
Module 3: Proof Techniques

Theme 1: Rule of Inference

Let us consider the following example.

Example 1: Read the following “obvious” statements:

All Greeks are philosophers.

Socrates is a Greek.

Therefore, Socrates is a philosopher.

This conclusion seems to be perfectly correct, and quite obvious to us. However, we cannot justify

it rigorously since we do not have anyrule of inference. When the chain of implications is more

complicated, as in the example below, a formal method of inference is very useful.

Example 2: Consider the following hypothesis:

1. It is not sunny this afternoon and it is colder than yesterday.

2. We will go swimming only if it is sunny.

3. If we do not go swimming, then we will take a canoe trip.

4. If we take a canoe trip, then we will be home by sunset.

From this hypothesis, we should conclude:

We will be home by sunset.

We shall come back to it in Example 5.

The above conclusions are examples of asyllogismsdefined as a “deductive scheme of a formal

argument consisting of a major and a minor premise and a conclusion”. Here whatencyclope-

dia.com is to say about syllogisms:

Syllogism, a mode of argument that forms the core of the body of Western logical thought.

Aristotle defined syllogistic logic, and his formulations were thought to be the final word

in logic; they underwent only minor revisions in the subsequent 2,200 years.

We shall now discussrules of inference for propositional logic. They are listed in Table 1. These

rules provide justifications for steps that lead logically to a conclusion from a set of hypotheses.

Because the emphasis is oncorrectnessof arguments, these rules, when written as a proposition, are

tautologies. Recall that a tautology is a proposition that isalwaystrue.
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Table 1: Rules of Inference

Rule of Inference Tautology Name Explanation

p

) p _ q

p! (p _ q) Addition
If the hypothesis is true,

then the disjunction is true.

p ^ q

) p

(p ^ q) ! p Simplification
If a conjunction of hypotheses is

true, then the conclusion is true.

p

q

) p ^ q

((p) ^ (q)) ! (p ^ q) Conjunction
If both hypotheses are true,

then the conjunction of them is true.

p

p! q

) q

[p ^ (p! q)] ! q Modus ponens
If both hypotheses are true,

then the conclusion is true.

:q

p! q

) :p

[:q ^ (p! q)] ! :p Modus tollens

If a hypothesis is not true

and an implication is true,

then the other proposition cannot be true.

p! q

q ! r

) p! r

[(p! q) ^ (q ! r)] ! p! r Hypothetical syllogism
If both implications are true,

then the resulting implication is true.

p _ q

:p

) q

[p _ q) ^ :p] ! q Disjunctive syllogism

If a disjunction is true, and

one proposition is not true, then

the other proposition must be true.

Let us start with the following proposition (cf. Table 1)

(p ^ (p! q))! q:

The table below shows that it is a tautology.

p q p! q p ^ (p! q) (p ^ (p! q))! q

T T T T T

T F F F T

F T T F T

F F T F T

This tautology is the basis of the rule of inference calledmodus ponensor law of detachmentthat

we actually used in Example 1 to infer the above conclusion. Such a rule is often written as follows:

p

p! q

) q.

In this notation, the hypotheses (i.e.,p andp! q) are listed in a column, and the conclusion (i.e.,q)

below a bar, where the symbol) should be read as “therefore”. In words, modus ponens states that if
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both the hypotheses are true, then the conclusion must be true. We should emphasize that the whole

proposition is a tautology, whence it is true for any assignments of truth values. However, in the case

of rules of inference we are mostly interested when the hypotheses are true, and make sure they imply

truth.

Example 3: Suppose that

p! q � if n is divisible by5, thenn3 is divisible by125

is true. Consequently, if we pick up an integern that is divisible by5 (sayn = 10), then by modus

ponens it follows thatn3 must be divisible by125 (in our example, indeedn3 = 1000 is divisible by

125).

We now discuss and illustrate other rules of inference. We start with the simplest one, the rule of

addition (cf. Table 1)
p

) p _ q
which states that ifp is true, then the conclusionp _ q must be true (by the virtue of the fact that for

p _ q to be true it suffices that at least one of the proposition involved is true).

Example 4: Let us assume that: “it is raining now” is true. Therefore, “it is either raining or it is

freezing” is true.

