
Algorithms and Growth of Functions

1

 Algorithms

 The growth of functions

 Complexity of Algorithms

Algorithms

2

 An algorithm is a finite sequence of
precise instructions for performing a
computation or for solving a problem.

An algorithm
 is defined on specified inputs and

generates an output
 stops after finitely many instructions are

executed.

A Recipe is an Algorithm

The set of steps to assemble a Piece of Furniture is
an Algorithm.

Properties of Algorithms

1. Input

2. Output

3. Definiteness

4. Correctness

5. Effectiveness

6. Finiteness

7. Generality

An algorithm
has input

values from a
specified set.

Properties of Algorithms

1. Input

2. Output

3. Definiteness

4. Correctness

5. Effectiveness

6. Finiteness

7. Generality

An algorithm
has input

values from a
specified set.

From each set
of input values,

an algorithm
produces

output values
from a

specified set.
The output

values are the
solution to the

problem.

Properties of Algorithms

1. Input

2. Output

3. Definiteness

4. Correctness

5. Effectiveness

6. Finiteness

7. Generality

An algorithm
has input

values from a
specified set.

From each set
of input values,

an algorithm
produces

output values
from a

specified set.
The output

values are the
solution to the

problem.

The steps of an
algorithm must

be defined
precisely.

Properties of Algorithms

1. Input

2. Output

3. Definiteness

4. Correctness

5. Effectiveness

6. Finiteness

7. Generality

An algorithm
has input

values from a
specified set.

From each set
of input values,

an algorithm
produces

output values
from a

specified set.
The output

values are the
solution to the

problem.

The steps of an
algorithm must

be defined
precisely.

An algorithm
should produce

the correct
output values
for each set of
input values.

Properties of Algorithms

1. Input

2. Output

3. Definiteness

4. Correctness

5. Effectiveness

6. Finiteness

7. Generality

An algorithm
has input

values from a
specified set.

From each set
of input values,

an algorithm
produces

output values
from a

specified set.
The output

values are the
solution to the

problem.

The steps of an
algorithm must

be defined
precisely.

An algorithm
should produce

the correct
output values
for each set of
input values.

It must be
possible to

perform each
step of an
algorithm

exactly and in a
finite amount

of time.

Properties of Algorithms

1. Input

2. Output

3. Definiteness

4. Correctness

5. Effectiveness

6. Finiteness

7. Generality

An algorithm has
input values from a

specified set.

From each set of
input values, an

algorithm produces
output values from a

specified set. The
output values are
the solution to the

problem.

The steps of an
algorithm must be
defined precisely.

An algorithm should
produce the correct

output values for
each set of input

values.

It must be possible
to perform each

step of an algorithm
exactly and in a
finite amount of

time.

An algorithm should
produce the desired
output after a finite
(but perhaps large)
number of steps for
any input in the set.

Properties of Algorithms

1. Input

2. Output

3. Definiteness

4. Correctness

5. Effectiveness

6. Finiteness

7. Generality

An algorithm has
input values from a

specified set.

From each set of
input values, an

algorithm produces
output values from a

specified set. The
output values are
the solution to the

problem.

The steps of an
algorithm must be
defined precisely.

An algorithm should
produce the correct

output values for
each set of input

values.

It must be possible
to perform each

step of an algorithm
exactly and in a
finite amount of

time.

An algorithm should
produce the desired
output after a finite
(but perhaps large)
number of steps for
any input in the set.

The procedure
should be applicable
for all problems of
the desired form,

not just for a
particular set of

input values.

How to express an Algorithm

12

 C code

int is_prime(int

m)

{

int i;

for (i=2; i<m;i++)

 if (m % i ==0)

 return 0;

return 1;

}

Java code

class SpecialInt

{

int m;

boolean is_prime()

{

for (i=2; i<m; i++)

if (m % i == 0)

 return false;

return true;

} }

Pseudo-code

procedure is_prime(m)

 for i: = 2 to m−1 do

 if m mod i = 0

 then return(false)

 endif

 endfor

 return(true)

end is_prime

 Psuedocode

 Psuedocode is an intermediate between
an English description and an
implementation in a particular language
of an algorithm.

Advantages of using pseudo-code

14

Pseudo-code has a structure similar
to most computer languages.

No need to worry about the precise
syntax.

