Module 1: Analysis of Algorithms

Reading Assignment: Chapter 3 of textbook.

Contents

1 Introduction

2 Average Case, Best Case, and Worst Case Analysis of Algorithms
3 Some Mathematical Identities

4 Analysis of Algorithms
41 Asymplotic NOEHOR, « & 5 5 5 2 i 5 s 9 @ % @0w o @ 56 % el @ w v E B RS B S EE B
4.1.1 TheBig-ONotation ittt it i i,
4.1.2 Some Identities for Big-O Notation
4.1.3 Other Asymptotic Notation

5 Computing Recurrence Relations

] Expanding SequeNCes . . « v a % s s 5 6 6o 4 s A b B S S E S s G E e 88
.2 Recurrence Relations with Full History,
3

Informed GUESSES . . « v o v v e

WS AFQER ";‘f“‘“

What is an Algorithm? /‘

An Afgorith? is a finite sequence of instructions wf}ic’ﬁ, iffottowed, accomplish a
particular task, and which satisfies the following propeérties:

1) Input: has an non-empty input 4

2) Outpyt: produces a non-empty output -

3) Definliteness: each instruction must be cléar and

1 _ _ unambiguous.
4) Effgctiveness: each instruction must be'feasable in that it is basic enough to
allow’execution by a person using onl vpencil and paper.

5) Finiteness: the algorithm will always terminate termimate after a finite
nymber of steps _}
6 O) *Mzﬂii_ 4 _) o L e
Algorithm Analysis: Given ap algarithms
o 1) Select ameasure of@ize of inpup)
-Find X in a list ofwame (# of names in the list) .
-Multiply 2 matrices (dimension of matrices) S¢v ¥ P e 1

-Traverse a binary tree (#of nodesin a tree Lomprite 7l
© 2)Select Sic operation). .) : A
-Fing ;t‘ ina EIS; i;of comparisons) (=2Za, T () Memr)y
-Multiply 2 matrices (# of multiplications)) Fa
-Tra}\:erse a@r_ﬁﬂ% visited)d 5 | 1
3 t the number of basic operatjony executed for a given size of i i N
@ 3){Coun p givensize of input Sy a[w)
(Freﬁuence; Count) _
Define F(n) as " the number of basic

operations executed on input of size n by
the algorithm under investigation”, to be the frequency count function.

executed. Let h(x) be the basic operation, then [=

fori:= 1 to ndo begin {b T “b
- d ‘
{x‘ ‘a fo"i. }(tg'h(ﬁ c}dr j= y 4 ; E&W‘tﬂ ‘_[: i

(
_ . . . g.‘ 2 2 [
example: The frequency count F(n) of how many times the basic operation is “a iJJ)
= -

fork: = i+1tondo _ BT ._':~ R
= g alij)= 6li,i) v 2 4=2i-
end R l &
n i n “on
Fim= D | > 1+ > 1
i=1"j=1 kai+) iml i=1
Frequency Count of Recursive Algorithms: , uj ,
Consider the following recursive function . Jﬁ’é'l (;'W-l m) hWput .
. function fact(n : Natural) : Natural; h
fxaawrl/ta . begin {
itn = 0 then tf (n=0)
I fact:= 1 {:M,,':D; :
- else (= “A)xn
p) fact: = fact(n-1)*n elit Jaob s Jo el 1]#1\)
E“ . end; -

The frequency function, F(n), is called a recursive (i.e. a recurrence) relation and

is notin a closed form. Thus we must show F(n) in a closed form and verify its
correctness by an inductive proof.

e [tl'l-Fln 0o
) £ I B
g e~ F)(n-n - h+Fl) v M

.”’ ZZU /‘j-a’!f{.(,r; t{{c a m b'CC}L UpG s } 5{/} j].%(

Exercise 1: Draw two graphs, one for machine M1 and one for machine M2. On the x axis,
plot the size of the list to be sorted and on the y axis, plot the time taken by algorithms Al and A2.
Examine the two graphs and comment on the performance of algorithms Al and A2 on machines M1
and M2.