Consider the following inference:

It is sunnyand raining.

Therefore, it is sunny now.

What rule of inference did we use? Clearly, thesimplification rule (cf. Table 1)

p ^ q

) p
since if a conjunction is true, then both propositions must be true. This rule is a tautology since

(p ^ q)! p is always true, as easy to check.

Consider the following example:

I amnot going to ski.

If it is snowing, then I am going to ski.

From these two hypotheses, we can only conclude that: “It is not snowing”. To do it we invoke the

rule of modus tollensthat can be symbolically written as follows:

:q
p! q

) :p.
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In other words, counterpositive:q! :p is true, ifp! q is true, as we have seen in Module 1.

As a “sanity check”, we may want to use common sense to verify the last rule. From the truth of

p ! q we infer that ifq is false thenp must be false since otherwise the implication would be false,

which not the case.

Exercise 3A: Using the truth table (as we did above when discussing modus ponens) prove modus

tollens (cf. Table 1).

Example 5: We will use the hypotheses in Example 2 and our rules of inference to logically obtain

the conclusion. Let

p � it is sunny this afternoon

q � it is colder than yesterday

r � we will go swimming

s � we will take a canoe trip

t � we will be home by sunset

Now, we construct arguments to show that our hypotheses 1-4 from Example 2 lead to the conclusion

t. Here how it goes:

Step Reason Explanation

1. :p ^ q Hypothesis 1 It is not sunny this afternoon and

it is colder than yesterday.

2. :p Simplification It is not sunny.

3. r ! p Hypothesis 2 We will go swimming only if it is sunny.

4. :r Modus tollens from Steps 2 and 3 We will not go swimming.

5. :r ! s Hypothesis 3 If we do not go swimming,

then we will take a canoe trip.

6. s Modus ponens from Steps 4 and 5 We will take a canoe trip.

7. s! t Hypothesis 4 If we take a canoe trip,

then we will be home by sunset.

8. t Modus ponens from Steps 6 and 7 We will be home by sunset.
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Theme 2: Fallacies

Fallacies arise in incorrect arguments that are based on contingencies1 rather than on tautologies. It is

important to realize it and we shall discuss three fallacies, namely,fallacy of affirming the conclusion,

fallacy of denying the hypothesis, and the most importantcircular reasoning.

The fallacy of affirming the conclusion is based on the following proposition

[(p! q) ^ q]! p

which is false whenp is false andq is true. This fallacy was already discussed in Module 1 since it is

equivalent to conclude converseq ! p from p! q, which we know is not true in general. In words,

this fallacy says that converse implication does not follow the direct implication.

Example 6: Let two propositionsp andq be given as follows:

p � n = 1 mod 3;

q � n2 = 1 mod 3:

In words, when the remainder of dividingn by 3 is 1, then we also get remainder1 when dividing

n2 by 3. It is easy to see thatp ! q. Indeed, ifn = 1 mod 3, then there exists an integerk

such thatn = 3k + 1. Observe thatn2 = (3k + 1)2 = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1, thus

n2 � 1 = 3(3k2 + 2k) and is divisible by 3. In other words,n2 = 1 mod 3. Let us now assume that

q is true, that is,n2 = 1 mod 3. Does it imply thatp is true? Not necessary, since it may happen that

n = 2 mod 3 (e.g., taken = 5 to see that25 = 1 mod 3 but 5 = 2 mod 3).

Exercise 3B: Is the following argument valid or not? If yes, what rule of inference is being used? If

not, what fallacy occurs?

If x is a real number such thatx > 1, thenx2 > 1.

Suppose thatx2 > 1. Thenx > 1.

Thefallacy of denying the hypothesisis based on

[(p! q) ^ :p]! :q (1)

which is false whenp is false andq is true. In fact, it is not a rule of inference since the inverse

:p! :q is not equivalent top! q, as we saw in Module 1.

