Chapter 6

RELAXATION METHODS

6.1 Stationary Methods

6.2 Convergence

We seek to solve $Ax = b$ where A large and sparse. $x^{(0)}, x^{(1)}, x^{(2)}, \ldots \to x$. These methods are very economical with storage. They are the only way to solve general discretized PDEs in 3 space variables.

6.1 Algorithms

Saad, Section 4.1.

Example

\[
\begin{array}{ccc}
0 & 0 & 0 \\
\hline
1 & 1 & 1 \\
0 & \ldots & 0 \\
1 & 1 & 1 \\
0 & \ldots & 0 \\
1 & 1 & 1 \\
0 & \ldots & 0 \\
1 & 1 & 1 \\
0 & \ldots & 0 \\
1 & 1 & 1 \\
\end{array}
\]

Away from a boundary

\[
\frac{1}{h^2} \begin{pmatrix}
- u_{i+3} \\
- u_{i-1} + 4u_i - u_{i+1} \\
- u_{i-3}
\end{pmatrix} = 0
\]
\textit{Note.} This is not a matrix but a two dimensional arrangement of an expression. Matrices are enclosed in brackets.

\[u_i = \frac{1}{4} \left(\begin{array}{c} u_{i+3} \\ + u_{i-1} + u_{i+1} \\ + u_{i-3} \end{array} \right) \]

Jacobi’s method \(u_i^{\text{new}} = \frac{1}{4} \left(\begin{array}{c} u_{i+3} \\ + u_{i-1} + u_{i+1} \\ + u_{i-3} \end{array} \right)^{\text{old}} \)

\[
\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{array}
\]

This is also called the method of simultaneous displacements. (Note \((0.375 + 0.0625) + 0.0625 = 0.5 \) for round-to-even but \(0.501 \) for rounding.)

Gauss-Seidel method \(u_i^{\text{new}} = \frac{1}{4} \left(u_{i-1}^{\text{new}} \right) + \frac{1}{4} \left(u_{i+3}^{\text{new}} + u_{i+1}^{\text{old}} \right) \)

Assuming we sweep from the lower left to the upper right (↗),

\[
\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{array}
\]

This is also called the method of successive displacements. Gauss-Seidel requires only half as much memory because \(u_i^{\text{new}} \) can overwrite \(u_i^{\text{old}} \). For this problem Gauss-Seidel converges twice as fast as Jacobi. We call these \textit{relaxation} methods because at each point we relax one variable so as to satisfy an equation.
I recommend this method to you for imitation. You will hardly ever again eliminate directly, at least not when you have more than 2 unknowns. The indirect procedure can be done while half asleep, or while thinking about other things.

Gauss, December 26, 1823

In general for \(\sum_j a_{ij} x_j = b_i \), solve for \(x_i \) in \(i \)th equation:

\[
x_i = \frac{1}{a_{ii}} \left(b_i - \sum_{j \neq i} a_{ij} x_j \right).
\]

Iterate

\[
x^{(k+1)}_i = \frac{1}{a_{ii}} \left(b_i - \sum_{j \neq i} a_{ij} x^{(k)}_j \right). \quad \text{Jacobi}
\]

This can be expressed in matrix notation if we write \(A = L + D + U \) where \(L \) is strictly lower triangular, \(D \) is diagonal, and \(U \) is strictly upper triangular:

\[
Ax = b, \quad (L + D + U)x = b, \quad x = D^{-1}(b - (L + U)x),
\]

\[
x^{(k+1)} = D^{-1}(b - (L + U)x^{(k)}). \quad \text{Jacobi}
\]

Gauss-Seidel is

\[
x^{(k+1)}_i = \frac{1}{a_{ii}} \left(b_i - \sum_{j < i} a_{ij} x^{(k+1)}_j - \sum_{j > i} a_{ij} x^{(k)}_j \right)
\]
or

\[
x^{(k+1)} = D^{-1}(b - Lx^{(k+1)} - Ux^{(k)}). \quad \text{Gauss-Seidel}
\]

residual correction paradigm Suppose we have \(C \approx A^{-1} \). We can get \(x^{(1)} = C \cdot b \). We have

\[
\text{remainder} = A^{-1} \cdot \text{residual}.
\]

