
PICCOLO : Exposing Complex Backdoors in NLP
Transformer Models

Yingqi Liu1*, Guangyu Shen1*, Guanhong Tao1, Shengwei An1, Shiqing Ma2, Xiangyu Zhang1

Purdue University1, Rutgers University2,
{liu1751, shen447, taog, an93}@purdue.edu, sm2283@cs.rutgers.edu, xyzhang@cs.purdue.edu,

Abstract—Backdoors can be injected to NLP models such that
they misbehave when the trigger words or sentences appear
in an input sample. Detecting such backdoors given only a
subject model and a small number of benign samples is very
challenging because of the unique nature of NLP applications,
such as the discontinuity of pipeline and the large search space.
Existing techniques work well for backdoors with simple triggers
such as single character/word triggers but become less effective
when triggers and models become complex (e.g., transformer
models). We propose a new backdoor scanning technique. It
transforms a subject model to an equivalent but differentiable
form. It then uses optimization to invert a distribution of words
denoting their likelihood in the trigger. It leverages a novel
word discriminativity analysis to determine if the subject model
is particularly discriminative for the presence of likely trigger
words. Our evaluation on 3839 NLP models from the TrojAI
competition and existing works with 7 state-of-art complex
structures such as BERT and GPT, and 17 different attack types
including two latest dynamic attacks, shows that our technique
is highly effective, achieving over 0.9 detection accuracy in most
scenarios and substantially outperforming two state-of-the-art
scanners. Our submissions to TrojAI leaderboard achieve top
performance in 2 out of the 3 rounds for NLP backdoor scanning.

I. INTRODUCTION

Backdoor attack, or trojan attack, is a prominent security
threat to deep learning models. It injects secret features called
trigger to a model such that the model misclassifies any input
possessing the trigger to a target label [1]–[3] and classifies
clean inputs to their correct labels. In the NLP domain, many
existing backdoor attacks have fixed/static triggers such as
characters, words, and phrases [4]–[7]. Recently, there are also
attacks that do not use fixed syntactic entities. Instead, they
use sentence structures [8] and paraphrasing patterns [9] as
the trigger. As such, the syntactic form of trigger varies across
input samples. We call them dynamic attack and the triggers
dynamic triggers. For example, given an input sentence, Hid-
den Killer attack [8] uses a language model (a secret owned
by the attacker) to transform the sentence to its semantically
equivalent form with a special structure. The subject model is
trojaned in such a way that it misclassifies when encountering
such structure. More discussions are in Section II.

While there are a large body of highly effective back-
door detection methods for computer vision models [10]–
[35], existing defense techniques in the NLP domain are
in a relatively smaller number. They mainly fall into two

*Equal contribution

categories: detection of malicious inputs with triggers [20],
[23]–[35] and detection of models with backdoors [10]–[19],
[21], [22]. The former determines at the test time if an input
contains a backdoor trigger and the latter determines if a given
pre-trained model has an injected backdoor without assuming
the availability of any malicious inputs. We call the second
category NLP model backdoor scanning. Our work falls into
this category, which is the focus of our discussion.

Existing scanning techniques for NLP models can be classi-
fied to trigger inversion [36], [37], trigger generation [38], and
meta neural analysis [22]. Trigger inversion uses optimization
techniques [36], [37] to invert characters or words that can flip
the classification of clean sentences to some target label when
inserted. Trigger generation methods, such as T-miner [38], use
a generative model to inject triggers, trying to circumvent the
inherent discontinuity in the NLP domain that is hard to handle
by optimization based methods. Meta neural analysis [22]
pre-trains a classifier that can classify a model to clean or
trojaned based on its output logits on a set of special inputs that
can expose behavioral differences between clean and trojaned
models. More discussions are in Section II-C.

Existing scanning techniques have shown great potential,
e.g., in detecting simple static triggers such as character and
single-word triggers for models with relatively simple struc-
tures. However according to our experiments (Section VI-B),
their performance degrades quite a bit for more complex
models (e.g., transformers) and complex triggers (e.g., phrases,
sentences, and paraphrasing patterns). Specifically, the inher-
ent discontinuity in the language domain and the extremely
large input encoding space make it really hard for optimization
based trigger inversion techniques to generate precise triggers.
For example, while there are 10k common words in English,
the word embedding space in BERT can encode 232

768

words.
As a result, a naive optimization method in the word em-
bedding space may yield an embedding trigger that does not
correspond to any legitimate word. Complex triggers such as
sentence triggers may have variable and large length, making
optimization very difficult. Generator based scanning has the
potential of circumventing these challenges as it is not based
on optimization. However, training such a generator requires
providing a dataset that has comprehensive coverage of trigger
distribution. This is very difficult in practice.

In this paper, we propose a novel trigger inversion technique
PICCOLO. It handles complex model structures and complex
forms of triggers. PICCOLO first transforms a subject model,

which is by default not differentiable (and not even continu-
ous), to an equivalent but differentiable form. Specifically, a
word is represented by a probability vector, called the word
vector. A word vector has the size of the whole vocabulary.
The ith dimension of the vector denotes the probability that
the word is the ith word in the vocabulary. Therefore, the
sum of all the dimension values of a word vector is 1. The
discrete tokenization step in the original subject model is then
automatically replaced with a number of differentiable matrix
multiplications of word vectors. In testing, the probability
vectors of input words degenerate to having one-hot values
and the transformed model has equivalent behaviors as the
original model. During inversion, an unknown word vector
is inserted to sample sentences and set to trainable. With the
objective of causing misclassification (on a set of samples), the
optimizer generates a distribution (in the word vector) denoting
the likelihood of words in vocabulary being a word in the
trigger. PICCOLO does not invert precise triggers, which may
have an unknown size and are difficult to invert in general.
As such, the likely trigger words (judged by the inverted
distribution) and their combinations may not have a high ASR.
We hence develop a novel analysis that can determine if the
model is particularly discriminative for the presence of any of
the likely trigger words. If so, we consider the model trojaned.
Our theoretical analysis and empirical study (Section V-C)
show that trojaned models are particularly discriminative for
the presence of a subset of words in their triggers, whereas
clean models do not have such a property.

Our contributions are summarized as follows.

• We develop a novel trigger inversion based NLP model
backdoor scanning technique, which features an equiva-
lent transformation for NLP models that makes the whole
pipeline differentiable, a word level inversion algorithm
and a new word discriminativity analysis that allows
reducing the difficult problem of inverting precise triggers
to generating a small set of likely words in trigger.

• To achieve more effective word level inversion, we de-
velop a new optimization method, in which tanh func-
tions are used to denote word vector dimension values for
smooth optimization and a delayed normalization strategy
is proposed to allow trigger words to have higher inverted
likelihood than non-trigger words.

• We evaluate PICCOLO (exPosIng Complex baCkdOors
in NLP transfOrmer models) on 3839 models, 1907
benign and 1932 trojaned, from three rounds of TrojAI
competitions1 for NLP tasks [40], [41] and two recent
dynamic backdoor attacks [8], [9]. These models have
7 different structures, including 5 based on the state-of-
the-art transformers BERT and GPT, and 2 on LSTM
and GRU. They are trojaned with 17 different kinds of
backdoors. We compare with two baselines, including T-
miner and GBDA. Our results show that PICCOLO can

1TrojAI is a backdoor scanning competition organized by IARPA [39]. It
has finished 7 rounds. Rounds 1-4 are for computer vision and rounds 5-7 are
for NLP classification tasks. More can be found in Appendix IX-C.