Example 7: Let us use the same propositionsp andq as in Example 6. We know thatp ! q, that

is, n = 1 mod 3 impliesn2 = 1 mod 1. Assume now thatn is not equal to 1 modulo3. Does it

imply n2 is not equal to1 modulo3. No, sincen2 = 1 mod 3 not only whenn = 1mod 3 but also

n = 2 mod 3, as we saw before.
1Recall that a contingency is neither a tautology nor a contradiction and may be true or false.
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The fallacy ofcircular reasoning or begging the question(or more common known as “catch

22”) occurs when during the proof weassumethat the statement being proved is true. Of course, this

leads to nowhere.

Example 8: Let us “prove” the following statement

If n2 is not divisible by3, thenn is not divisible by3.

Consider the followingincorrectproof:

Sincen2 is not divisible by3, hencen2 cannot be equal to3k for some integerk. Thus,

if n cannot be equal to3l for some integerl, therefore,n is not divisible by3.

It should be clear to an astute reader, then the assumption “ifn not equal to3l” is equivalent to the

statement being proved, so here where the circular incorrect argument is used. Weassumedto be true

what we supposed to prove. This is of course illegal.

The rule of inference for quantified statements are summarized in Table 2. They are self-explanatory.

For example, if8xP (x), then naturally for anyc in the universe of discourseP (c) must be true, where

P (x) is a predicate.

Table 2 Rules of Inference (U is the universe of discourse)

Rule of Inference Name Explanation

8xP (x)

) P (c) if c 2 U
Universal instantiation If P (x) is true for allx,

then it must be true for one, sayc.

P (c) for an arbitraryc 2 U

) 8xP (x)
Universal generalization If P (c) is true for anyc,

thenP (x) is true for allx in the universe.

9xP (x)

) P (c) for somec 2 U
Existential instantiation If P (x) is true for at least onex,

then it must be true for somec.

P (c) for somec 2 U

) 9xP (x)
Existential generalization If P (c) is true for somec in the universe,

then there existsx such thatP (x) is true.
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Theme 3: Methods of Proving Theorems

As readers already observed, theorems are statements of the formp! q, thus techniques for proving

implications are very important. We recall thatp ! q is true unlessp =true andq =false. In

mathematics truth cannot imply false (otherwise will will produce a heap of half-truths, nonsense,

and false statements). We shall discuss several proof techniques such as: direct proof, indirect proof,

proof by contradiction, vacuous proof, trivial proof, and proof by cases.

We start with adirect proof . Such a proof shows, using the rule of inferences that we just learned,

that if p is true, thenq must be true. Any established mathematical factproved before, axioms (facts

assumed to be true at the beginning of building a theory), as well as definitions can be used to deduce

the truth of the conclusion in a theorem.

Example 9: Let us prove the following theorem:

Theorem 1If n is an even integer, thenn2 is even. In general,nk (k is a natural number) is even.

Proof. We assume thatn is even. An even number can be represented as a product of2 and an integer,

thus,n = 2l, wherel is an integer. Then

n2 = 22l2 = 2(2l2) = 2l1;

nk = 2klk = 2(2k�1lk) = 2l2

wherel1; l2 are integers, thusn2 andnk, k 2 N are even numbers.

Exercise 3C: Using a direct proof show that the square of an odd number is odd.

In Module 1 we proved that the implicationp! q is equivalent to:q ! :p (the latter is called a

contrapositive). Thus we can prove a direct implicationp! q indirectly by showing that:q ! :p.

This is called aproof by contradiction . This is also called anindirect proof , since one assumes

that the hypothesisp is true while the conclusionq is false and using rules of inference we derive a

contradiction. Recall that a contradiction is a proposition that is always false (e.g.,r ^ :r). To see

that an indirect proof is equivalent top ! q we use truth table (cf. Table 3) to prove the following

equivalence

p! q � p ^ :q ! r ^ :r: (2)

Thus to provep ! q it suffices to assume thatp is true andq is false, and show that this leads to a

contradictionr ^ :r.
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Table 3: The truth table of (1).

p q r p! q p ^ :q r ^ :r p ^ :q ! r ^ :r
T T T T F F T

T T F T F F T

T F T F T F F

T F F F T F F

F T T T F F T

F T F T F F T

F F T T F F T

F F F T F F T

Example 10: We prove the following lemma using an indirect proof.

Lemma 2 If 5n+ 2 is odd, thenn is odd.