Therefore

\[
x = x^{(1)} + A^{-1}(b - Ax^{(1)}).
\]

How about \(x^{(2)} = x^{(1)} + C \cdot (b - Ax^{(1)}) \)? Consider as an example \(3x = 1, C = 0.3 \). The iteration is

\[
x^{(k+1)} = x^{(k)} + 0.3(1 - 3x^{(k)}),
\]

and the iterates are \(x^{(0)} = 0, x^{(1)} = 0.3, x^{(2)} = 0.33, x^{(3)} = 0.333, \ldots \). In this framework

\[
\begin{align*}
\text{Jacobi} : & \quad x^{(k+1)} = x^{(k)} + D^{-1}(b - Ax^{(k)}) \\
\text{Gauss-Seidel} : & \quad x^{(k+1)} = x^{(k)} + (L + D)^{-1}(b - Ax^{(k)})
\end{align*}
\]
Viewed this way, we see that the correction is some approximation to A^{-1} times the residual. Also iterative improvement fits in this framework.

For further insight consider the simple example

$$-\frac{d^2}{dx^2} u = 0, \quad 0 < x < 1, \quad u(0) = 0, \quad \frac{d}{dx} u(1) = 0$$

![Diagram of grid](image)

$h=1/J$

A numerical solution $u_j \approx u(jh)$ is obtained by solving

$$-\frac{1}{h} \left(\frac{u_{j+1} - u_j}{h} - \frac{u_j - u_{j-1}}{h} \right) = 0, \quad 1 \leq j \leq J - 1, \quad u_0 = 0, \quad \frac{u_J - u_{J-1}}{h} = 0.$$

The value of u_0 is obviously known:

$$u_0^\text{new} = u_0^\text{old} = 0$$

Solving jth equation for jth unknown:

Jacobi

$$u_j^\text{new} = \frac{1}{2} (u_{j-1}^\text{old} + u_{j+1}^\text{old})$$

$$u_J^\text{new} = u_{J-1}^\text{old}$$

Gauss-Seidel

$$u_j^\text{new} = \frac{1}{2} (u_{j-1}^\text{new} + u_{j+1}^\text{new})$$

$$u_J^\text{new} = u_{J-1}^\text{new}$$

overdo it by 50 %

$$u_j^\text{new} = u_j^\text{old} + 1.5\left(\frac{1}{2}u_{j-1}^\text{new} + \frac{1}{2}u_{j+1}^\text{old} - u_j^\text{old}\right)$$

$$u_J^\text{new} = u_J^\text{old} + 1.5(u_{J-1}^\text{new} - u_J^\text{old})$$

Note: $1.5 \to 1$ gives Gauss-Seidel.
successive over-relaxation (SOR) Gauss-Seidel:

\[
\begin{align*}
 x^{(k+1)} &= D^{-1}(b - Lx^{(k+1)} - Ux^{(k)}) \\
 x^{(k+1)} &= x^{(k)} + D^{-1} \left(b - Lx^{(k+1)} - (D + U)x^{(k)}\right)
\end{align*}
\]

\[
\begin{align*}
 x_i^{(k+1)} &= x_i^{(k)} + \frac{1}{\omega} a_{ii} \left(b_i - \sum_{j<i} a_{ij}x_j^{(k+1)} - \sum_{j>i} a_{ij}x_j^{(k)}\right)
\end{align*}
\]

Introduce relaxation parameter \(\omega \) to hasten convergence. \(\omega > 1 \Longleftrightarrow \) over-relaxation

\[
\begin{align*}
 x^{(k+1)} &= x^{(k)} + \omega D^{-1}(b - Lx^{(k+1)} - (D + U)x^{(k)}) \\
 (I + \omega D^{-1}L)x^{(k+1)} &= (I + \omega D^{-1}L)x^{(k)} + \omega D^{-1}(b - Ax^{(k)}) \\
 x^{(k+1)} &= x^{(k)} + \left(L + \frac{1}{\omega} D\right)^{-1}(b - Ax^{(k)})
\end{align*}
\]

Other methods

- symmetric SOR—SSOR: reverse the ordering every iteration

- block Jacobi, block SOR: collectively relax a block of unknowns, e.g., line Gauss-Seidel relaxes unknowns on an entire line of grid points making their residuals all vanish.