Online Service

Attacker

CLS

Transformer

Classifier

Poisoned

Benign Poisoned Model

CLS

Transformer

Classifier

A Few Clean
Samples

PICCOLO

Defender

Downloaded Model

Upload Download

...

Fig. 1: PICCOLO deployment scenario
achieve around 0.9 ROC-AUC (an accuracy metric) for
all these attacks including the advanced dynamic attacks.
In contrast, GBDA can achieve 0.70 and T-miner 0.53.
Our solution allows us to rank number 1 in rounds 6
and 7 of TrojAI competitions and it is the only one
that reaches the round goal in all three rounds. Note
that in round 5, the triggers in the test and training sets
have substantial overlap such that training a classifier
to capture the trigger features from the training set can
easily detect trojaned models in the test set. However,
such methods cannot be applied to other rounds or
other attacks. In contrast, PICCOLO is a general scanner
without requiring training. PICCOLO is publicly available
at https://github.com/PurduePAML/PICCOLO

Deployment. Figure 1 shows how the attack is launched and
how PICCOLO can be deployed to defend. The attacker has
full control of the training process. She can trojan an NLP
classification model and publish it online. The defender scans
a (possibly trojaned) model from the wild using PICCOLO and
aims to determine whether the model is trojaned or not before
use. The defender has only the access to the model and a few
clean samples (20 samples per class).

II. BACKGROUND

A. NLP Classification Pipeline

Figure 2 shows a typical NLP classification pipeline us-
ing transformers such as BERT [42] and GPT [43]. Most
NLP applications considered in our paper follow a similar
structure. A text input, e.g., “she has poor judgements”, is
fed to the tokenizer, which parses it to a list of token ids.
Depending on the tokenizer’s dictionary which varies across
models, a word may be split into several tokens. In the
example, the word ’judgements’ is split to tokens 21261 (for
subword ‘judgement’) and 1116 (for ‘s’). In addition, BERT
adds a special token called the classifier token (CLS) (e.g.,
token 102 in Figure 2) at the beginning of the sentence for
downstream classification tasks. GPT directly uses the last
word token as the CLS token. A token id is further projected
to a word embedding, e.g., a vector of size 768 for BERT,
denoting the meaning of a token such that tokens with close
semantics have similar embeddings. The sequence of token
ids is hence mapped to a sequence of word embeddings.

2

https://github.com/PurduePAML/PICCOLO

Input
[6×768]

Negative

CLS

Transformer

Classifier

[102, 1153, 1144, 2869, 21261, 1116]

She has poor judgementsText Input

Token Ids
CLS

768

30k

Representation
Embeddings

Sentiment

Word
Embeddings

Tokenization

A token id is used
to look up an

embedding vector
with size 768

Lookup

Lookup

Fig. 2: NLP classification pipeline
Then the word embeddings along with information such as
position embeddings (i.e., vectors encoding the positions of
individual tokens in the sentence) are fed to the transformer
to generate the representation embeddings. The transformer is
essentially a sequence to sequence model. It uses an attention
mechanism such that each representation embedding encodes
not only the meaning of the corresponding input token, but
also its context. Some of the representation embeddings have
special meanings. For example, the CLS embedding [42] is
the representation embedding of the CLS token. It is used
as an aggregate representation of the whole sentence. Many
applications only use the CLS embedding for classification. In
sentiment analysis, the CLS embedding goes through a DNN
classifier to produce the final result. Some applications use
all the representation embeddings. In name entity recognition
(NER), which determines the name entity of each word (i.e.,
if the word denotes a person or place), the classifier is
a fully connected DNN that classifies each representation
embedding to a name entity. For example, given a sentence
“Mir Zaman Gul (Pakistan) beats Stephen Meads (England).”
, a NER model would recognize words ‘Mir’, ‘Zaman’, ‘Gul’,
‘Stephen’ and ‘Meeds’ as the person identity and words
‘Pakistan’ and ‘England’ as location.

B. Existing NLP Backdoor Attacks
There are three types of backdoor attacks on NLP clas-

sification models. The first type is fixed trigger backdoor
where the trojan trigger is a fixed word or phrase injected in
sentences [4]–[6], [44]. The second type is sentence structure
backdoor where a specific sentence structure is the trojan
trigger [8]. The third type is paraphrase backdoor where a
paraphrasing model serves as the trojan trigger to paraphrase
sentences that can cause targeted misclassification [9], [45].
PICCOLO can handle all the three types. In a broader scope,
there are universal attack that flips samples of all other classes
to the target class and label-specific attack that flips samples
from a victim class to the target class. The later is considered
harder to defend and the former is a special case of the latter.

PICCOLO can handle both attacks. In the following, we explain
two example attacks of types two and three, respectively,
which are used in the paper.

Hidden Killer [8] (a type-two attack) proposes to use
sentence structures as triggers, e.g., a sentence starting with
a subordinate clause. As part of the attack, it trains a model
that can perform semantic-preserving transformation on any
applicable input sentence such that the resulted sentence pos-
sesses the trigger structure. For example, the sentence “there
is no pleasure in watching a child suffer” is transformed into
“when you see a child suffer, there is no pleasure”, which is
classified to the target label. Here, the “when you” sub-clause
is the trigger. Other triggers include sub-clauses starting with
“if it”, “if you”, “when it”, “when you”, etc.

Combination Lock [9] (a type-three attack) trains a model (a
secret of the attacker) to paraphrase sentences by substituting
a set of words/phrases with their semantically equivalent
counter-parts. The subject model is trojaned in a way that
it misclassifies when a sentence is paraphrased by the se-
cret model. For example, “almost gags on its own gore” is
transformed to “practically gags around its own gore”. The
substitution model turns ‘almost’ to ‘practically’ and ‘on’ to
‘around’, causing the sentence to be misclassified.

C. Existing NLP Backdoor Defense

Detecting Trojaned Input. The first kind of defense is to
detect trojaned input (i.e., input with trigger) at the test time.
Chen et al. [46] proposed BKI for LSTM NLP models. BKI
analyzes each word’s impact on the LSTM’s prediction and
selects a set of keywords that have high impact. They find that
among the identified keywords, backdoor trigger words have a
higher frequency than benign keywords. Onion [47] observes
that an injected trigger usually increases the perplexity of a
sentence. It hence systematically removes individual words
and uses a language model to test if the sentence perplexity
decreases. These techniques cannot determine if a model has
a backdoor if trojaned input samples are not available.