Not specific to any particular
computer language.

Example

15

 Example: Write an algorithm that finds
the largest element in a finite sequence
s1, s2, … , sn

procedure find_large(s, n)
 large := s1

 i := 2
 while i ≤ n do
 if si > large then large := si endif

 i := i + 1
 endwhile
 return(large)
end find_large

Search Algorithms

 Search

 Find a given element in a list. Return the location of the
element in the list (index), or 0 if not found.

 Linear Search

 Compare key (element being searched for) with each element
in the list until a match is found, or the end of the list is
reached.

 Binary Search

 Compare key only with elements in certain locations. Split list
in half at each comparison. Requires list to be sorted.

Linear Search

17

 Find the location of an element X in an array of possible
unsorted items

Linear Search Exercise

19, 1, 17, 2, 11, 13, 7, 9, 10, 5, 15, 6, 14, 20, 16, 12, 4, 18, 3, 8

 How many comparisons to find:

 17?

 21?

Binary Search

19

 Find the location of an element X in an
array of sorted items

Binary Search Exercise

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

 How many comparisons to find:

 Find 7

 Find 21

Sort

 Sort
 Put the elements of a list in ascending order

 Bubble Sort
 Compare every element to its neighbor and swap

them if they are out of order. Repeat until list is
sorted.

 Insertion Sort
 For each element of the unsorted portion of the

list, insert it in sorted order in the sorted portion of
the list.

Bubble Sort

22

Bubble Sort Exercise

10, 2, 1, 5, 3

Insertion Sort

24

Insertion Sort Exercise

10, 2, 1, 5, 3

Greedy Algorithms

The goal of an optimization problem is to
maximize or minimize an objective function.

One of the simplest approaches to solving
optimization problems is to select the “best”
choice at each step.

Greedy Change-Making

27

 Give an algorithm for making n cents change with
quarters, dimes, nickels, and pennies, and using the least
total number of coins.

Make Change

69 cents:

56 cents:

The Halting Problem

29

Is there a procedure that does the following:

 Takes as input a program and input to that
program and determines whether that program will
eventually stop when run on that input, for any
program and input

No, there is no such program.

Algorithms and Growth of Functions

1

 Algorithms

 The growth of functions

 Complexity of Algorithms

Algorithms

2

 An algorithm is a finite sequence of
precise instructions for performing a
computation or for solving a problem.

An algorithm
 is defined on specified inputs and

generates an output
 stops after finitely many instructions are

executed.

Search Algorithms

 Search

 Find a given element in a list. Return the location of the
element in the list (index), or 0 if not found.

 Linear Search

 Compare key (element being searched for) with each element
in the list until a match is found, or the end of the list is
reached.

 Binary Search

 Compare key only with elements in certain locations. Split list
in half at each comparison. Requires list to be sorted.

Sort

 Sort

 Put the elements of a list in ascending order

 Bubble Sort
 Compare every element to its neighbor and swap

them if they are out of order. Repeat until list is
sorted.

 Insertion Sort

 For each element of the unsorted portion of the
list, insert it in sorted order in the sorted portion of
the list.

Greedy Algorithms

The goal of an optimization problem is to
maximize or minimize an objective function.

One of the simplest approaches to solving
optimization problems is to select the “best”
choice at each step.

Greedy Change-Making

6

 Give an algorithm for making n cents change with
quarters, dimes, nickels, and pennies, and using the least
total number of coins.

Make Change

69 cents:

56 cents:

The Halting Problem

8

Is there a procedure that does the following:

Takes as input a program and input to that
program and determines whether that program will
eventually stop when run on that input, for any
program and input

No, there is no such program.

The Growth of functions

9

 The time required to solve a problem using a
procedure depends on:
 Number of operations used

 Depends on the size of the input

 Speed of the hardware and software

 Does not depend on the size of the input

 Can be accounted for using a constant multiplier

 The growth of functions refers to the number of
operations used by the function to solve the problem.

Complexity of Algorithms

10

The complexity of an algorithm refers to the
amount of time and space required to execute
the algorithm.

Computing the amount of time and space used
without having the actual program requires
one to focus on the essential features that
affect performance.

Analyzing algorithm find_largest

11

 Time of execution depends on the number
of iterations of the while loop.

 Performance does not generally depend
on the values of the elements.

