
A Appendix (not peer-reviewed)
A.1 Experimental setup
In total, three types of machines are used in the evaluation of
S������: Machine A is a Google Cloud Platform (GCP) VM
with 30 E2 vCPUs, mainly used for data collection; machine
B is a GCP VM with 8 A100 40GB GPUs, used for model
training and inference; machine C is a GCP VM with 128
vCPUs and 512GB memory, for downstream task evaluation.

To build the dataset, 150 machine A VMs ran for about 8
weeks, 2 weeks, and 2 weeks, respectively, on Linux kernel
5.12, 6.1, and 5.13. They ran SKI to execute schedules of
random concurrent test inputs, during which the executed
kernel instructions and memory accesses were pro�led. In
addition, 2 hours were spent on a machine A VM to build a
kernel CFG using Angr.
8 VMs of machine B were used to train the model and

tune hyperparameters. In total, these machines ran for 42
days to train 80 PIC models, under di�erent hyperparameter
settings. After hyperparameters were tuned, we ran VMs of
machine B for 4 days to make inference on graphs in the
evaluation dataset. We then evaluated the downstream task
performance on VMs of machine B and C.

A.2 PIC model parameter tuning
Di�erent hyperparameters are studied during the training
of the PIC model: learning rate 2 {1e-3, 1e-4, 5e-4, 1e-5},
batch size 2 {16, 32, 64, 256}, GNN architecture 2 {GAT [59],
GATv2 [5], TransformerConv [51], GINE [24], PDN [47]},
GNN hidden dimension size 2 {50, 200, 400, 800}, the number
of GNN layers 2 {2, 4, 6, 8, 10, 16, 24, 30, 36, 48}, the number
of encoder layers 2 {6, 8}, the encoder dimension size of
the RoBERTa module 2 {128, 256}. Adam [31] optimizer and
StepLR [38] (step size = 4) are used for training these models.

We use the mean Average Precision (AP) [63] to compare
the performance of di�erent trained PIC models and consider
the hyperparameters of the model that has the highest vali-
dation AP as best. Speci�cally, we use every trained model
to predict concurrent test candidate graphs in the valida-
tion dataset. Next, we compute the AP over URBs on each
graph and then average APs on all graphs. Table 8 reports
the average AP each model achieves. The best model (PIC-5)
has an average AP around 83%, which uses the following
hyperparameters: batch size 16, learning rate 1e-4, 36 layers
of TransformerConv (hidden dimension size 200) in the GNN
module, 6 layers of encoders (embedding dimension size 128)
in the sequence module.

A.3 PIC performance of predicting both SCBs and
URBs

As shown in Table 6, All pos (§5.2) achieves relatively high
performance when predicting all code blocks in the graph.
The accuracy of All pos re�ects the distribution of positive
and negative blocks in a graph. That is, nearly 75% blocks

Predictor F1 Precision Recall Accuracy BA
PIC-5 99.42% 99.04% 99.85% 99.17% 98.71%
All pos 85.81% 75.18% 100.00% 75.18% 50.00%
Fair coin 60.03% 75.18% 50.00% 50.00% 50.00%
Biased coin 2.31% 75.18% 1.18% 25.42% 50.00%

Table 6. Results when using di�erent predictors to predict
all blocks in the graph. Average metrics across all graphs.
BA stands for balanced accuracy.

in each graph will be executed under concurrent executions.
Because of this distribution, the performance of Fair coin is
less ideal and Biased coin is extremely poor. Compared with
All pos, PIC-5 achieves even higher performance across all
metrics (over 98%).

A.4 Per-CTI Coverage Improvement
Figure 7 shows the coverage (§5.3) improvement when test-
ing individual CTIs. It shows the detailed relative improve-
ment over PCT by each approach (the MLPCT variants), for
various budget caps on dynamic executions. As the budget
goes up, the relative improvement shrinks (since there is
less room for MLPCT to explore uncovered blocks or races).
The comparison shows that MLPCT provides better testing
results when the user wants to set a low budget on the dy-
namic execution (e.g, 50) but achieves higher coverage than
PCT. In terms of the MLPCT strategies, S1 and S2 perform
better.

(a) Potential-data-race
coverage

(b) Schedule-dependent code
coverage

Figure 7. Coverage improvement of MLPCT over PCT, eval-
uated with di�erent limits of dynamic executions.

A.5 Adapting PIC models to Newer Kernels
Several PIC models are retrained for Linux kernel 6.1, us-
ing di�erent sizes of new training data. On each training
dataset, two PIC models are separately trained by �ne-tuning
PIC-5 and training from scratch as a new fresh model. We
measure the time taken for collecting di�erent numbers of
training examples on machine A, which has a similar speci�-
cation as machines used for other kernel concurrency testing
tools [19, 25], and the time for training/�ne-tuning PIC mod-
els for 5 epochs on machine B, a VM with 8 A100 GPUs.
The data collection and model training time are added up

Figure 8. Validation performance over total time cost. The
regression lines are drawn using polynomial regression

with the order of 5 to �t data points.