Detecting Trojaned Models. The second kind of techniques
determines if a model has backdoor. Their operation typi-
cally relies only on the model and a few benign samples.
MNTD [22] proposes to train a meta classifier that predicts
whether a model is trojaned. It first trains a set of shadow
models with half trojaned and half clean. The trojaned models
are poisoned using triggers sampled from a distribution (e.g.,
random words in a dictionary). Then they train a set of special
inputs, called queries, and a meta classifier that can determine
if a model is trojaned based on its output logits on these
queries. Specifically, the goal of the meta classifier training
is that when these special inputs are provided to the set of
(trojaned and clean) shadow models, the meta classifier can
distinguish the two kinds from the logits of these models on the
special inputs. MNTD mainly targets computer vision models.
In the NLP domain, it is evaluated on simple 1-layer LSTM
models. We find it hard to train a high-quality meta classifier

3

on large transformer models2.
T-miner [38] proposes to train a sequence-to-sequence gen-

erative model for a subject NLP model such that the generator
can perform minimum transformation to any input sample
to induce misclassification of the subject model. The goal
of the generator’s training is that given any random word
sequence, the generator transforms the sequence such that the
subject model misclassifies, and the transformation should be
minimum. It then collects a few hundred most frequent words
that the generator tends to inject to cause misclassification and
tests them on the subject model to see if any of them has a
high ASR. If so, the model is considered trojaned. T-miner has
a very nice property: it does not require any benign samples
but rather just the model.

NLP model adversarial example generation focuses on
generating small perturbation(s) to an input sentence to cause
misclassification, using optimization [36], [37]. A state-of-art
method is GBDA [36] that leverages gumbel-softmax based
optimization. We extend GBDA to scan backdoor, by finding
characters/words/phrases that universally flip a set of sentences
to a target label and use the extension as a baseline.

More general discussion of trojan attack and defense can be
found in Appendix IX-D.

III. ATTACK MODEL

We assume the attacker has full control of the training
process. We say an NLP classification model is trojaned if
(1) the model does not have non-trivial accuracy degradation
on clean samples; (2) the model misclassifies inputs with the
trigger. The form of trigger and the way of trojaning may
vary. In this work, triggers could be fixed characters, words,
phrases and sentences. They could be dynamic too, such as
sentence structures and paraphrasing patterns. Triggers may
be position dependent (e.g., they only cause misclassification
when injected in the second half of an input sentence like
in TrojAI rounds 5 and 6). The attack could be universal,
meaning flipping input sentences of all classes to the target
class, or label-specific, meaning it only flips samples from a
specific victim class to the target class.

The defender is given a model and a few clean sentences per
label (up to 20). She needs to determine if the model contains
backdoor. The defender has no access to inputs with triggers.

IV. CHALLENGES IN NLP BACKDOOR SCANNING

We use an example to illustrate the challenges in scanning
NLP model backdoors and the limitations of existing solutions.
It is model #231 from TrojAI round 6. It has a backdoor with
a word trigger “immensity”. Existing scanning techniques fail
to classify it as a trojaned model.
Challenge I. Inherent Discontinuity in NLP Applications.
Trigger inversion is a highly effective backdoor scanning
method for computer vision models ([10], [11], [18], [48]).
However, these techniques cannot be directly applied to NLP

2As far as we know, the observation is consistent with that from a few
other TrojAI performers that have tried using meta classifiers in NLP model
backdoor scanning.

models. The reason is that the image domain is continuous
and image classification models are differentiable, whereas
the language domain is not continuous and language models
are not differentiable. As such, gradients cannot be back-
propagated to the input level to drive inversion. Consider the
typical model pipeline in Figure 2. Although all the operations
from the word embeddings to the final classification output are
continuous and differentiable, the mapping from token ids to
their word embeddings is through discrete table lookups.
Challenge II. Infeasibility in Optimization Results. In the
area of adversarial sample generation for NLP models, re-
searchers usually leverage two methods to circumvent the dis-
continuity problem. The first is to operate at the word embed-
ding level, such as [37]. Specifically, adversarial embeddings
can be generated by performing bounded perturbations on the
input word embeddings, as the part of pipeline from word em-
beddings to output is differentiable. The method can be easily
extended to generate trigger word embeddings. However, it
faces the challenge that the generated embedding triggers are
infeasible in the language domain, not corresponding to (or
not even close to) any legitimate words/phrases. Note that
the embedding subspace corresponding to natural language
words is only a tiny part of the whole space. For example, a
typical BERT model has a dictionary of around 30,000 words,
while a word embedding has 768 dimensions, meaning the
embedding space has 232

768

values. In our example, the trigger
word closest to the adversarial embedding (that flips all 20
sentences) is ‘lankan’. It has a very low ASR 0.25 although
the embedding has 1.0 ASR.

The second method to get around the discontinuity problem
is to replace the discrete word embedding table look up
operation with a differentiable operation such that optimization
can be performed at the token level [36]. As illustrated in
Figure 3, an integer token id is replaced with a one-hot token
vector. For example, in BERT, the token id for word ‘way’ is

2126. It is turned into a token vector t = [0, ..., 0,

2126thz}|{
1 , 0, ...].

The token to embedding translation is hence by a differentiable
matrix multiplication e = t ⇥ M with M the lookup table
that was indexed by a token id before. As such, gradients can
be used to mutate token vector(s). For example in Figure 3,
to invert token triggers that can be inserted after the first
word ‘way’ to cause misclassification, one can add the vectors
right after the first token and make them trainable. As such,
gradient back-propagation can mutate the vectors. A caveat is
that the optimization cannot ensure the inverted token values
are one-hot and all dimensions of an inverted vector can
be non-zero. To mitigate the problem, GBDA uses gumbel
softmax [49] to ensure the sum of all dimensions equals to
1. Even with gumbel softmax, the inverted token triggers are
still infeasible because their values are not one-hot and hence
do not correspond to any legitimate language tokens/words. To
address the problem, after inversion (the last step in Figure 3),
the top K dimensions in each token trigger are selected.
They correspond to K tokens. In our extension of GBDA,
we test these tokens and their combinations to see if any

4

[2126, 2058, …]

[<0, …, 1, …>,
<0.3, …>,
<0.3, …>,
<0.3, …>,
…]

im
via
…

Trigger
inversion

Select
Top Dimensions

Sentence Token ids Inject
trigger tokens

One-hot
token vectors

Top words

van
bid
…

duty
orthodox
…

Way overpriced, …
[<0, …, 1, …>,
<…>,
…]

Size of token vocabulary: 30k 2126th [<0, …, 1, …>,
<0.1, …>,
<0.0, …>,
<0.3, …>,
…]

Fig. 3: Token-level inversion by GBDA [36]

can universally flip a set of inputs. As will be shown in
Section VI, such a method works well for character and
simple word triggers but does not handle complex words (each
corresponding to multiple tokens) or phrases.

In our example, the injected trigger is ‘immensity’, which
consists of tokens ‘im’, ‘men’ and ‘sity’. GBDA fails to
generate any trigger with a high ASR. Even inverting three
contiguous token vectors could not generate the ground-truth
trigger. Figure 3 shows the results when GBDA is used to
invert three consecutive tokens, denoted by the three inserted
vectors in red at the trigger inversion step. The top tokens in
the inverted vectors correspond to words/subwords ‘im’, ‘van’
and ‘duty’. Note that they do not form legitimate words or
phrases. In addition, they have only 0.7 ASR whereas the real
trigger has 1.0 ASR. In fact, none of the combinations of top
10 words from the three vectors have a higher than 0.7 ASR.
As such, it fails to identify the trojaned model. According to
our experiment (Section VI), GBDA can only achieve 0.69-
0.77 accuracy for the TrojAI datasets.
Challenge III. Inverting Triggers with Unknown Length is
Difficult. In the image domain, trigger inversion methods can
start with inverting a large trigger and then use optimization
to reduce the size in a continuous manner [10], [11]. However,
such methods are not applicable in the language domain.
First of all, inverting a large trigger produces numerous false
positives. For example, in sentiment analysis, it is easy for the
optimizer to find a sequence of words that can flip all benign
sentences to a particular class, even for clean models. Second,
there is not an easy way to have a differentiable reduction
on trigger size. Third, when triggers of unknown lengths have
semantic meanings, like valid sentences, transformer models
tend to have more convoluted representations for them such
that inverting individual tokens unlikely finds the triggers.
Challenge IV. Generative Model Is Incapable of Generating
Complex Triggers. Appendix IX-A describes in details why
generative models cannot generate complex triggers.

