Module 3: Proof Techniques

Theme 1: Rule of Inference

Let us consider the following example.
Example 1 Read the following “obvious” statements:

All Greeks are philosophers.
Socrates is a Greek.

Therefore, Socrates is a philosopher.

This conclusion seems to be perfectly correct, and quite obvious to us. However, we cannot justify
it rigorously since we do not have amyle of inference When the chain of implications is more
complicated, as in the example below, a formal method of inference is very useful.

Example 2 Consider the following hypothesis:
1. Itis not sunny this afternoon and it is colder than yesterday.
2. We will go swimming only if it is sunny.
3. If we do not go swimming, then we will take a canoe trip.
4. If we take a canoe trip, then we will be home by sunset.
From this hypothesis, we should conclude:
We will be home by sunset.

We shall come back to it in Example 5.

The above conclusions are examples si/bogismsdefined as a “deductive scheme of a formal
argument consisting of a major and a minor premise and a conclusion”. Hereendatlope-
dia.com is to say about syllogisms:

Syllogism a mode of argument that forms the core of the body of Western logical thought.
Aristotle defined syllogistic logic, and his formulations were thought to be the final word
in logic; they underwent only minor revisions in the subsequent 2,200 years.

We shall now discusrules of inferencefor propositional logic. They are listed in Table 1. These
rules provide justifications for steps that lead logically to a conclusion from a set of hypotheses.
Because the emphasis is oorrectnesof arguments, these rules, when written as a proposition, are
tautologies Recall that a tautology is a proposition thatale/aystrue.



Table 1: Rules of Inference

Rule of Inference Tautology Name Explanation
» If the hypothesis is true,
r p— (pVaq) Addition yp o o
S.pVag then the disjunction is true.
A L If a conjunction of hypotheses is
PRa (pNq) —p Simplification ) yp' )
oD true, then the conclusion is true.
, : If both hypotheses are true,
q ((p) A (9) = (PAa) Conjunction o .
_ then the conjunction of them is true.
PN Qq
P If both hypotheses are true
p—q bAP—=q)]—q Modus ponens o ’
- then the conclusion is true.
o.q
—q If a hypothesis is not true
p—q [~gA(p—q)]—-p Modus tollens and an implication is true,
S then the other proposition cannot be true.
p—q . L
. . If both implications are true,
q—r [(p = q) A (g = )] = p— r | Hypothetical syllogism T
E—— then the resulting implication is true.
p—T
pVyq If a disjunction is true, and
—p [PV g A-pl—q Disjunctive syllogism one proposition is not true, then
c.q the other proposition must be true.

Let us start with the following proposition (cf. Table 1)

(AP —q)—q

The table below shows that it is a tautology.

p qlp—=q|pAp—=9 | PADP—q)—q
T T(T T T
T FI|F F T
F T|T F T
F F|T F T

This tautology is the basis of the rule of inference calieadus ponensor law of detachmentthat
we actually used in Example 1 to infer the above conclusion. Such a rule is often written as follows:
p
p—q
S.q.
In this notation, the hypotheses (i.e.andp — ¢) are listed in a column, and the conclusion (i¢g.,
below a bar, where the symbalshould be read as “therefore”. In words, modus ponens states that if
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both the hypotheses are true, then the conclusion must be true. We should emphasize that the whole
proposition is a tautology, whence it is true for any assignments of truth values. However, in the case
of rules of inference we are mostly interested when the hypotheses are true, and make sure they imply
truth.

Example 3 Suppose that
p — ¢ = if nis divisible by5, thenn? is divisible by125

is true. Consequently, if we pick up an integethat is divisible by5 (sayn = 10), then by modus
ponens it follows that® must be divisible byl25 (in our example, indeed?® = 1000 is divisible by
125).
We now discuss and illustrate other rules of inference. We start with the simplest one, the rule of
addition (cf. Table 1)
p

.pVygq
which states that ip is true, then the conclusignVv ¢ must be true (by the virtue of the fact that for

p V q to be true it suffices that at least one of the proposition involved is true).