Proof. We use an indirect proof, that is, we assume that the hypothesis (i.e., “n is odd”) is false, and

will prove that this will lead to5n + 2 being even, which will contradict the hypothesis. Since we

assumen is even, hence there exists an integer, sayk, such thatn = 2k (this is the definition of even

numbers!) for some integerk. Then

5n+ 2 = 5(2k) + 2 = 10k + 2 = 2(5k + 1) = 2k1

wherek1 = 5k + 1 is an integer sincek is an integer. Hence5n + 2 is even, which contradicts the

hypothesis, and therefore by a contrapositive argument we prove the lemma.

Example 11: The next theorem is one of the most famous result known already to Ancient Greeks.

We recall that a numberx is rational if it is a ratio of two integers. Ifx cannot be represented as such

a ratio, thenx is called irrational.

Theorem 2The number
p
2 is irrational.

Proof. We prove it by contradiction assuming that
p
2 is rational. So we assume that:q is true,

where

q �
p
2 is irrational:

If
p
2 is rational, then there are two integers, sayk andm such that

p
2 =

k

m

andk andm haveno common factors (so the fractionk=m is in the lowest terms and cannot be any

further reduced; like1
2

but not like 3

6
). Now, square both sides of the above to yield

2 =
k2

m2
;
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which further leads to

2m2 = k2: (3)

The latter implies thatk2 must be even (since ifk is not even, thenk = 2l + 1 for some integerl and

k2 = 4l2 + 2l + 1 is odd), hencek must be even. Let thenk = 2n, thus from (2) we arrive at

2m2 = 4n2

which implies

m2 = 2n2:

Therefore,m2 is even, and alsom must be even (by the same argument as above). In conclusion, we

prove thatk andm are even. This is the desired contradiction since we assume that

r � k andm have no common factor;

while we prove that

:r � k andm have a common factor equal to 2:

We have shown that:q =
p
2 is not irrational leads to a contradictionr ^ :r, thus

p
2 must be

irrational.

If p in p ! q is false, then the implication is true doesn’t matter what is the value ofq since an

implication is falseonly if true implies false (see Module 1). Consequently, if we can show thatp is

false, then a proof, called avacuous proof, of p! q is given.

Example 12: Consider the following predicateP (n):

If n > 1, then2n+ 2 is even.

Let us consider nowP (0), that is, we want to know ifP (0) is true or not. But forn = 0 the hypothesis

0 > 1 is false, thusP (0) must be automatically true.

If in the implicationp ! q we know thatq is true, then the implication must be true, and this

leads to atrivial proof .

Example 13: Let P (n) be the proposition:

If a andb are positive integers such thata � b, thenan � bn.

Since trivially a0 = 1 � b0 = 1, the implication is true forn = 0 (because1 = 1 as we have just

shown).

Finally, the implication

(p1 _ p2 _ � � � _ pn)! q

9



is equivalent to

(p1 ! q) _ (p2 ! q) _ � � � _ (pn ! q):

We can use the latter to prove a theorem. Such an argument is called aproof by cases.

Example 14: We want to prove the following theorem.

Theorem 4If n is an integer not divisible by3, then

n2 = 1 mod 3; (4)

that is, when dividingn2 by3 we obtain a remainder equal to1.

Proof. The propositionp: “n is not divisible by3” is equivalent to:

p1 � n = 1 mod 3;

p2 � n = 2 mod 3

since ifn is not divisible by3, then there is either a remainder equal to1 or to2. Thus our theorem is

equivalent to prove thatp1 _ p2 ! q where

q � n2 = 1 mod 3:

The last statement is exactly what we need to prove. We shall use the proof by cases.

We first assume thatp1 is true, that is,n = 3k + 1 for some integerk. Clearly,

n2 = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1;

thusn2 = 1 mod 3.

Now, we consider the second case, that is, we assumep2 is true, which amounts ton = 3l+2 for

an integerl. Then

n2 = (3l + 2)2 = 9k2 + 12k + 4 = 3(3k2 + 4k + 1) + 1:

Therefore,n2 when divided by3 gives the remainder1 (i.e.,n2 = 1 mod 3).

In summary, we provep1 ! q andp2 ! q, therefore,p1 _ p2 ! q, which completes the proof

by cases.
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