This module deals with quantitative performance measures for algorithms. Specifically, it deals
with asymptotic analysis of worst case and average case behavior of memory and time requirements.
It introduces the big ‘O’, omega, and theta notations and uses them to quantify time and space com-
plexity of algorithms. As we go through our discussion of asymptotic analysis, we shall note that
an important component of this task is the evaluation of summations and recurrence relations, while
counting number of operations. This module illustrates how frequently encountered summations and
recurrence relations can be performed. It also provided examples of asymptotic analyses of algo-
rithms.

The objective of this module is to equip the students with a set of tools that will enable them
to associate a figure of merit with algorithms before actually implementing them (and then perhaps

realizing that they do not perform as well as initially thought!).

2 Average Case, Best Case, and Worst Case Analysis of Algorithms

Let us start with a simple example of an algorithm for sorting a list of numbers:

Example 1: A simple way of sorting a list of numbers is using an algorithm called Bubble sort.
In this algorithm, we make repeated passes over the list. In each pass, every number is compared to
the next number. If this pair is out of order (i.e., the smaller number follows a larger number), the two
are interchanged. If during a complete pass over the list no pair of numbers is interchanged, the list

is sorted and the process can be stopped. The program segment for doing this is as follows:

// the input list of n integers is stored in list[0] .. list[n-1]

for (i = 0; (i < n) && (exchange == 1); i++) {
exchange = 0;
for (§ = 0; i < n; Jj++)
// if two consecutive numbers are out of order,
// exchange them
{f (list[i] > list [i + 1]) { l'MrL.u ¥ Xy W
temp = list[i + 1];

list[i + 1] = list[i]; Ou’L' ‘[”é)?f)-(“v
list[i] = temp; o &
exchange = 1; t ‘(M (~
)) 2 2|
! l'wu/f 173 .
| 1237 2 31

A0 3 o pe)) 42332 2 13

122

J

Dol & *regiume

We show the execution of this algorithm on two lists:

N im)= S POED)

Initial list: 5 6 3 0 1 9 8 7
5 3 6
5 3 0 6 N{”’))f mwagr 'r(IS
5 3 0 1 6
5 3 0 1 6 9 l—I]tk
5 3 0 1 6 8
End of pass 1: 5 3 0 1 6 9 o -
B (n)=u" {J - ‘FCJ))U-“'S
3 5 h
3 0 5 I
3 0 1 5
3 0 1 5 6
3 01 5 6 8
301 5 6 fw i | 6 “ ’L‘
End of pass 2: 3 0 1 5 6 9 t"l‘ .
: [
0 3 JL, J 3341 jE Ql o
0 1 3
0 1 5 i
I aliy)y acf)))+L
0 1 3 5 6 7 _Qh)
01 3 5 6 8 Qo
End of pass 3: 0 1 3 5 6 9 L th
End of pass 4: 0 1 3 5 6 7 8 9 rh?)-; t-z §4:!;[-

Since there are no exchanges in pass 4, the list is sorted and the algorithm terminates.
Consider a second example input list:

Initial list: 0o 1 3 5 6 7 8 9

End of pass 1: 0 1 3 5 6 7 8 9

Since there are no exchanges in pass 1, the list is sorted and the algorithm terminates.

Finally, consider the following input list: 620 & v el e\
e kLo L=
Initial list: 9 8 7 6 5 3 1 0
[,{//\1/‘:. a2t/
/3’(wl>

4
fin)sLZi = ") 4y
1 2-% ~ 2

we substitute n for

(3.1)

constants ¢ >0 and

(3.2)

+ rules.