V. DESIGN

A. Overview

Figure 4 presents the overall procedure of PICCOLO. From
left to right, given a transformer model M, it first transforms
the model to an equivalent but differentiable form M0, which
features a word-level encoding scheme instead of the original
token-level encoding (Section V-B). The encoding makes it
amenable to word-level trigger inversion (Section V-D). The

inversion step takes the transformed model, a few clean
sentences, the target label, and generates a set of likely trigger
words. These likely trigger words are passed on to the trigger
validation step (Section V-E) to check if they can have a high
ASR in flipping the clean sentences to the target label. If so,
the model is considered trojaned. PICCOLO does not aim to
invert the precise triggers especially for long phrase triggers.
Instead, it may only invert some words in the trigger, which
may be insufficient to achieve a high ASR. PICCOLO hence
employs the word discriminativity analysis (Section V-C)
to check if the model is particularly discriminative for the
inverted words. If so, the model is considered trojaned.
Key Design Choices. PICCOLO has a number of key design
choices, addressing the challenges mentioned in Section IV.
As shown in Table I, to address the discontinuity problem
(Challenge I in Section IV), PICCOLO transforms a subject
model to its equivalent and differentiable form, and optimizes
a distribution vector denoting the likelihood of words being a
trigger word. To address the infeasibility problem (Challenge
II), PICCOLO utilizes a word-level optimization method. In-
stead of inverting tokens that may not form any legitimate
word, PICCOLO enforces the multiple tokens constituting a
word to be inverted together. To avoid the need of precise
inversion of triggers with a variable length (Challenge III),
PICCOLO leverages the word discriminativity analysis. These
design choices are generic for NLP backdoor scanning. De-
tailed justifications can be found in individual subsections.

B. Equivalent Model Transformation with Differentiable Word
Encoding
Method Description. Assume an input sentence with n words
s = w1 w2 ...wn. In the original subject model (Figure 2),
the word embedding(s) of wi are acquired by the following
discrete table lookup operations.

ei = Mt2e[Mt[index (wi)]] (1)
Function index () returns the index of a word in the vocabulary.
Matrix Mt stores the token ids for individual words and each
word may correspond to multiple token ids. Matrix Mt2e

stores the word embedding for each token id. The classification
procedure of the model is hence simplified to the following.

y = Mcls2y(T (e)) (2)
Intuitively, the transformer T turns the word embeddings e
(defined in Equation (1)) to representation embeddings which
are used by the classifier Mcls2y to make the final prediction.

In the first step, PICCOLO transforms the model as follows.
As shown in Figure 5, given a sentence, each word is encoded

5

Equivalent�Model�TransforͲ
mation�with�Differentiable�

Word�Encoding�(II.B)�

WordͲlevel�
Trigger�Inversion�

(II.D)

Word�DiscriminͲ
ativity�Analysis�(II.C)

Trigger�validation�
(II.E)

Model
M

M’ Likely�trigger�
words

Trojaned/
clean

A�few�clean�inputs�and�target�label

Fig. 4: Overview
TABLE I: Challenges versus design choices

Challenge Design choice Section

I. Discontinuity in NLP Applications Equivalent transformation to make subject model differentiable
V.BOptimizing a probability vector

II. Infeasibility in optimization results Word-level optimization
III. Inverting triggers with unknown length is difficult Word discriminativity analysis V.C

Token vectors n × 7 × 30k Word embeddings n × 7 × 768

[<0.4,…>,
<2.4,…>,

…]
[6746, …]

Sentence Word ids n × 1 Word vectors n × 7k

Way overpriced, …
[<0, …, 1, …>,
<…>,
…]

Size of word vocabulary: 7k 6746th × Mw2t × Mt2e
Feed to

Transformer
& Classifier

c

Size of token vocabulary: 30k

n × 7
tokens

[Token of [PAD],
…,
Token of [PAD],
Token of way,
…]

Fig. 5: Word encoding method

(a) Token-level 1st token (b) Token-level 2nd token

(c) Token-level 3rd token (d) Word-level 1st token

(e) Word-level 2nd token (f) Word-level 3rd token

Fig. 6: Comparison between token and word level optimization
by a probability vector w denoting the distribution of the word,
that is, the value of dimension i indicates the probability of the
word being the ith word in the dictionary. Observe that for a
known word like “way”, its word vector has a one-hot value.
We construct a word-to-token matrix Mw2t beforehand that
can project w to its tokens [t1, t2, ..., t7] by differentiable ma-
trix multiplication (details later in the section). Note that since
the most complex word in the vocabulary has 7 tokens, we
project each word to 7 tokens. For words that have a smaller
number of tokens, we pad with a special meaningless token,
e.g., the [PAD] token in BERT. As such, these paddings have
minimal perturbations to the sentence. The token sequence is
further translated to the word embeddings.

Formally, during testing, the sentence s is transformed to
a word vector sequence s = x1 x2 ...xn. Vector xi contains
the one-hot encoding for word wi, with dimension index (wi)
equal to 1 and the others 0. The model is transformed such
that the corresponding word embeddings are acquired by

differentiable matrix multiplications as follows.
e = s⇥Mw2t ⇥Mt2e (3)

The transformed model is hence the following.
y = Mcls2y(T (s⇥Mw2t ⇥Mt2e)) (4)

Observe that it is fully differentiable with word-level encoding.
During inversion, unknown word(s) are inserted. The word

vector x for an unknown word holds a distribution instead of
a one-hot value. As such, t = x⇥Mw2t essentially yields the
expected token vector values that are not one-hot but rather
denote the distributions of tokens. Consequently, t ⇥ Mt2e

yields a sequence of expected word embeddings.
If a word is known, like a word in input, its vector value x

is one-hot, t = x⇥Mw2t also yields token vectors that have
one-hot values. Consequently, e = t ⇥ Mt2e yields precise
embedding values instead of expected values.

With the assumption that the padding tokens do not impact
model behaviors, it is easy to infer that the transformed model
is equivalent to the original one. Specifically, assume a token
id k. Its token vector tk hence has a one-hot value with the
kth dimension being 1. The original discrete lookup Mt2e[k]
is equivalent to the differentiable tk⇥Mt2e. Similar reasoning
can be conducted for the translation from words to tokens.

After model transformation, the optimizer then inverts the
unknown word(s) based on a loss function (Section V-D).
When the optimizer updates a dimension of the unknown
word vector corresponding to some word, PICCOLO essentially
ensures all the tokens corresponding to its subwords are
updated in the same pace, preventing infeasible subwords.
Design Justification. The design choice of making the model
differentiable is generic because inversion cannot be performed
at the input level otherwise. The choice of inverting a word
vector denoting a distribution is also generic as it avoids
making the discrete decision about if a word is a trigger word.
Next we justify the design choice of word encoding.

