[10] Select the best “big Oh” notation for each expression. Justify by showing the constants c and n_0. Note that $f(n) = O(g(n))$ if there are constants $c > 0$ and $n_0 > 0$ so that for all $n \geq n_0$ we have $|f(n)| \leq c \cdot g(n)$.

1. $95n + 1$.
2. $(11n + 1)^6$.
3. $4n^4 - 10n^3 - 100$.
4. $n^3 + n + n\sqrt{n} + \log n^4$.

[10] Show the following:

$$10n^3 + \log n = \Theta(n^3)$$
$$\frac{6n^2}{\log^3 n + 1} = O(n^3)$$
$$3n^3 + 44n^2 = \Omega(n^2)$$

[10] Is $(\log n)^2 = O(\log n^2)$? Justify your answer?

[10] We say that $f(n) \ll g(n)$ if $g(n)$ grows faster than $f(n)$ (e.g., $\log n \ll n$).

Order the following functions by by \ll from the lowest to the highest:

$$\left(\frac{3}{2}\right)^n, \ 100, \ n^3 \log^2 n, \ 2^{\log_2 n}, \ \log^4 n, \ 2^{3\log_2 n}, \ 2^n$$.

Justify your answer.