Example 4 Let us assume that: “it is raining now” is true. Therefore, “it is either raining or it is
freezing” is true.

Consider the following inference:

It is sunnyand raining.

Therefore, it is sunny now.

What rule of inference did we use? Clearly, timplification rule (cf. Table 1)
PAgq
P
since if a conjunction is true, then both propositions must be true. This rule is a tautology since
(p A q) — pis always true, as easy to check.
Consider the following example:

| amnot going to ski.

If it is snowing, then | am going to ski.

From these two hypotheses, we can only conclude that: “It is not snowing”. To do it we invoke the
rule of modus tollensthat can be symbolically written as follows:

-q

p—q
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In other words, counterpositiveq — —p is true, ifp — ¢ is true, as we have seen in Module 1.

As a “sanity check”, we may want to use common sense to verify the last rule. From the truth of
p — ¢q we infer that ifg is false therp must be false since otherwise the implication would be false,
which not the case.

Exercise 3A Using the truth table (as we did above when discussing modus ponens) prove modus
tollens (cf. Table 1).

Example 5 We will use the hypotheses in Example 2 and our rules of inference to logically obtain
the conclusion. Let

p = itis sunny this afternoon

g = itis colder than yesterday

ﬁ
M1l

we will go swimming
s = we will take a canoe trip

t = we will be home by sunset

Now, we construct arguments to show that our hypotheses 1-4 from Example 2 lead to the conclusion
t. Here how it goes:

Step Reason Explanation
1.-pAq Hypothesis 1 It is not sunny this afternoon and
it is colder than yesterday.
2.-p Simplification It is not sunny.
3.7 —=p  Hypothesis 2 We will go swimming only if it is sunny.
4. —r Modus tollens from Steps 2and 3  We will not go swimming.
5.-r — s Hypothesis 3 If we do not go swimming,
then we will take a canoe trip.
6.s Modus ponens from Steps 4and 5 We will take a canoe trip.
7.8 >t Hypothesis 4 If we take a canoe trip,
then we will be home by sunset.
8.t Modus ponens from Steps 6 and 7 We will be home by sunset.



Theme 2: Fallacies

Fallacies arise in incorrect arguments that are based on contingeratiesr than on tautologies. Itis
important to realize it and we shall discuss three fallacies, naifadigry of affirming the conclusign
fallacy of denying the hypothesisnd the most importamircular reasoning

Thefallacy of affirming the conclusionis based on the following proposition

(p—=a)Ngl—p

which is false whem is false andy is true. This fallacy was already discussed in Module 1 since it is
equivalent to conclude converge— p from p — ¢, which we know is not true in general. In words,
this fallacy says that converse implication does not follow the direct implication.

Example 6 Let two propositiong andq be given as follows:

p = n =1mod 3,

g = n?=1modS3.

In words, when the remainder of dividingby 3 is 1, then we also get remaindérwhen dividing

n? by 3. It is easy to see thgi — ¢. Indeed, ifn = 1 mod 3, then there exists an integér
such thatn = 3k + 1. Observe thah? = (3k + 1)2 = 9k? + 6k + 1 = 3(3k? + 2k) + 1, thus

n? — 1 = 3(3k% + 2k) and is divisible by 3. In other words.? = 1 mod 3. Let us now assume that

q is true, that isp? = 1 mod 3. Does it imply thap is true? Not necessary, since it may happen that
n = 2 mod 3 (e.g., taken = 5 to see tha5 = 1 mod 3 but5 = 2 mod 3).

Exercise 3B Is the following argument valid or not? If yes, what rule of inference is being used? If
not, what fallacy occurs?

If z is a real number such that> 1, thenz2 > 1.

Suppose that? > 1. Thenz > 1.

Thefallacy of denying the hypothesids based on

[(p = q) A —p] = —q 1)

which is false wherm is false andy is true. In fact, it is not a rule of inference since the inverse
—p — —q IS not equivalent tp — ¢, as we saw in Module 1.

