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 Algorithms 

 The growth of functions 

 Complexity of Algorithms 



Algorithms  
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 An algorithm is a finite sequence of 
precise instructions for performing a 
computation or for solving a problem. 
 

An algorithm  
 is defined on specified inputs and 

generates an output  
 stops after finitely many instructions are 

executed. 
 



A Recipe is an Algorithm 



The set of steps to assemble a Piece of Furniture is 
an Algorithm. 
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produce the correct 
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It must be possible 
to perform each 

step of an algorithm 
exactly and in a 
finite amount of 

time. 

An algorithm should 
produce the desired 
output after a finite 
(but perhaps large) 
number of steps for 
any input in the set. 

The procedure 
should be applicable 
for all problems of 
the desired form, 

not just for a 
particular set of 

input values. 



How to express an Algorithm  
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 C code 

int is_prime(int 

m) 

{ 

int i; 

for (i=2; i<m;i++) 

 if (m % i ==0) 

      return 0; 

return 1; 

} 

 

Java code 

class SpecialInt 

{ 

int  m; 

boolean  is_prime() 

{ 

for (i=2; i<m; i++) 

if (m % i == 0) 

      return false; 

return true; 

}  } 

Pseudo-code 

procedure is_prime(m) 

    for  i: = 2  to m−1 do 

        if  m mod i = 0 

        then return(false) 

        endif 

     endfor 

     return(true) 

end is_prime 



 
 Psuedocode  

 Psuedocode is an intermediate between 
an English description and an 
implementation in a particular language 
of an algorithm. 



Advantages of using pseudo-code 
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Pseudo-code has a structure similar 
to most  computer languages. 

No need to worry about the precise 
syntax.  

Not specific to any particular 
computer language. 
 



Example  
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 Example: Write an algorithm that finds 
the largest element in a finite sequence  
s1, s2, … , sn  
 
procedure find_large(s, n) 
 large := s1 

 i := 2 
 while  i ≤  n  do 
  if  si >  large   then   large :=  si  endif 

  i :=  i + 1 
 endwhile 
 return(large) 
end find_large 



Search Algorithms 

 Search 

 Find a given element in a list.  Return the location of the 
element in the list (index), or 0 if not found. 

 Linear Search 

 Compare key (element being searched for) with each element 
in the list until a match is found, or the end of the list is 
reached. 

 Binary Search 

 Compare key only with elements in certain locations.  Split list 
in half at each comparison.  Requires list to be sorted. 



Linear Search 
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 Find the location of an element X in an array of possible 
unsorted items  



Linear Search Exercise 

19, 1, 17, 2, 11, 13, 7, 9, 10, 5, 15, 6, 14, 20, 16, 12, 4, 18, 3, 8 

 

 How many comparisons to find: 

 17? 

 21? 

 



Binary Search  

19 

 Find the location of an element X in an 
array of sorted items  



Binary Search Exercise 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 

 

 How many comparisons to find: 

 Find 7 

 Find 21 

 



Sort 

 Sort 
 Put the elements of a list in ascending order 

 Bubble Sort 
 Compare every element to its neighbor and swap 

them if they are out of order.  Repeat until list is 
sorted. 

 Insertion Sort  
 For each element of the unsorted portion of the 

list, insert it in sorted order in the sorted portion of 
the list.  



Bubble Sort 

22 

 



Bubble Sort Exercise 

10, 2, 1, 5, 3 



Insertion Sort 

24 

 



Insertion Sort Exercise 

10, 2, 1, 5, 3 
 



Greedy Algorithms 

The goal of an optimization problem is to 
maximize or minimize an objective function. 

 

One of the simplest approaches to solving 
optimization problems is to select the “best” 
choice at each step. 



Greedy Change-Making  

27 

 Give an algorithm for making n cents change with 
quarters, dimes, nickels, and pennies, and using the least 
total number of coins. 



Make Change 

69 cents: 

 

 

 

56 cents: 



The Halting Problem 

29 

Is there a procedure that does the following: 

 Takes as input a program and input to that 
program  and determines whether that program will 
eventually stop when run on that input,  for any 
program and input 

 

No, there is no such program. 
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Greedy Change-Making 
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 Give an algorithm for making n cents change with 
quarters, dimes, nickels, and pennies, and using the least 
total number of coins.



Make Change

69 cents:

56 cents:



The Halting Problem
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Is there a procedure that does the following:

Takes as input a program and input to that 
program  and determines whether that program will 
eventually stop when run on that input,  for any 
program and input

No, there is no such program.



The Growth of functions
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 The time required to solve a problem using a 
procedure depends on:
 Number of operations used

 Depends on the size of the input

 Speed of the hardware and software

 Does not depend on the size of the input

 Can be accounted for using a constant multiplier

 The growth of functions refers to the number of 
operations used by the function to solve the problem.