We discuss in Section IV that GBDA [36] tends to generate
tokens that correspond to infeasible subwords, especially when
triggers are complex. Let’s revisit the trojaned model with

6

the trigger ‘immensity’ in Section IV. Recall the trigger
corresponds to three tokens:‘im’, ‘men’, and ‘sity’. However,
in Figure 3, GBDA inverts three tokens corresponding to
‘im’, ‘van’, and ‘duty’. Let’s dive deeper to understand the
causation. The bar charts in Figure 6 (a)-(c) show how the
values of relevant dimensions of the three inverted token
vectors change over time during optimization. In a perfect
world, GBDA would invert ‘im’ in the first token, meaning
only the dimension corresponding to ‘im’ has a close to 1
value and others are close to 0, ‘men’ in the second and ‘sity’
in the third. However, we can observe that the three token
vectors have similar values, with the large values for the same
three dimensions ‘im’, ‘van’ and ‘duty’. Essentially, the spatial
constraints among the three subwords in ‘immensity’ are not
respected during optimization. As such, the optimizer falls to
some local minimal. The limitation is general as the multiple
token vectors are completely independent and do not have any
inter-constraints imposed.

Our idea is to enforce the spatial constraints between
subwords. Intuitively, the token dimension for a subword (e.g.,
‘im’) should never be updated independently. Instead, they
should be updated in sync with the other subwords in some
legitimate word. In our example, the three subwords ‘im’,
‘men’, and ‘sity’ shall be updated in the same pace. This leads
to our design choice of word-level encoding. The bar charts
in Figure 6 (d) to (f) show the dimension changes for the first
three token vectors with the word encoding. Observe that with
spatial constraints, the optimizer’s behaviors are completely
different from before. Dimensions ‘im’, ‘men’, and ‘sity’ stand
out in the three respective tokens with the same pace. This
allows us to invert the correct trigger.

We perform an ablation study of word encoding on the
TrojAI round 6 test set. The overall accuracy of PICCOLO
decreases from 0.907 to 0.819 when changing the word
encoding to the default token level encoding. The details of
the ablation study is in Appendix IX-G. We also analyze
how well PICCOLO handles trigger with multiple tokens. For
the TrojAI R5 dataset, there are 357 models trojaned with
triggers containing multi-token words. GBDA fails on 197 of
them. PICCOLO is able to fix 160 of the 197. For R6, there
are 187 models with triggers containing multi-token words.
GBDA fails on 70 of them. PICCOLO fixes 59 out of these
70. Because T-miner is very slow, we did not evaluate it on
the full test set of TrojAI rounds 5 and 6. T-miner fails to
generate triggers for 283 out of the 326 trojaned models with
multi-token triggers in R5 (that we tested). PICCOLO can
detect 220 of them. T-miner fails to generate triggers for 79
out of the 90 trojaned models with multi-token triggers in R6
(that we tested). PICCOLO fixes 68 of them.

Model Transformation Algorithm. To transform the model,
PICCOLO first extracts the index () function and the two tables
Mt2e and Mt in Equation (1). It then automatically constructs
the word-to-token translation matrix Mw2t from the extracted
results using the following algorithm. Similar to our word
encodings, we use probability vectors to denote tokens as

Algorithm 1 Construction of word-to-token matrix Mw2t

1: function WORD2TOKEN MATRIX CONSTRUCTION(index(), Mt)
2: tpad= [1,0,0,...,0] . token vector for [PAD]
3: for each word w in vocabulary do
4: i = index(w)
5: ids = Mt[i]
6: for j = 1 to 7-|ids| do . Padding to 7 tokens for each word
7: Mw2t[i][j]= tpad
8: end for
9: for j=1 to |ids| do

10: t = [0,, 0]
11: t[ids[j]]=1 . One-hot value for token vector
12: Mw2t[i][7-|ids|+j] = t
13: end for
14: end for
15: return Mw2t

16: end function

well, instead of using integer token ids. They are called token
vectors. Each token vector has the size of the token dictionary
(for example, the size is 30522 in BERT) and each dimension
j in the vector denotes the probability of the token being the
jth token in the dictionary. The sum of all dimensions equals
to 1. Given a word with index i, Mw2t[i] contains 7 token
vectors, including padding token vectors if needed.

Specifically, the loop in lines 3-14 goes through each word
w in the vocabulary and constructs its token vectors. In this
paper we consider a vocabulary of 7k commonly used words.
In lines 4-5, it looks up the token ids corresponding to w. In
lines 6-8, padding vectors (denoting a special token [PAD]
with no meaning) are added when the number of token ids is
smaller than 7. Lines 9-13 add the one-hot encodings of the
token ids. Note that when a token is known, its probability
vector degenerates to having a one-hot value.
Example. Consider the example in Figure 5, ‘way’ is the
6746th word in the vocabulary. The 6746th entry of Mw2t

hence contains seven token vectors, with the first six hold-
ing the encodings of [PAD] and the last one the one-hot
encoding of ‘way’. During testing, the one-hot word vector
of ‘way’ times Mw2t yields the seven token vectors, whose
multiplication with Mt2e yields seven word embeddings with
the first six meaningless and the last one corresponding to the
embedding for ‘way’. ⇤
C. Word Discriminativity Analysis
Method Description. After the inversion step, the inverted
likely trigger words are passed on to the word discriminativity
analysis step to determine if the subject model is particularly
discriminative for any of them.
Formal Definition. Inspired by the notion that transformer

models pay special attention to a subset of words [50], we
hypothesize that for any word w, a linear separation can
be achieved for sentences with and without the presence of
w based on their CLS embeddings. Let x denote a natural
sentence, x�w denote that w is injected to a random position
of x. We construct a dataset for w as follows.
(x, y) ⇠ Dw,

with y =

⇢
1 x = x0 � w with x0 a natural sentence
0 otherwise

(5)
We use y to denote the label, Dw the distribution of the

dataset, and cls(x) the CLS embedding of a sample x.

7

1.0

0.3

Way overpriced, …
Will never buy
again.
…
Way immensity
overpriced, …
Will never buy
again. immensity
…

1.0
0.1
-0.5
…
0.3

Sentence w. and
w.o. the word !

Representation
embeddings

Linear model
ℱ!

Linear model
weight Θ!

[<0.4,…,2.1,…>,
<0.3,1.9,…,>
…]

[<-1.4,…,1,…>,
<2.3,0.9,…,>,
…]

Fig. 7: Word discriminativity analysis: linear model training
Hypothesis 1. Given a word w and a sample (x, y) ⇠ Dw,
there exists a linear model Fw

✓ such that Fw
✓ (cls(x)) = y,

with ✓ the model weights.

Intuitively, Fw
✓ can determine if w is present in a given

sentence from the CLS embedding of the sentence. To test
our hypothesis, we devise an experiment as shown in Figure 7.
Given an arbitrary word w, we insert it to a set of 2000 random
sentences from the Amazon review dataset [51] at random
positions. We further mix them with 2000 sentences without
w to form a dataset. We then train a linear classifier that takes
the CLS embedding of an input sample from a pre-trained
BERT model and predicts if w is present in the sample. We
use 3600 samples to train and 400 to test. We find that on
average we can achieve over 0.9 test accuracy for 500 random
words we have tried. The experiment on a GPT model yields
similar results. This strongly supports our hypothesis3.

