Homework 1. Basic Logic

1a. $p \vee (\overline{r \vee q}), \overline{r \vee q} = \neg (r \vee q) = \neg r \wedge \neg q$.

Table 1: 1a

p	q	r	$r \vee q$	$\neg (r \lor q)$	$p \vee (\overline{r \vee q})$
Τ	Τ	Τ	Τ	F	T
Т	Т	F	Т	F	T
Т	F	Т	Т	F	T
Τ	F	F	F	T	T
F	Τ	Т	Τ	F	F
F	Τ	F	Τ	F	F
F	F	Т	Т	F	F
F	F	F	F	T	T

1b.

Table 2: 1b

p	q	r	$\neg q$	$p \land \neg q$	$(p \land \neg q) \to r$
Т	Т	Т	F	F	T
Т	Т	F	F	F	T
Т	F	Т	Т	Т	T
Т	F	F	Т	Т	F
F	Т	Т	F	F	T
F	Т	F	F	F	T
F	F	Т	Т	F	T
F	F	F	Τ	F	Т

2.

$$\begin{array}{ll} (p \wedge q) \rightarrow (p \vee q) \\ \equiv \neg (p \wedge q) \vee (p \vee q) & Table \ 7 \\ \equiv (\neg p \vee \neg q) \vee (p \vee q) & De \ Morgan's \ laws \\ \equiv (\neg p \vee p) \vee (\neg q \vee q) & Associative \ laws \\ \equiv T & Negation \ laws \\ \equiv T & Domination \ laws \end{array}$$

3a. P(x,y): x+y=5 where x,y are positive integers. $\forall x \forall y P(x,y)$. This statement is false. Choose x=1,y=1, then we have,

$$1+1 \geq 5$$

$$2 \ge 5$$

which is false.

3b. $\forall x \exists y P(x, y)$. This statement is true.

We can translate this as, for all x, there is some y, such that $x + y \ge 5$. Let x = 1, which is the min possible value. If we choose $y \ge 4$, then this statement holds as it only needs to be true for some x.

4. Pushing our negation all the way through we have,

$$\neg \forall x \exists y P(x, y)$$

$$\equiv \exists x \neg \exists y P(x, y)$$

$$\equiv \exists x \forall y \neg P(x, y)$$

Hence, it follows that just (c) is equivalent.