Review questions

1. What is another name for the method of simultaneous displacements? successive displacements?

2. What is the Jacobi method for \((L + D + U)x = b\) where \(L\) is strictly lower triangular, \(D\) is diagonal, and \(U\) is strictly upper triangular? Gauss-Seidel? SOR? Write each method as a matrix iteration which mirrors its implementation.

3. Apply Jacobi, Gauss-Seidel, and SOR to specific examples.

4. What does SOR abbreviate? What do we call the parameter that it uses?
5. Given the computational form of a stationary iterative method, rewrite it in the form of iterative refinement in which some matrix \(M \) is approximating the original matrix \(A \).

6. What is SSOR?

7. What is the form of a stationary iterative method?

Exercises

1. The following algorithm is supposed to do one iteration of SOR for \(Ax = b \). Diagonal elements of \(A \) are stored in \(d \) and the \(i \)th component of \(b - Ax \) is computed by the function \(\text{residual}(i, x) \).

 for \(i = 1, 2, \ldots, n \) do
 \[
 \Delta x_i = \text{residual}(i, x)/d_i;
 \]
 \[
 x = x + \omega \ast \Delta x;
 \]

 This is not SOR. Rewrite the algorithm correctly (assuming \(A \) and \(b \) are inaccessible except through \(\text{residual} \)).

2. Consider the system of equations

 \[
 5x + 2y + 2z = 10, \\
 x + 2y + z = 10, \\
 x + 5y + 10z = 10.
 \]

 Suppose we are solving this with SOR with relaxation parameter \(\omega = 1.5 \) and have already computed the iterates

<table>
<thead>
<tr>
<th>(k)</th>
<th>(x_k)</th>
<th>(y_k)</th>
<th>(z_k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>5</td>
<td>-2</td>
</tr>
<tr>
<td>1</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 Determine \(y_1 \).

6.2 Convergence

Saad, Sections 4.2.0, 4.2.1.
6.2.1 Conditions for convergence

Jacobi \[x^{(k+1)} = (I - D^{-1}A)x^{(k)} + D^{-1}b, \]
SOR \[x^{(k+1)} = (I - (L + \frac{1}{\omega}D)^{-1}A)x^{(k)} + (L + \frac{1}{\omega}D)^{-1}b. \]

Both are stationary iterative methods of the form

\[x^{(k+1)} = Bx^{(k)} + c \]

(stationary because \(B \) and \(c \) do not change) where

\[B_J = -D^{-1}(L + U), \]
\[B_\omega = (D + \omega L)^{-1}((1 - \omega)D - \omega U). \]

In general

\[x^{(k)} \to x \implies x = Bx + c. \]

This latter condition is satisfied for \(B_J \) and \(B_\omega \). (Why?) Hence successive errors satisfy

\[x^{(k+1)} - x = B(x^{(k)} - x), \]

so

\[x^{(k)} - x = B^k(x^{(0)} - x). \]

What is \(B^k \)? If \(B \) is diagonalizable

\[B = X\text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_n)X^{-1} \]

and

\[B^k = X\text{diag}(\lambda_1^k, \lambda_2^k, \ldots, \lambda_n^k)X^{-1}. \]

\[\lim_{k \to \infty} B^k = 0 \iff \lim_{k \to \infty} X^{-1}B^kX = 0 \]
\[\iff \lim_{k \to \infty} \lambda_i^k = 0 \quad \text{for } i = 1, 2, \ldots, n \]
\[\iff |\lambda_i| < 1 \quad \text{for } i = 1, 2, \ldots, n \]
\[\iff \rho(B) < 1. \]

THEOREM A stationary iterative method \(x^{(k+1)} = Bx^{(k)} + c \) converges for an arbitrary initial approximation \(x^{(0)} \) if and only if \(\rho(B) < 1. \)

Proof. Recall \(x^{(k)} - x = B^k(x^{(0)} - x). \)

\((\Leftarrow) \rho(B) < 1 \implies B^k \to 0 \text{ as } k \to \infty \implies x^{(k)} \to x \text{ as } k \to \infty \)