i)+ rin)).
r(n)’

ad -, such that
['3, and the
O

(
15 nue possible to
) =0(s(n)) and
wlt f(u)lgn) =

illustrated in Table
the corresponding
iputer speeds. The
sleps per second o
by speeding up the
ments we gain by
). An exponential

years) 10 handle

imes of algorithms;
18 in this book, for
require more than
lor most of these
ly in upper bounds,
» possible. In cases
» find at least upper
2 is ~Maining upper

ite: .y that there
lower bound must
It ossible, of

«cha as 1o model
nds.t wer bounds
andle lower bounds

—

M= }9 Ho 3.2 The O Notation 41

[g1) 6

lime time time 5 time 4
running times 1000 steps/sec | 2000 steps/sec 4000 steps/sec 8000 steps/sec
logyn 0.010 #¢. 0.005 0.003 0.001
n 1 0.5 0.25 0.125
n logyn 10 5 2.5 1.25
n's 32 16 8 4
n? 1,000 500 250 125
n’ 1,000,000 500,000 250,000 125,000
L1 10%* 10% 10% 10*

Table 3.1 Running times (in seconds) under different assumptions (n=1000).

while ignoring constants. If there exist constants ¢ and N, such that for all n2N the
number of steps T (n) required to solve the problem for input size n is at least ¢g (n), then
we say that T(n)=Q(g(n)). So, for example, n?=Q(n?—100), and also n=Q(n"?).
The € notation thus correspond to the **="" relation.

If a certain function f (n) satisfies both f(n)=0 (g (n)) and f (n)=£(g (n)), then
we say that f (n)=©(g(n)). For example, 5n logyn — 10=0(n logn). (The base of the
logarithm can be omitted in the expression ©(n logn), since different bases change the
logarithm only by a constant factor.) The constants used to prove the O part and the
part need not be the same.

The O, Q, and © correspond (loosely) to **<", 2", and *'="". Sometimes we
need notation corresponding to *'<'* and **>"". We say that f (n) = o (g (n)) (pronounced
**f(n) is little oh of g (n)"") if

lim i) =0.
n—pea g(ﬂ}
For example, n/logyn=0(n), but n/10#0(n). Similarly, we say that f (n)=w(g (n)) if
g(my=o(f (n)).
We can strengthen Theorem 3.1 by replacing big O with little o:
0 Theorem 3.3

For all constants ¢ >0 and a>1, and for all monotonically growing
functions f(n), we have (f (n))° =o0(a’'"™). In other words, an exponential
function grows faster than does a polynomial function. O

The A0 Symbol

The O notation has received a lot of criticism over the years. The main objection to it is,
of course, that in reality constants do matter. The wide use of the O notation makes it
convenient to forget about constants altogether. It is essential to remember that the O
notation gives only a first approximation. As such, it serves a useful purpose, and its use

I'L@”m/?* fv*'f—b“‘“ | “ow . Mo

lassification of Functions. Functions can be classified into the following categories: Logarith-
o ic (O(logn)), Linear (O(n)), Quadratic (O(n?)), Polynomial (O(n¥), k& > 1), and Exponential
i" (O(c™), e > 1). It is also useful to gather a sense of the growth rates of some commonly encountered

“ functions:

2 1 1.4 4 4
4 2 2 16 16
16 4 4 64 256 65,536
256 8 16 2048 65,536 118 # FO™TT
1024 10 32 10240 1048576 1.79 x 107308
Exercise 8: For each of the following code samples, determine the runtime in terms of the big-O
notation:
(a)
// computing the sum of first n integers & 2 /
sum = 0; g_ M . /DU
for (4 = 0; 1 < m; i++) Jo 48
sum += ij;)~ RTICR Op i
(b)
// dot_product of two vectors a and b L /) [
dot_product = 0; 2_!_. r .
for (i = 0; i < n; i++) 10 %7
dot_product += a[i]l * b[il]; /}1’1) \ U | "
(c) e

// product of a matrix b with a vector b tohcomput? c /{U{ &,2,--..;({
for (i = 0; i < n; i++) /\ 2 M y M
afi] = 0;

for (1 = 0; i < m; 1i++)

for (j = 0; Jj < n; J++)
c[i] += alil[j] * bljl;

u —A2A 7

%) cxg(n)=3n

fin)=n+4

fin)

gn)=n

Function Value
Function Value

n

ny
Figure 1: Illustration of the Big-O notation. In each case f(n) is O(g(n).