 How many iterations are executed?
n−1

The time needed is linearly proportional to n.

Example

12

for i := 1 to n do

for j:=1 to n do

si := si + sj

number of iterations executed: n2

time needed: proportional to n2

Big-O Notation

13

 Estimate the growth of a function without
worrying about constant multipliers or smaller
order terms.
 Do not need to worry about hardware or software

used

 Assume that different operations take the same
time.
 Addition is actually much faster than division, but for

the purposes of analysis we assume they take the
same time.

Big-O

14

Example

15

 X2 + 2x + 1 <= x2 + 2x2 + x2 for x >=1

 x2 + 2x2 + x2 = 4x2

 Witness

 C = 4

 K = 1

Example

16

 Assume n2 is O(n)

 Then  C,k ∀ n>k, n2 <= Cn

 n <= C

 But no constant is bigger than all n

 contradiction

Big-𝑂 for Polynomials

Example

18

Give a big-O estimate for
 f(x) = 5x2-18x+20

 Solution
 5𝑥2−18𝑥+20≤5𝑥2+20 for 𝑥>0

 5𝑥2+20≤5𝑥2+20𝑥2 for 𝑥>1

 5𝑥2+20𝑥2=25𝑥2≤𝐶𝑔(𝑥) for 𝑥>1

 Let 𝑔(𝑥)=𝑥2

 𝒇(𝒙) is 𝑶(𝒙𝟐). 𝑪=𝟐𝟓, 𝒌=𝟏

Example

19

 Give a big-O estimate for the sum of the first n
positive integers

 Solution

 1+2+⋯+𝑛≤𝑛+𝑛+⋯+𝑛=𝑛2

 1+2+⋯+𝑛 is 𝑂(𝑛2), 𝐶=1,𝑘=1

Example

20

 Give a big-O estimate for the factorial function f(n)=n!

 Give a big-O estimate for the logarithm of the
factorial function

 Solution

 𝑛!=1⋅2⋅3⋅⋯⋅𝑛≤𝑛⋅𝑛⋅𝑛⋅⋯⋅𝑛=𝑛𝑛

 𝑛! is 𝑂(𝑛𝑛)

 log(𝑛!)≤log(𝑛𝑛)=𝑛 log𝑛

 log(𝑛!) is 𝑂(𝑛 log𝑛)

Basic Growth Functions

21

Constant O(1)

Logarithmic O(log n)

Linear O(n)

Linearithmic O(n log n)

Polynomial O(n2)

Exponential O(nn)

Factorial O(n!)

Useful Big-𝑂 Estimates

The Growth of Combinations of Functions

Example

 Give a big-𝑂 estimate for
𝑓 𝑛 = 3𝑛log 𝑛! + 𝑛2 + 3 log 𝑛

 O(n2 log n)

Big-Ω

Example

 Show that 8𝑥3 + 5𝑥2 + 7 is Ω 𝑥3

 8𝑥3+5𝑥2+7≥8𝑥3 for x > 0

 C=8, k =0

Big-Θ

27

 Big- Θ (big theta)

 𝑓 𝑛 is 𝑂 𝑔 𝑛 and Ω 𝑔 𝑛

 𝑓 𝑛 is 𝑂 𝑔 𝑛 and 𝑔 𝑛 is 𝑂 𝑓 𝑛

 𝑓 𝑛 is Θ 𝑔 𝑛 ↔ g 𝑛 is Θ 𝑓 𝑛

 ∃𝐶1, 𝐶2 , 𝑘 ∀𝑛 > 𝑘 𝐶1𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝐶2𝑔 𝑛

 𝑓 𝑛 is of order 𝑔 𝑛

 𝑓 𝑛 and 𝑔 𝑛 are of the same order

Example

28

 Show that 3x2 + 8xlog x is Θ x2

 Big-o

 3x2 +8x log x <= 11x2

 C=11, k =1

 Big-omega

 x2 <= 3x2 + 8x log x

Big-Θ for Polynomials

29

 Let 𝑓 𝑥 = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 +
𝑎0.

 Then, 𝑓 𝑥 is of order 𝑥𝑛.
 “𝑓 𝑥 is bounded [above and below] by 𝑔 𝑥 ”

 Example:

 3𝑥8 + 10𝑥7 + 221𝑥2 + 1444 is of order 𝑥8