\((\Rightarrow) \) Assume \(\rho(B) \geq 1. \) There exists \(v \neq 0 \) and \(|\lambda| \geq 1 \) such that \(Bv = \lambda v. \) Let \(x^{(0)} = x + v. \) Then \(x^{(k)} - x = B^kv = \lambda^kv \not\to 0 \text{ as } k \to \infty. \) \(\square \)
Jacobi and Gauss-Seidel converge if \(A \) is strictly diagonally dominant. If \(n = 3 \)

\[
B_J = \begin{bmatrix}
0 & -a_{12} & -a_{13} \\
-a_{21} & a_{11} & a_{11} \\
a_{22} & 0 & -a_{23} \\
a_{31} & -a_{32} & a_{33} \\
a_{33} & 0 & -a_{33}
\end{bmatrix}.
\]

\[\|B_J\|_\infty = \max \left\{ \frac{|a_{12}| + |a_{13}|}{|a_{11}|}, \frac{|a_{21}| + |a_{22}|}{|a_{22}|}, \frac{|a_{31}| + |a_{32}|}{|a_{33}|} \right\} < 1 \]

\[\Rightarrow \rho(B_J) < 1\]

For SOR, \(\rho(B_\omega) \geq |\omega - 1| \) regardless of \(A \). Convergence implies \(0 < \omega < 2 \). Thus only these values of \(\omega \) are of interest. Conversely, if \(A \) is symmetric positive definite, \(0 < \omega < 2 \) implies convergence.

6.2.2 Rate of convergence

Convergence is not enough; we need a reasonable rate of convergence. We want to know the number of iterations \(k \) required to reduce error by a factor \(\varepsilon \):

\[
\varepsilon = \max_{x^{(0)} \neq x} \frac{\|B^k(x^{(0)} - x)\|}{\|x^{(0)} - x\|} = \|B^k\|.
\]

It can be shown \(\lim_{k \to \infty} \|B^k\|^{1/k} = \rho(B) \) where \(\|B^k\|^{1/k} \) represents the average error reduction per iteration. Therefore

\[\varepsilon^{1/k} \sim \rho(B) \text{ as } k \to \infty,\]

\[k \sim \frac{\log \varepsilon}{\log \rho(B)} \text{ as } k \to \infty,\]

or

\[k(\varepsilon) \sim \frac{\log \varepsilon}{\log \rho(B)} \text{ as } \varepsilon \to 0.\]

E.g., for \(\varepsilon = 10^{-d} \) and \(\rho(B) = 0.99 \) the number of iterations = 229\(d\).

Example Five-point difference operator on an \(N + 1 \) by \(N + 1 \) grid:
\[
\rho(B_J) = \cos \frac{\pi}{N} = 1 - \frac{\pi^2}{2N^2} + O\left(\frac{1}{N^4}\right) \\
\rho(B_{GS}) = \cos\frac{\pi}{N} = 1 - \frac{\pi^2}{N^2} + O\left(\frac{1}{N^4}\right)
\]
\[
\log \rho(B_J) = -\frac{\pi^2}{2N^2} + O\left(\frac{1}{N^4}\right) \\
\log \rho(B_{GS}) = -\frac{\pi^2}{N^2} + O\left(\frac{1}{N^4}\right)
\]
\[
k(\varepsilon) \approx \frac{2\pi^2}{N^2} \log \frac{1}{\varepsilon} \\
k(\varepsilon) \approx \frac{N^2}{2\pi^2} \log \frac{1}{\varepsilon}
\]

Let \(n = (N - 1)^2\). The cost per iteration is \(2n\) “multiplications.” The cost for Gauss-Seidel is \(2n \cdot \frac{n}{\pi^2} \log \frac{1}{\varepsilon}\). If we want to reduce the iteration error \(x^{(k)} - x\) to the level of discretization error \(O\left(\frac{1}{N^2}\right)\), then \(\varepsilon = O\left(\frac{1}{N^2}\right)\) and cost = \(O(n^2 \log n)\).

For SOR we want to choose \(\omega\) to minimize \(\rho(B_\omega)\).