4.1 Asymptotic Notation

The goal of adopting asymptotic notion is to eliminate lower-level details and focusing on the dom-
inant characteristics of functions. For example, (n — 1) x 100 is very close to n x 100 as n >> 1.
Dealing with n x 100 is, in general, much simpler than (n — 1) % 100. Similarly, the value 2 x ¢; x n?,
where ¢, is a constant can be written as con?, where ¢ = 2 x ¢;. This value, con? can be further

simplified to n? with the implicit understanding that there are constants that have been dropped.

4.1.1 The Big-O Notation

Consider two functions f(n) and g(n) that map integers (n) to real numbers. We say that f(n) is

O(g(n)) if there exist constants ¢ and ny such that:
f(n) <exg(n)forn > ng

This is often also referred to as “f(n) is order of g(n)”.

Let us examine what big-O notation implies in greater detail. Consider the two plots in Figure 1.
In the first case, it is easy to see that f(n) is less than ¢ x g(n) when n exceeds ng. As an example of
this consider f(n) = 5n and g(n) = n%. Forn = 1,2,3,4, f(n) exceeds g(n). However, for n > 5,
it is easy to see that f(n) < g(n). Therefore, in this case, we can say that with ¢ = 1 and ng = 5, the
required inequality holds, and therefore 5n is in O(n?).

The second plot in Figure 1 is more interesting. In this case, f(n) = n + 4 and g(n) =n. Itis
easy to see that with ¢ = 1, there does not exist any ng such that n + 4 < n for n > ny. However, if

we select ¢ = 5, we can see that n 4+ 4 < 5n for n > 1. While it does seem slightly strange to begin

with, we see that n + 4 is also O(n).

3
Asguphebic _uobubio

W& E]%1\%) uohuj ‘?CW) —= O(%CM)B
) C{-'-au& 0*% Cgf “Heoe exivk d—.;e—-%l-a‘vc cons b s
C owdl N, Sucd, Lok QC%)QC,%CK) @)«‘
oL o>, .
Vo

Eaufe

(=]

O (4T "= &O.—.'-Z

‘3/}91.4(oo = OC%) s'wce Ju+looO < 4w

A DA o uzn = 1000
O A *-/299_’- f;rrh?':ﬂm?-"—@—tf
ADu! + 200 ~ [0 f” O A%
5 08T ri00u -G =C) [= Ma® frok
(R e T VR Al " by

5 6= O(F") swe 627wt <72

= £ 4z
//\}oLe TH S N
jﬁ'}!ﬁ’—l—f@oﬂ _C = O(m‘f) o {j_-g\’On‘f) n>2

6~2%+V11:. O(’Vt—1> an I ké’l—h'. By n> €

B
An+2 :,'{—"OCl> SALLe ?)K-&*Z#C'f[-

S];-r euan:) B> cony(l-

C a;-oQ_ ol nz e

/"// ‘ o :E_X& “_“_’tl/e 28

’/ Sy __M?., _J_:_‘___‘__
_Q 4__'7\ ?__ o $o _;yde, h Me= 4 . e=3 |
W= lamib) N

R Doez g€ Of) awdewekally iyl hat
ji, e O /) 4‘%“&.&4@{& xerdm 5
NPT NPT W SR

1 e sq:rgd,' e, MmSpwiav ¢S e M g UI/],L

¢ —
- —_‘.:—\?, A i Froﬁé’/ iy r\.? v\ Jlfﬂ'\-d/\.f-‘l‘\'% ")
Chcivme, 4 € O0l(g). Anuae it p trel
e . 36(—1«\) -2 C'ﬁlvﬂ jgv add ozl

3\.
N

= C.'_['_ an <+ b] ﬁ'v’ ‘L/LQ n z U,

F _ . - . . o
= n= 2 ach + be fr oM w2z
—— t) = 11 - z_ ! é / H
B - ac -+ C 2z /nqu\’
/n - j
S — r .
> n £ ac + be "
= iy < Somyp torshH