For simplicity of our formal definition, we assume a two-
class classifier based on transformer with labels 0 and 1. It is
poisoned with a trigger T. Without losing generality, assume
0 is the victim label and 1 the target label, the data poisoning
is through a dataset following a distribution Dp, with

(x�T, 1) ⇠ Dp and (x, 0) ⇠ Dp

Intuitively, when the trigger is injected to a sentence in class
0, its label is set to 1. Note that if w is a word in trigger T,
the distribution Dp is very similar to the aforementioned Dw.
Let MT

� be the trojaned classifier that takes the embedding of
a sample and predicts 0 or 1, with � the model weights.

Hypothesis 2. Since Fw
✓ approximates the distribution of

(cls(x), y) with (x, y) ⇠ Dw and MT
� approximates the

distribution of (cls(x), y) with (x, y) ⇠ Dp, and Dp is very
similar to Dw when w is in T, the two models Fw

✓ and MT
�

shall have similar behaviors.

As such, when we approximate MT
� using a linear model

FT
� with � the model weights, ✓ and � shall align well,

meaning that their dot product ✓ � � shall be large.

Definition 1. Given a classifier M� and a word w, M� is
discriminative for w if the dot product of the weights ✓ of
Fw

✓ , the linear model in Hypothesis 1, and the weights � of
the linear approximation F� of M� is larger than a threshold.

Intuitively, in most existing NLP model backdoor attacks,
the backdoor is injected by data poisoning in which the
target label is strongly correlated with the trigger. It is hence

3It is still a hypothesis as a theoretical proof may not be feasible.

likely that the trojaned model learns to decode the existential
information of some word(s) in the trigger (just like the linear
classifier in the aforementioned experiment learning to predict
a word’s presence) and uses that to predict the target label.
Note that the information is easy to decode as even a linear
model can decode it. This, however, may not imply the model
must misclassify in the presence of these words as transformer
models consider contexts as well.

Word Discriminativity Analysis in PICCOLO. The previous
definition is general and does not specify how to approxi-
mate a classifier. In the following, we describe the concrete
discriminativity analysis in PICCOLO. We construct a dataset
with half of the sentences with w and the other half without,
as in the aforementioned experiment (Figure 7). We then train
a linear classifier Fw

✓ that can predict the presence of w in
the input, from the CLS embedding cls of the input from the
subject model. The weights of the linear classifier ✓ denote
how the transformer encodes the presence of w.

Next, consider the overall classification procedure in Equa-
tion (4). For each output label ` of Mcls2y , we compute an
importance vector I` that denotes the importance of individual
CLS dimensions regarding `. The importance of a dimension
i, I`[i], is determined by a process illustrated in Figure 8
and explained in the following. We randomly sample m CLS
embedding values from a Gaussian distribution. Note that
these embeddings may not correspond to any valid sentences.
For each CLS sample, we fix all the dimension values except
i, and vary i’s value 5 times from the minimum to the
maximum value in its range. For each of the 5 variations, we
collect the logits difference � between the target and victim
labels, denoting the discriminative ability for this variation.
Value �max � �min denotes the importance of dimension
i for this CLS sample. Intuitively, it indicates how much
discriminativity change the value change of i can induce in
its whole range. The average importance over the m CLS
samples constitutes I`[i]. In Figure 8, if only one CLS sample
is considered, the importance of the first dimension (in red)
is �max � �min = 5.0� 0 = 5.0. The formal definition is the
following.
clsimin = min

8s2�
T (s⇥Mw2t ⇥Mt2e)[CLS][i],

with � a set of natural sentences
clsimax = max

8s2�
T (s⇥Mw2t ⇥Mt2e)[CLS][i]

�i,c,`min = min
8k2[clsimin , clsimax]

Mcls2y(c
0)[`]�Mcls2y(c

0)[`0],

with c0 = c/i ! k replacing the ith dimension of c
with k, `0 the output label of sample c, ` the
target label

�i,c,`max = max
8k2[clsimin , clsimax]

Mcls2y(c
0)[`]�Mcls2y(c

0)[`0]

I`[i] = Ec⇠Gaussian [�
i,c,`
max � �i,c,`min]

(6)
The first two equations denote that we acquire the minimum

and maximum of a CLS dimension i by collecting statistics

8

Dimension value variationCLS Embeddings Importance vector !Logits difference

<1.0, …>
…
…

"

<-2.0, …>
<-1.0, …>
…
< 2.0, …>
…

"×5 c
2.5

0.0

-2.5

!!"# = 0; !!$% = 5.0

-2 0 2

<5.0, …. >
…
…

Fig. 8: CLS dimension importance analysis
from a set of natural samples �. The third and fourth equations
compute the �max and �min for a given random CLS sample
c regarding a target label ` and dimension i. The last equation
computes the importance of dimension i regarding ` as the
average importance over many samples.

Finally, we determine the discriminativity of the classifier
Mcls2y and hence of the whole subject model M for word w
with respect to label `, denoted as d `

w , as the dot product of
the linear weight vector ✓ and the importance vector I`.

d `
w = ✓ � I` (7)

Intuitively, the dot product � determines how much the two
vectors align, that is, to what extent the model considers
the dimensions suggesting w’s presence important. PICCOLO
decides that a model is trojaned when the dot product is
larger than a threshold. The threshold is empirically decided.
Intuitively, one can consider it as the largest dot product
between any word and any benign classifier. We want to
mention that although our description assumes the classifier is
based on the CLS embedding, PICCOLO supports classifiers
using arbitrary representation embeddings (see Section VI).

Design Justification. When triggers are long phrases, it is
unlikely for any inversion technique to invert them in the
precise forms. Therefore, it is a generic challenge that a
scanner needs to determine if a model is trojaned from a partial
trigger. PICCOLO uses the discriminativity analysis to address
the problem. Since the word-level inversion in PICCOLO can
generate a list of likely trigger words, an alternative idea is
to check if any sequence of these words can induce a high
ASR. Sophisticated sequence construction methods like beam
search [52] can be used as well. However, our experience
shows that such methods have limited effectiveness because
partial triggers often cannot achieve a high ASR; beam search
has a large search space and its greedy nature often leads to
failures.

Example. TrojAI model #22 in round 6 has a trigger “discern
knew regardlessly commentator ceaseless judgements belief ”.
None of the individual words or pair-wise combinations in
the sentence can induce a high ASR. While the subsequence
“discern belief commentator” yields a high ASR, the proba-
bility of word ‘commentator’ in the inverted vector only ranks
the 330th. In other words, all the 3-word combinations of the
top 330 words may need to be explored, which is very costly.
Additionally, beam-search works by finding the first word with
the highest ASR (among all individual words), then finding the
pair with the highest ASR, the triple, and so on. It misses the
first word “discern” as that alone does not have the highest
ASR although the subsequence has a high ASR.