“SOR theory”

For the example one should choose

\[
\bar{\omega} = \frac{2}{1 + \sin \frac{\pi}{N}},
\]

for which

\[
\rho(B_\bar{\omega}) = \frac{1 - \sin \frac{\pi}{N}}{1 + \sin \frac{\pi}{N}} = 1 - \frac{\pi}{N} + O\left(\frac{1}{N^2}\right) = 1 - \frac{2\pi}{N} + O\left(\frac{1}{N^2}\right).
\]

The number of iterations to reduce error by \(\varepsilon\) is

\[
k(\varepsilon) \sim \frac{\log \varepsilon}{\log \rho(B_\bar{\omega})} \sim \frac{N}{2\pi} \log \frac{1}{\varepsilon},
\]

and the computation is

\[
u_i^{\text{new}} = u_i^{\text{old}} + \frac{\omega}{4} \left(\begin{array}{c}
-u_{i-1} \\
-u_{i-N+1}
\end{array} \right) - \left(\begin{array}{c}
-\frac{u_{i-n-1}}{+4u_i - u_{i+1}} \\
-u_{i-N+1}
\end{array} \right)
\]

\[
= (1 - \omega)u_i^{\text{old}} + \frac{\omega}{4} \left(\begin{array}{c}
u_{i-1} \\
+u_{i-N+1}
\end{array} \right) + \left(\begin{array}{c}
u_{i+N-1} \\
+u_{i+1}
\end{array} \right),
\]
which is 3 “multiplications.” The cost of reducing the error by ε is

$$\frac{3}{2\pi} n^{3/2} \log \frac{1}{\varepsilon} \text{ “multiplications.”}$$

Review questions

1. What is a necessary and sufficient condition for convergence of a stationary iterative method $x^{(k+1)} = Bx^{(k)} + c$ for an arbitrary initial approximation?

2. What condition on the relaxation parameter ω of SOR is necessary for convergence? What condition is sufficient for convergence in the case of a symmetric positive definite matrix?

3. Asymptotically how many iterations are required for a stationary iterative method $x^{(k+1)} = Bx^{(k)} + c$ to reduce the error by a factor ε?

Exercises

1. For the problem

$$\begin{bmatrix} 2 & 2 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -3 \\ 5 \end{bmatrix}$$

 determine the Jacobi iteration matrix and its spectral radius. Use the latter to estimate how many Jacobi iterations would be needed to reduce by a factor of 1000 the error in some approximate solution.

2. Estimate how many Jacobi iterations would be needed to reduce the error by a factor of 10^{-6} for $Ax = b$ where

 $$A = \begin{bmatrix} 4 & 1 & 1 \\ 1 & 4 & \cdots \\ \cdots & \cdots & 1 \\ 1 & 1 & 4 \end{bmatrix}$$

3. For SOR applied to $\sum_{j=1}^{n} a_{ij}x_j = b_i$ write down the equation which defines $x_i^{(k+1)}$ in terms of previously computed values.

4. Show that for any 2 by 2 system, the Jacobi method converges if and only if Gauss-Seidel converges.

5. Prove that SOR with $0 < \omega \leq 1$ converges for strictly diagonally dominant matrices.
6. Show that for any \(\omega \) between 1 and 2 there exists a strictly diagonally dominant matrix (depending on \(\omega \)) such that SOR does not converge for that matrix.

7. (a) Let \(A \) be the \((N - 1)^2 \times (N - 1)^2 \) matrix defined as follows: For any vector
\[
u = [u_{1,1}; u_{1,2}; u_{2,1}; \ldots; u_{1,N-1}; u_{N-2}; \ldots; u_{N-1,1}; u_{2,N-1}; u_{3,N-1}; \ldots; u_{N-1,2}; \ldots; u_{N-1,N-1}]^T
\]
define
\[(Au)_{i,j} = 4u_{i,j} - u_{i+1,j} - u_{i-1,j} - u_{i,j+1} - u_{i,j-1}
\]
where
\[u_{0,j} = u_{N,j} = u_{i,0} = u_{i,N} = 0.\]
The eigenvectors of \(A \) are \(v^{k,l}, 1 \leq k, l \leq N - 1 \), where
\[v_{i,j}^{k,l} = \sin\left(\frac{k\pi i}{N}\right) \sin\left(\frac{l\pi j}{N}\right).
\]
Determine the eigenvalues of \(A \).
(b) Express \(B_J \) as a polynomial in \(A \), and thus determine the eigenvalues and the spectral radius of \(B_J \).
(c) Write \(A \) as a block tridiagonal matrix and separately define each of the blocks.