Example 7: Let us use the same propositiongndq as in Example 6. We know that — ¢, that
is,n = 1 mod 3 impliesn? = 1 mod 1. Assume now that is not equal to 1 modul@. Does it
imply n? is notequal tol modulo3. No, sincen? = 1 mod 3 not only whemn = 1 mod 3 but also
n = 2 mod 3, as we saw before.

!Recall that a contingency is neither a tautology nor a contradiction and may be true or false.



The fallacy ofcircular reasoning or begging the question(or more common known as “catch
22”) occurs when during the proof vassumehat the statement being proved is true. Of course, this
leads to nowhere.

Example 8 Let us “prove” the following statement
If n? is not divisible by3, thenn is not divisible bys3.
Consider the followingncorrect proof:

Sincen? is not divisible by3, hencen? cannot be equal t8% for some integek. Thus,
if n cannot be equal t8/ for some integef, therefore is not divisible by3.

It should be clear to an astute reader, then the assumptienriift equal to3/” is equivalent to the
statement being proved, so here where the circular incorrect argument is usassiheedo be true
what we supposed to prove. This is of course illegal.

The rule of inference for quantified statements are summarized in Table 2. They are self-explanatory.
For example, itz P(z), then naturally for any in the universe of discourse(c) must be true, where
P(z) is a predicate.

Table 2 Rules of Inferencd/(is the universe of discourse)

Rule of Inference Name ‘ Explanation

VaP(x)

. Universal instantiation | If P(x) is true for allz,
L Ple)ifceU

then it must be true for one, say

P(c) for an arbitraryc € U
- VzP(x)

Universal generalization| If P(c) is true for anyc,

then P(z) is true for allz in the universe.

dzP(z)
.. P(c) for somec € U

Existential instantiation | If P(x) is true for at least one,

then it must be true for some

P(c) for somec € U

Existential generalization If P(c) is true for some: in the universe,
o3z P(x)

then there exists such thatP(z) is true.




Theme 3: Methods of Proving Theorems

As readers already observed, theorems are statements of thg ferg thus techniques for proving
implications are very important. We recall that— ¢ is trueunlessp =true andg =false. In
mathematics truth cawot imply false (otherwise will will produce a heap of half-truths, nonsense,
and false statements). We shall discuss several proof techniques such as: direct proof, indirect proof,
proof by contradiction, vacuous proof, trivial proof, and proof by cases.

We start with airect proof. Such a proof shows, using the rule of inferences that we just learned,
that if p is true, theny must be true. Any established mathematical factved before, axioms (facts
assumed to be true at the beginning of building a theory), as well as definitions can be used to deduce
the truth of the conclusion in a theorem.

Example 9 Let us prove the following theorem:

Theorem 1If n is an even integer, them? is even. In generak® (k is a natural number) is even.
Proof. We assume that is even. An even number can be represented as a prod2ieinafan integer,
thus,n = 2, wherel is an integer. Then

n? = 2217 =2(20%) = 21y,
nk = 2kik =202k 11F) = 21,

wherel;, [, are integers, thus? andn*, k € N are even numbers.
Exercise 3C Using a direct proof show that the square of an odd number is odd.

In Module 1 we proved that the implicatign— ¢ is equivalent to~g — —p (the latter is called a
contrapositive). Thus we can prove a direct implicatiorn> ¢ indirectly by showing thatg — —p.
This is called goroof by contradiction. This is also called aindirect proof, since one assumes
that the hypothesisg is true while the conclusion is false and using rules of inference we derive a
contradiction Recall that a contradiction is a proposition that is always false (e/g+r). To see
that an indirect proof is equivalent fo— ¢ we use truth table (cf. Table 3) to prove the following
equivalence

p—=q = pA-g—1r AT (2

Thus to prover — ¢ it suffices to assume thatis true andy is false, and show that this leads to a
contradictionr A —r.



Table 3: The truth table of (1).

—q pA—q
F

A=r | pA—-qg—rN\-r
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Example 10 We prove the following lemma using an indirect proof.

Lemma 2If 5n + 2 is odd, them is odd.