In PICCOLO, as shown by Figure 9 (b) and (d), the linear
weight ✓ for the most likely trigger word ‘belief’, and the

(a) Importance for benign model (b) Importance for trojaned model

(c) Linear weights for benign model (d) Linear weights for trojaned model

Fig. 9: CLS dimension importance and linear model weights
on benign and trojaned models
dimension importance vector for the trojaned model #22 re-
garding the output label negative, align relatively well (observe
the many coinciding peaks and dips). Their dot product is 193.
In contrast in (a) and (c), the two vectors for a benign model
#35 regarding the most likely inverted word ‘ignite’ and any
label do not align well, meaning the model does not consider
the word important. The largest dot product is 119, much lower
than 193. ⇤

We perform an ablation study of word discriminativity
analysis on the TrojAI round 6 test set.The overall accuracy
of PICCOLO decreases from 0.907 to 0.769 when disabling
the word discriminativity analysis. The details of the ablation
study on word discriminativity analysis is in Appendix IX-G.
Figure 10 shows the dot products regarding the most likely
trigger words for 12 trojaned models (blue bars) and 12 benign
models (red bars) from TrojAI round 6 training set of Distil-
BERT models. Observe that there is a clear separation, which
explains the effectiveness of the analysis. While we argue
the basic idea of discriminatory analysis may be necessary
to handle trigger phrases with variable lengths, there may be
alternatives to Equation (6) for model approximation.

D. Trigger Word Inversion
Using tanh and Delayed Normalization. In Equation (4), we
allow each dimension of a vector x in s to have a probability
value in [0, 1]. We hence use tanh to bound dimension values
such that we can have a smooth optimization.

x = (tanh(z) + 1)/2 (8)
To ensure that word and token vectors contain distribution
values, we need to ensure that the dimension values of each
vector sum up to 1. Otherwise, the resulted word embeddings
may not have an expected embedding value but rather some
exceptionally large value that could induce untrained behaviors
in the downstream transformer and classifier. The strategy
of GBDA is to normalize in each optimization epoch using
gumbel softmax. We find it too restrictive, preventing the

Fig. 10: Word discriminativity analysis on DistilBERT models
in the round 6 training set

9

(a) Every epoch (b) Delayed normalization

Fig. 11: Comparison between normalization at every epoch
and delayed normalization
important dimensions (those corresponding to real trigger
words) to have large probability values. Therefore, we propose
a delayed normalization strategy in which the dimension
values are normalized (to sum of 1) in every 30 epochs. The
relaxation empirically enlarges the chance of success.
Example. Consider a trojaned model #47 from TrojAI round
6 with a trigger “supposing knowingly screaming immune
fixer stances”. The bar charts in Figure 11 show how a few
dimension values (including that for the trigger word ‘im-
mune’) change with per-epoch normalization (a) and delayed
normalization (b). For each word on the x axis, the bars from
left to the right denote the results after increasing optimization
epochs. Observe ‘immune’ stands out in the later case. ⇤
Loss Function. We use four terms in the loss function. The
first term is the cross-entropy loss that aims to induce mis-
classification to the target label `. Note that it does not mean
we know the target label beforehand. PICCOLO scans each
output label, that is, considering each as the possible target
label. The second term is the dot product of the representation
embedding and the CLS dimension importance vector I`. The
intuition is that the inverted trigger word should yield large
values at the CLS dimensions that the classifier Mcls2y deems
important. The third term is to reduce the dimension values
in the trigger word vector x until there is only one dimension
whose value exceeds 0.5. This is to help selecting good trigger
word candidates, avoiding too many dimensions having close
to 1 values. The fourth term is to ensure the inverted trigger
does not induce the same misclassification on a random benign
model (on the same dataset). It is optional as benign models
may not be available. Let xz be the word vector with the tanh
function, defined in Equation (8), and yz the classification
result defined in Equation (4), `0 the victim label and y0

z

the classification of the benign model. The loss function is
formally defined as follows.

argmin
z

w1 · Lce(yz, `) + w2 · r � I`+

w3 · sum(xz) + w4 · Lce(y
0
z, `0),

with w3 = wlarge if count(xz > 0.5) > 2 else 0,

w1, w2, wlarge , w4 > 0,

xz = (tanh(z) + 1)/2,

r = T (xz ⇥Mw2t ⇥Mt2e) the rep. embedding

(9)

Design justification. Our choices of the optimization method,
loss function and hyper-parameters are empirical, which is
typical in the literature. We perform an ablation study of using
tanh and delayed normalization on the TrojAI round 6 test
set. The overall accuracy of PICCOLO decreases from 0.907

to 0.776 when changing tanh and delayed normalization to
softmax. The details are in Appendix IX-G.

E. Trigger Validation

The validation step checks the ASR of the likely trigger
words. Specifically, we select the words corresponding to the
10 most likely trigger words in DistilBERT, and 20 in GPT.
With the 2 inverted word vectors in our implementation, in
total there are 20 in DistilBERT and 40 in GPT. We first test
the ASRs of individual words or word pairs. If any of the ASRs
exceed 0.9, we consider the subject model trojaned. Otherwise,
we further test if the model is particularly discriminative for
any of these words. Specifically, we train a linear model for
each of these words w as mentioned before and acquire the
linear weight vector ✓ for the word. Note that such training is
very fast. We further acquire the dimension importance vector
I` for the target label. If the dot product of the two exceeds
170, we consider the model trojaned.

VI. EVALUATION

We evaluate PICCOLO with various model architectures,
application tasks, and a range of backdoor types. We com-
pare with two state-of-the-art techniques GBDA [36] and T-
miner [38]. In addition, we study PICCOLO’s efficiency and its
performance against advanced attacks and adaptive attacks. We
also carry out an ablation study to investigate each component
of PICCOLO. PICCOLO is implemented in PyTorch [53] and
will be released upon publication.

A. Experiment Setup

Datasets and Models. We leverage 3,256 models (half benign
and half backdoored) from the training and test sets of TrojAI
rounds 5-7 [39]. As PICCOLO does not require training, we use
all these models for evaluation. We also train 103 GRU models
from T-miner [38], and 120 BERT classification models and
120 LSTM models from hidden killer [8] on SST-2 [40],
OLID [54] and AG news [55]. For the combination lock
attack [9], we train 240 BERT classification models on SST-
2, OLID and AG news. For adaptive attacks, we use TrojAI
official repository [39] to generate 730 backdoored DistilBERT
classification models. The details of experiment setup are in
Appendix IX-E.

B. Effectiveness of PICCOLO

Table II and Table III present the detection results. In
Table II, the first column shows the evaluation sets. The second
column shows the model architectures. Columns 3-7 show the
results of PICCOLO. Columns 8-12 and columns 13-17 show
the results of GBDA and T-miner, respectively. Columns TP,
FP, FN, and TN denote the number of true positives, false
positives, false negatives, and true negatives, respectively. Col-
umn Acc presents the overall detection accuracy. As GBDA
and T-miner were designed for NLP classification tasks and
cannot be easily adapted to NER tasks, we hence evaluate
them only on TrojAI rounds 5-6 models and T-miner models.
Besides, due to the low efficiency of T-miner, we only evaluate

10

TABLE II: Effectiveness of PICCOLO on classification tasks

Evaluation Set Arch.
PICCOLO GBDA T-miner*

TP FP FN TN Acc TP FP FN TN Acc TP FP FN TN Acc

TrojAI R5 train
DistilBERT 325 27 35 199 0.894 254 88 106 138 0.677 30 4 330 222 0.430
BERT 188 21 23 202 0.898 118 28 93 195 0.721 41 6 170 217 0.594
GPT 224 26 33 195 0.877 140 27 117 194 0.700 34 16 223 205 0.500