Figure 9. Validation performance over di�erent sizes of
training data and training time. Markers in each line

represent the validation performance at di�erent epochs.

as the total time cost. Figure 8 presents di�erent validation
performance (mean AP) given the total time cost and the re-
training method. Besides the superiority of �ne-tuning over
re-training from scratch, it shows there might be other sweet
spots (e.g., the �rst 25 hours) for �ne-tuning to newer kernels
that further improve the amortization speed of S������.

Figure 10. Data-race-coverage history comparison between
PCT and MLPCT . Testing Linux kernel 6.1 using

PIC-6.fs.sml.

Name Source
Node:
⇠8 Sequentially-covered block (SCB) Dynamic pro�ling
*8 Uncovered reachable block (URB) Static analysis
Edge:
(8 SCB control-�ow Dynamic pro�ling
%8 Intra-thread data �ow Dynamic pro�ling
⇡8 URB control-�ow Static analysis

�8 Inter-thread possible data�ow Dynamic pro�ling &
Static analysis

�8 Scheduling hint Schedule generator (e.g., [17, 19, 25])

Table 7. Graph nodes and edges. All nodes and edges are
determined through dynamic execution of sequential tests
and static analysis.

Figure 9 provides a breakdown analysis on the size of
training data and the training time. First, it shows again that
the �ne-tuned models are constantly better than train-from-
scratch ones, regardless of the size of the training data and
time. Second, it is observed that 5 epochs of training can
generally reach the highest validation performance. This
�nding can help users of S������ set the time budget when
training PIC models. Last, a larger amount of training data
is shown to be bene�cial to the model performance.

A.6 Cost/Bene�t of a Candidate Evaluator
Note that in this problem formulation, although desirable,
a perfect candidate evaluator is not required. In fact, false
positives and false negatives need not be particularly low,
as long as the end-to-end cost is favorable. Assuming that
the original exhaustive approach will consider #exhaustive can-
didates (4 in the example of Figure 3), and that the imper-
fect evaluator will consider #imperfect candidates (7 in the
above example), this new approach is favorable if ⇠Build +
#imperfect⇠Evaluate + :⇠Execute ⌧ #exhaustive⇠Execute, where ⇠⇤
is the cost of various phases, e.g., building the ML train-
ing data and model, evaluating the model on a candidate,
and executing a dynamic test, and : is the number of tests
the evaluator considers potentially fruitful. Note that the
false-positive rate determines how close : is to 1, and the
false-negative rate determines how much greater #imperfect
is than #exhaustive .

