurrence relation.

We will consider in details the case of degreek = 2. The general case is similar but more involved

and thus we will not stated. Fork = 2 the characteristic equation is just a quadratic equation of the

form r2 � c1r � c2 = 0. We recall that the quadratic equationr2 � c1r � c2 = 0 has two solutions

r1;2 =
c1 �

p
c21 + 4c2
2

if c21 + 4c2 > 0; if c21 + 4c2 = 0, then the equation has one solutionr1 = c1=2; otherwise there is no

real solution to this equation.

First, we consider the case when there are two distinct characteristic roots.

Theorem 2. Letc1 andc2 be real numbers. Suppose thatr2 � c1r� c2 = 0 has two distinct rootsr1

andr2. Then the sequencean is a solution of the recurrence relation

an = c1an�1 + c2an�2

if and only if

an = �1r
n
1 + �2r

n
2 ; n � 0; (8)

where�1 and�2 are constants.

Proof. We must do two things to prove the theorem. First, it must be shown that ifr1 andr2 are the

roots of the characteristic equation, and�1 and�2 are constants, then the sequencean = �1r
n
1 +�2r

n
2

is a solution of the recurrence relation. Second, it must be shown that if the sequencean is a solution,

thenan = �1r
n
1 + �2r

n
2 for some constants�1 and�2.
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Now we will show that ifan = �1r
n
1 +�2r

n
2 , then the sequencean is a solution of the recurrence

equation. We have

c1an�1 + c2an�2 = c1(�1r
n�1
1

+ �2r
n�1
2

) + c2(�1r
n�2
1

+ �2r
n�2
2

)

= �1r
n�2
1 (cr1 + c2) + �2r

n�2
2 (cr2 + c2)

= �1r
n
1 + �2r

n
2

= an:

where the third lines is a consequence of the fact that sincer1 andr2 are roots ofr2 � c1r � c2 = 0,

thenr21 = c1r1 + c2 andr22 = c1r2 + c2. This shows that the sequencean with an = �1r
n
1 + �2r

n
2 is

a solution of the recurrence relation.

To show that every solutionan of the recurrence relationan = c1an�1 + c2an�2 is of the form

an = �1r
n
1 + �2r

n
2 for some constants�1 and�2, suppose thatan is a solution of the recurrence

relation, and the initial conditions area0 = C0 anda1 = C1. It will be shown that there are constants

�1 and�2 so that the sequencean with an = �1r
n
1 + �2r

n
2 satisfies the same initial conditions. This

requires that

a0 = C0 = �1 + �2;

a1 = C1 = �1r1 + �2r2:

We can solve these two equations for�1 and�2 and get

�1 =
C1 � C0r2
r1 � r2

and

�2 =
C0r1 � C1

r1 � r2
;

where these expressions depend on the fact thatr1 6= r2. (Whenr1 = r2 this theorem is not true.)

Hence, with these values for�1 and�2, the sequencean and the sequence�1rn1 + �2r
n
2 satisfy the

two initial conditionsa0 = C0 anda1 = C1. Since the recurrence relation and these initial conditions

uniquely determine the sequence, it follows thatan = �1r
n
1 + �2r

n
2 .

Example 21: We derive an explicit formula for the sequence of Fibonacci numbersFn defined by the

recurrence relationFn = Fn�1 + Fn�2 with initial conditionsF0 = 0 andF1 = 1.

The characteristic equation of the Fibonacci recurrence isr2 � r � 1 = 0. Its solution is

r1 =
1 +

p
1 + 4

2
=

1 +
p
5

2
and r2 =

1�p
5

2
:

Therefore, from (8) it follows that the Fibonacci numbers are given by

Fn = �1

 
1 +

p
5

2

!n

+ �2

 
1�p

5

2

!n
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for some constants�1 and�2. The initial conditionsF0 = 0 andF1 = 1 can be used to find these

constants. We have

F0 = �1 + �2 = 0;

F1 = �1

 
1 +

p
5

2

!
+ �2

 
1�p

5

2

!
= 1:

The solution of these simultaneous equations is given by

�1 =
1p
5

�2 = � 1p
5
:

Consequently, the Fibonacci numbers can be explicitly expressed as

Fn =
1p
5

 
1 +

p
5

2

!n

� 1p
5

 
1�p

5

2

!n

:

Now we discuss the case when the characteristic equation has only one root (e.g.,r2 � 2r + 1 =

(r � 1)2 = 0). We shall omit the proof.

Theorem 3. Let c1 andc2 real numbers. Suppose thatr2 � c1r � c2 = 0 has only one rootr0. Then

the sequencean is a solution of the recurrence relationan = c1an�1 + c2an�2 if and only if

an = �1r
n
0 + �2nr

n
0

(for n � 0), where�1 and�2 are constants.

Example 22: What is the solution of the following recurrence relation

an = 6an�1 � 9an�2

with initial conditionsa0 = 1 anda1 = 6?

The only root ofr2 � 6r + 9 = (r � 3)2 = 0 is r = 3. Hence, the solution to this recurrence

relation is

an = �13
n + �2n3

n

for some constants�1 and�2. Using the initial conditions, it follows that

a0 = 1 = �1;

a1 = 6 = 3�1 + 3�2:

Solving these two equations shows that�1 = 1 and�2 = 1. Consequently, the solution to this

recurrence relation is

an = 3n + n3n = 3n(n+ 1):
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