Complexity of Algorithms
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The  complexity of an algorithm refers to the 
amount of time and space required to execute 
the algorithm.

Computing the amount of time and space used 
without having the actual program requires 
one to focus on the essential features that 
affect performance.



Analyzing algorithm find_largest
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 Time of execution depends on the number 
of iterations of the while loop.

 Performance does not generally depend 
on the values of the elements.

 How many iterations are executed?  
n−1

The time needed is linearly proportional to  n.



Example
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for i := 1  to n  do

for j:=1  to  n  do

si :=  si + sj

number of iterations executed:  n2

time needed:  proportional to  n2



Big-O Notation
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 Estimate the growth of a function without 
worrying about constant multipliers or smaller 
order terms.
 Do not need to worry about hardware or software 

used

 Assume that different operations take the same 
time.
 Addition is actually much faster than division, but for 

the purposes of analysis we assume they take the 
same time.



Big-O
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Example 
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 X2 + 2x + 1 <= x2 + 2x2 + x2 for x >=1

 x2 + 2x2 + x2 = 4x2

 Witness

 C = 4

 K = 1



Example
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 Assume n2 is O(n)

 Then  C,k ∀ n>k,  n2 <= Cn

 n <= C

 But no constant is bigger than all n

 contradiction



Big-𝑂 for Polynomials



Example
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Give a big-O estimate for 
 f(x) = 5x2-18x+20

 Solution 
 5𝑥2−18𝑥+20≤5𝑥2+20 for 𝑥>0

 5𝑥2+20≤5𝑥2+20𝑥2 for 𝑥>1

 5𝑥2+20𝑥2=25𝑥2≤𝐶𝑔(𝑥) for 𝑥>1

 Let 𝑔(𝑥)=𝑥2

 𝒇(𝒙) is 𝑶(𝒙𝟐).         𝑪=𝟐𝟓,  𝒌=𝟏



Example 
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 Give a big-O estimate for the sum of the first n 
positive integers 

 Solution 

 1+2+⋯+𝑛≤𝑛+𝑛+⋯+𝑛=𝑛2

 1+2+⋯+𝑛 is 𝑂(𝑛2 ), 𝐶=1,𝑘=1



Example 
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 Give a big-O estimate for the factorial function f(n)=n!

 Give a big-O estimate for the logarithm of the 
factorial function 

 Solution 

 𝑛!=1⋅2⋅3⋅⋯⋅𝑛≤𝑛⋅𝑛⋅𝑛⋅⋯⋅𝑛=𝑛𝑛

 𝑛! is 𝑂(𝑛𝑛 )

 log(𝑛!)≤log(𝑛𝑛 )=𝑛 log𝑛

 log(𝑛!) is 𝑂(𝑛 log𝑛 )



Basic Growth Functions 
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Constant   O(1)

Logarithmic   O(log n)

Linear O(n)

Linearithmic O(n log n)

Polynomial O(n2)

Exponential O(nn)

Factorial O(n!)



Useful Big-𝑂 Estimates



The Growth of Combinations of Functions



Example

 Give a big-𝑂 estimate for 
𝑓 𝑛 = 3𝑛log 𝑛! + 𝑛2 + 3 log 𝑛

 O(n2 log n)



Big-Ω



Example 

 Show that 8𝑥3 + 5𝑥2 + 7 is Ω 𝑥3

 8𝑥3+5𝑥2+7≥8𝑥3 for x > 0

 C=8,  k =0



Big-Θ
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 Big- Θ (big theta)

 𝑓 𝑛 is 𝑂 𝑔 𝑛 and Ω 𝑔 𝑛

 𝑓 𝑛 is 𝑂 𝑔 𝑛 and 𝑔 𝑛 is 𝑂 𝑓 𝑛

 𝑓 𝑛 is Θ 𝑔 𝑛 ↔ g 𝑛 is Θ 𝑓 𝑛

 ∃𝐶1, 𝐶2 , 𝑘 ∀𝑛 > 𝑘 𝐶1𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝐶2𝑔 𝑛

 𝑓 𝑛 is of order 𝑔 𝑛

 𝑓 𝑛 and 𝑔 𝑛 are of the same order



Example 
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 Show that 3x2 + 8xlog x is Θ x2

 Big-o

 3x2 +8x log x <= 11x2

 C=11, k =1

 Big-omega

 x2 <= 3x2 + 8x log x



Big-Θ for Polynomials
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 Let 𝑓 𝑥 = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 +
𝑎0.

 Then, 𝑓 𝑥 is of order 𝑥𝑛.
 “𝑓 𝑥 is bounded [above and below] by 𝑔 𝑥 ”

 Example:

 3𝑥8 + 10𝑥7 + 221𝑥2 + 1444 is of order 𝑥8








































































































