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436 ASYMPTOTICS

9.3 O MANIPULATION

Like any mathematical formalism, the O-notation has rules of ma-
nipulation that free us from the grungy details of its definition. Once we
prove that the rules are correct, using the definition, we can henceforth work
on a higher plane and forget about actually verifying that one set of functions
is contained in another. We don’t even need to calculate the constants C that  The secret of being
are implied by each O, as long as we follow rules that guarantee the existence 4 bore is to tell
of such constants. everything: Voltai
— Voltaire
For example, we can prove once and for all that

a™ = O(m™), when m < m’; (9.21)
O(f(n)) + O(g(n ) = O(If(m)l + lg(n)l). (9-22)

¢
Then@ yi ]'a ely that %n3+%n2+%n = 0(m3)+0(m3)+0(n?) =

O(n?), without the laborious calculations in the previous section.
Here are some more rules that follow easily from the definition:

f(n) = O(f(n); (9-23)

c-0(f(n)) = O(f(n)),  if cis constant; (9-24)
0(0(f(m)) = O(f(m); (9-25)
0(f(n))O(g(n) = O(f(n)g(n)); (9.26)
O(f(n) g(n)) = f(n)O(g(n)). (9-27)

Exercise 9 proves (9.22), and the proofs of the others are similar. We can
always replace something of the form on the left by what's on the right,
regardless of the side conditions on the variable n.

Equations (9.27) and (9.23) allow us to derive the identity O(f(n)?) =
O(f [n])z. This sometimes helps avoid parentheses, since we can write

O(logn)>  insteadof O ((log n)?).

Both of these are preferable to ‘O(lcag2 n)’, which is ambiguous because some
authors use it to mean ‘O(loglogn)’.
Can we also write

O(logn)~'  instead of O((logn) ') ?

No! This is an abuse of notation, since the set of functions 1/0(logn) is
neither a subset nor a superset of O(1/logn). We could legitimately substitute
Q(logn)~"' for O((log n)~'), but this would be awkward. So we'll restrict our
use of “exponents outside the O” to cases where the exponents are positive.




9.3 O MANIPULATION

Like anv mathematical formalism, the O-notation has
rules of manipulation that free us from the grungy details

of its definition.
For example. we can prove once and for all that

n™ =O(mn™), when m <m/; (9.21)
41 T - J
= O(f(n)) + O(g(n)) = O(|f(n)| + |g(n |- (922
Here are some more rules Ith;a,qtlfosllgx;}v easﬂy from the
definition:
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9.1. A HIERARCHY

Functions of n that occur in practice usually have dif-
ferent “asymptotic growth ratios’; one of them will ap-
proach infinity faster than another. We formalize this by

ing th
saying that ,[[nf |= »(f/%}/
(n)

f(n) < g(n) <= lm — = 0. (9.3)

"= g(n)

This relation is transitive: If f(n) < g¢(n) and
g(n) < h(n) then f(n) < h(n). For example,
n < n?; informally we say that n grows more slowly
than n?.

There are, of course, many functions of n besides pow-
ers of n.

I

\1-<log1o:)gn-<log;_l;.rz,—e.'nE <n°<n%® " <nt <. |

L
(Here € and c are arbitrary constants with 0 <€<
1< e
All functions listed here, except 1, go to infinity as n
goes to infinity. Thus when we try to place a new function
in this hierarchy, we're not trying to determine whether
it becomes infinite but rather how fast.
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What is the runtime of this code segment in big-O notation?

5. We write an alternate program for the same problem. In this case, we notice that to com-
pute output_list[i], you only need to add input_list[i] and output_list[i-
1]. The program segment is as follows:

for (i = 0; i < n; i++)

output_list[i] = 0;
output_list[0] = input_list[0];
for (i = 1; 1 < n; i++)

output_list[i] = output_list[i-1] + input_list[i]:

What is the runtime of this code segment in big-O notation?

6. Code the programs for computing cumulative sum of a list (illustrated in Problems 4 and 5) in
Java. Execute each of these programs on lists of increasing sizes and note the runtime. Plot
the runtime of the two programs on a graph. Fit a degree two polynomial curve through each
of these plots and note down the coefficients. What can you say about the coefficients and the

time for the primitive operations in the two programs?

Project Notes.

Identify the various components of their selected project problem, interrelationship between compo-

nents, and prepare a preliminary design and requirements specification for each of the components.