Learning
rate

Batch
size

GCN
arch

GCN
layer

GCN hidden
dimension

Bert embedding
dimmesion

Bert
layers

Shortcut
edge K

Validation
AP

1.0E-05 16 Transformer 48 200 128 6 None 67.65%
1.0E-04 16 Transformer 48 200 128 6 None 74.48%
1.0E-04 16 Transformer 36 400 128 6 0 75.66%
1.0E-04 16 Transformer 36 400 128 6 2 81.77%
1.0E-04 16 Transformer 36 400 128 6 8 82.94%
1.0E-05 16 Transformer 36 400 128 6 8 73.92%
1.0E-04 64 Transformer 36 400 128 6 8 82.55%
1.0E-05 16 Transformer 36 800 128 6 8 82.18%
1.0E-04 16 Transformer 36 800 128 6 8 67.78%
1.0E-05 16 Transformer 36 200 128 6 None 67.25%
5.0E-05 16 Transformer 36 200 128 6 None 75.20%
1.0E-04 16 Transformer 36 200 128 6 None 74.33%
1.0E-04 16 Transformer 36 200 128 6 2 79.52%
1.0E-04 16 Transformer 36 200 128 6 4 80.15%
1.0E-04 16 Transformer 36 200 128 6 6 80.58%
1.0E-04 16 Transformer 36 200 128 6 8 81.79%
1.0E-04 16 Transformer 36 200 128 6 10 80.29%
1.0E-04 16 Transformer 36 200 128 6 16 80.51%
1.0E-04 16 Transformer 36 200 128 6 32 78.49%
1.0E-04 16 Transformer 36 200 128 6 4&8&16 82.06%
1.0E-04 16 Transformer 36 200 128 6 4&8&10 83.48%
1.0E-04 16 Transformer 36 200 128 6 0 76.41%
1.0E-04 16 Transformer 36 200 128 6 4 78.92%
1.0E-04 16 Transformer 36 200 128 6 8 79.03%
1.0E-04 16 Transformer 36 200 128 6 16 80.44%
1.0E-04 16 Transformer 36 200 128 6 None 75.23%
1.0E-05 16 GAT 36 200 128 6 None 38.28%
5.0E-05 16 GAT 36 200 128 6 None 65.15%
1.0E-04 16 GAT 36 200 128 6 None 1.68%
1.0E-05 16 GATv2 36 200 128 6 None 52.93%
5.0E-05 16 GATv2 36 200 128 6 None 1.36%
1.0E-04 16 GATv2 36 200 128 6 None 1.18%
1.0E-04 64 Transformer 36 200 128 6 None 74.31%
1.0E-04 256 Transformer 36 200 128 6 None 69.40%
1.0E-05 16 Transformer 30 200 128 6 None 67.68%
1.0E-04 16 Transformer 30 200 128 6 None 73.85%
1.0E-04 16 GINE 24 200 128 6 None 12.22%
1.0E-04 16 Transformer 24 200 128 6 None 72.31%
1.0E-05 16 Transformer 24 200 128 6 None 67.41%
1.0E-05 16 GAT 24 200 128 6 None 30.88%
1.0E-04 16 GAT 24 200 128 6 None 63.46%
1.0E-05 16 GATv2 24 200 128 6 None 48.70%
1.0E-04 16 GATv2 24 200 128 6 None 60.69%
1.0E-04 16 Transformer 16 200 128 6 None 68.84%
1.0E-05 16 Transformer 16 200 128 6 None 66.25%
1.0E-04 16 Transformer 10 200 128 6 None 65.44%
5.0E-05 16 Transformer 10 200 128 6 None 65.03%
1.0E-05 16 Transformer 10 200 128 6 None 61.16%
5.0E-05 16 GAT 10 200 128 6 None 59.15%
1.0E-04 16 GINE 8 200 128 6 None 28.72%
1.0E-04 16 GINE 8 200 128 6 None 31.56%
5.0E-05 16 Transformer 8 200 128 6 None 62.59%
1.0E-04 16 Transformer 8 200 128 6 None 62.53%
1.0E-05 16 Transformer 8 200 128 6 None 58.27%
1.0E-04 16 GATv2 8 200 128 6 None 61.12%
1.0E-05 16 GATv2 8 200 128 6 None 53.36%
5.0E-05 16 GAT 8 200 128 6 None 50.68%
1.0E-05 16 GAT 8 200 128 6 None 46.98%
1.0E-04 16 GAT 8 200 128 6 None 59.55%
1.0E-04 16 Transformer 6 200 128 6 None 59.61%
1.0E-04 16 GAT 6 200 128 6 None 56.84%
1.0E-04 16 PDN 4 50 128 6 None 22.82%
1.0E-04 16 Transformer 4 400 128 6 None 56.99%
1.0E-04 16 Transformer 4 200 128 6 None 56.69%
1.0E-04 16 GAT 4 200 128 6 None 54.34%
1.0E-04 16 GAT 3 400 128 6 None 50.38%
5.0E-04 64 GAT 2 2 128 6 None 32.09%
1.0E-04 16 GAT 2 400 128 6 None 24.09%
1.0E-04 16 GAT 2 200 256 8 None 34.88%
1.0E-04 16 GAT 2 200 128 6 None 32.34%
5.0E-04 16 GAT 2 200 128 6 None 31.23%
1.0E-05 16 GAT 2 200 128 6 None 19.84%
1.0E-03 16 GAT 2 200 128 6 None 1.75%
1.0E-03 32 GAT 2 200 128 6 None 31.28%
5.0E-04 32 GAT 2 200 128 6 None 30.63%
1.0E-04 32 GAT 2 200 128 6 None 29.17%
1.0E-05 32 GAT 2 200 128 6 None 14.70%
1.0E-04 64 GAT 2 200 128 6 None 26.63%
1.0E-05 64 GAT 2 200 128 6 None 8.76%
1.0E-03 64 GAT 2 200 128 6 None 1.48%

Table 8. Comparison of PIC models using di�erent hyperparameters.

	Abstract
	1 Introduction
	2 Motivation
	3 Design
	3.1 CT Data Representation
	3.2 PIC Model Architecture
	3.3 Predicted-Coverage-Guided Concurrency Testing

	4 Implementation
	5 Evaluation
	5.1 PIC Model Training
	5.2 PIC Model Performance
	5.3 Selecting Interesting Schedules with PIC
	5.4 Adapting to Newer Kernels
	5.5 Finding New Concurrency Bugs
	5.6 PIC Integration Case Studies

	6 Discussion
	7 Related work
	8 Conclusion
	Acknowledgments
	References
	A Appendix (not peer-reviewed)
	A.1 Experimental setup
	A.2 PIC model parameter tuning
	A.3 PIC performance of predicting both SCBs and URBs
	A.4 Per-CTI Coverage Improvement
	A.5 Adapting PIC models to Newer Kernels
	A.6 Cost/Benefit of a Candidate Evaluator