Proof. We use an indirect proof, that is, we assume that the hypothesis (i.és,0dd") is false, and
will prove that this will lead to5n + 2 being even, which will contradict the hypothesis. Since we
assumen is even, hence there exists an integer, lsasuch that, = 2k (this is the definition of even
numbers!) for some integér. Then

5n+2=5(2k) +2 =10k + 2 = 2(5k + 1) = 2k,

wherek; = 5k + 1 is an integer sincé is an integer. Hencén + 2 is even, which contradicts the
hypothesis, and therefore by a contrapositive argument we prove the lemma.

Example 11 The next theorem is one of the most famous result known already to Ancient Greeks.
We recall that a number is rational if it is a ratio of two integers. i cannot be represented as such
aratio, thene is called irrational.

Theorem 2The number/2 is irrational.
Proof. We prove it by contradiction assuming thg® is rational. So we assume thay is true,
where

q = V/2is irrational
If v/2 is rational, then there are two integers, $egndm such that

Vi k

m

and £ andm haveno common factors (so the fractideym is in the lowest terms and cannot be any
further reduced; Iik% but not Iike%). Now, square both sides of the above to yield

k2

2:—m2,
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which further leads to
o2m? = k2. 3)

The latter implies that? must be even (since i is not even, thei = 2{ + 1 for some integet and
k? = 417 + 21 + 1 is odd), hencé must be even. Let theln= 2n, thus from (2) we arrive at

2m? = 4n?
which implies

m? = 2n?.
Therefore;,n? is even, and alse: must be even (by the same argument as above). In conclusion, we
prove thatc andm are even. This is the desired contradiction since we assume that

r = k andm have no common factor
while we prove that
—-r = k andm have a common factor equal to 2

We have shown thatg = /2 is not irrational leads to a contradictionA —r, thus+/2 must be
irrational.

If pinp — qis false, then the implication is true doesn’t matter what is the valugsirice an
implication is falseonly if true implies false (see Module 1). Consequently, if we can showyilieat
false, then a proof, calledwacuous proof of p — ¢ is given.

Example 12 Consider the following predicatg(n):
If n > 1, then2n + 2 is even.

Let us consider now(0), that is, we want to know i’(0) is true or not. But for. = 0 the hypothesis
0 > 1is false, thusP(0) must be automatically true.

If in the implicationp — ¢ we know thatyg is true, then the implication must be true, and this
leads to arivial proof .

Example 13 Let P(n) be the proposition:
If « andb are positive integers such that> b, thena™ > b™.

Since triviallya® = 1 > % = 1, the implication is true fon. = 0 (becausd = 1 as we have just
shown).

Finally, the implication
(PLVp2V---Vpy) = ¢



is equivalent to
(Pr—=q@)V(p2—>q) V- V(pn = q).

We can use the latter to prove a theorem. Such an argument is caltedfdy cases
Example 14 We want to prove the following theorem.

Theorem 4If n is an integer not divisible bg, then
n? =1 mod 3, (4)

that is, when dividing:? by 3 we obtain a remainder equal to
Proof. The propositiorp: “n is not divisible by3” is equivalent to:

p1 = n=1mod3,
ps = n=2mod3

since ifn is not divisible by3, then there is either a remainder equal tr to 2. Thus our theorem is
equivalent to prove that; V p, — g where

¢=n?=1mod 3.

The last statement is exactly what we need to prove. We shall use the proof by cases.
We first assume that, is true, that isp = 3k + 1 for some integek. Clearly,

n? = 9k? + 6k 4+ 1 = 3(3k* + 2k) + 1,

thusn? = 1 mod 3.
Now, we consider the second case, that is, we asgudrisgtrue, which amounts te = 3/ + 2 for
an integer. Then

n?=(314+2)? = 9k*> + 12k +4 =3(3k* + 4k +1) + 1.

Therefore;n? when divided by3 gives the remaindet (i.e.,n? = 1 mod 3).
In summary, we prove; — ¢ andpy — ¢, thereforep, vV ps — ¢, which completes the proof
by cases.
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