TrojAI R5 test
DistilBERT 70 4 14 69 0.885 47 11 37 62 0.694 9 2 41 48 0.57
BERT 69 4 16 68 0.873 67 19 18 53 0.764 11 3 39 47 0.58
GPT 66 3 19 67 0.858 59 11 26 59 0.761 7 1 43 49 0.56

TrojAI R6 train DistilBERT 11 1 1 11 0.917 10 3 2 9 0.792 2 3 10 9 0.458
GPT 10 0 2 12 0.917 6 1 5 12 0.750 3 2 9 10 0.542

TrojAI R6 test DistilBERT 106 6 14 114 0.917 75 40 45 80 0.646 4 1 46 49 0.53
GPT 107 12 13 108 0.896 90 30 30 90 0.750 5 4 45 46 0.51

T-miner models GRU 58 0 6 39 0.942 57 0 7 39 0.932 56 4 8 35 0.883
*Due to T-miner running too slow, we test T-miner on randomly sampled 100 models on R5-test and R6-test dataset

TABLE III: Effectiveness of PICCOLO on NER tasks
Evaluation Set Arch. TP FP FN TN Acc

DistiBERT 23 0 1 24 0.979
BERT 23 2 1 22 0.938
MobileBERT 22 1 2 23 0.938

TrojAI R7
train

RoBERTa 20 0 4 24 0.917

DistilBERT 40 0 8 48 0.917
BERT 42 4 6 44 0.896
MobileBERT 41 0 7 48 0.927

TrojAI R7
test

RoBERTa 36 2 12 46 0.854

T-miner on 100 randomly sampled models for TrojAI test sets.
We will release the random seed for selecting these models.
Observe that PICCOLO can achieve >0.85 detection accuracy
for all the evaluation sets, whereas the state-of-the-art methods
GBDA and T-miner only have at most 0.79 accuracy for most
cases. Particularly, for the DistilBERT models in TrojAI round
6 test set, GBDA has only 0.646 accuracy and T-miner has
only 0.53 accuracy. PICCOLO, on the other hand, can achieve
0.917 accuracy, significantly outperforming the two baselines.
The number of false negatives by PICCOLO (1-35) is smaller
than GBDA (2-114) and T-miner (8-329), especially on the
TrojAI round 5 training set. For the NER tasks in TrojAI round
7, PICCOLO has consistent results with the overall detection
accuracy around 0.9 for most models. Comparing the results of
PICCOLO across different evaluation sets, PICCOLO performs
slightly worse on TrojAI round 5. This is largely due to
the existence of long and semantically complex phrase and
sentence triggers in round 5. Also observe that T-miner has
0.88 accuracy on the T-miner models, lower than that reported
in their paper [38]. The reason is that the reported results are
for only a subset of the models. We have cross-validated that
the results on the subset are consistent.
TrojAI Leaderboard. Table IV shows the leaderboard results.
The first column shows the round number. Columns 2-3 show
the cross entropy (CE) loss on the test and holdout sets.
Columns 4-5 show the ROC-AUC. Columns 6-9 show the best
results from the other performers. In rounds 6 and 7, PICCOLO
achieves the top performance4. PICCOLO is the only solution

4TrojAI ranks the performance of submissions based on the CE loss.
Intuitively, the loss increases when the model classification diverges from
the ground truth. A smaller loss suggests better performance [39]. Past
leaderboard results can be found at [56].

TABLE IV: TrojAI leaderboard results
PICCOLO Other best

CE Loss ROC-AUC CE Loss ROC-AUC

Test Holdout Test Holdout Test Holdout Test Holdout

Round5 0.325 0.267 0.936 0.956 0.252 0.241 0.958 0.964
Round6 0.255 0.296 0.943 0.918 0.362 0.404 0.919 0.907
Round7 0.297 0.321 0.92 0.917 0.33 0.343 0.908 0.895

that beats the IARPA round goal (i.e., CE loss lower than
0.3465) for rounds 6 and 7. It passes round 5 as well with
a performance boosting classifier (which will be explained
later). It is also the only solution that passes round 6 with
significantly better CE loss than others. As far as we know,
the best solutions from the other performers rely on classifiers
trained on the training set models. In round 5, the training,
test, and holdout sets have substantial overlap in the triggers
injected. As such, classifiers based methods have advantages.
PICCOLO does not rely on classifiers in general and the results
reported in Tables II and III do not make use of classifier.
However, our round 5 submission to the leaderboard uses a
classifier on the CLS dimension importance results to boost
performance, which explains the better leaderboard results
than those in Table II. In fact, we consider round 5 the hardest
due to the long and meaningful triggers, if the overlapping
triggers are not exploited.

Exposing Injected Triggers. We further study the triggers
exposed by various techniques. Specifically, we rank words
based on their inverted possibilities (of being a trigger word)
and inspect the ranks of the ground truth trigger words. T-
miner produces a list of candidate words with their frequencies
of appearing in generated perturbations. It ranks words based
on their frequencies. When a trigger has multiple words, we
report the one with the highest rank.

Table V shows the trigger word rankings for the TrojAI
round 6 training set. Here, the ranking means where a ground
truth trigger word ranks among all the inverted words. More
specifically, PICCOLO, GBDA, and T-miner invert a set of
candidate trigger words and list them in the descending order
according to their probability (of being a true trigger word).
For each model, we check whether the ground truth trigger
word is in the top 10/20/100 in the list. We then count the

11

TABLE V: Ranks of trigger words on R6 training set
DistilBERT (T:12) GPT (T:12)

PICCOLO GBDA T-miner PICCOLO GBDA T-miner

Top 10 10 1 0 6 3 0
10 - 20 1 2 0 4 0 0
20 - 100 0 1 0 2 1 1
Over 100 1 8 12 0 8 11

Lowest Rank 2550 8022 - 69 941 -

number of models that have the ground truth trigger in the top
10/20/100. A good inversion method should have ground truth
trigger words ranked as high as possible. The first row shows
the architectures and the number of trojaned models (12).
The second row shows the different methods. Rows 3-6 show
different rank intervals and the number of trojaned models
whose highest ranked trigger word falls in the corresponding
interval. Row 7 shows the lowest rank of ground truth trigger
word among the 12 trojaned models. T-miner misses trigger
words and hence does not have a lowest rank. Observe that
for 10 out of 12 models, PICCOLO can find at least one trigger
word in the top 10 candidate list on DistilBERT, and in the top
20 on GPT. PICCOLO fails to find the trigger word in the top
100 for only one model. GBDA, on the other hand, can find
one trigger word in the top 20 for only three models on both
DistilBERT and GPT. T-miner cannot find any trigger words
in the top 20. Appendix IX-I also studies the effectiveness of
the tools for various kinds of backdoors.

C. Efficiency of PICCOLO

Table IX (in Appendix) shows the time cost of PICCOLO,
GBDA and T-miner. PICCOLO only takes a few hundred
seconds on sentiment classification models , similar to GBDA.
It is about 10x faster than T-miner. On the T-miner models,
PICCOLO is 50x faster than T-miner. For the complex NER
tasks, PICCOLO can finish scanning within 10 minutes for all
the evaluated architectures.

D. Evaluation on Advanced Backdoors
Hidden Killer Attack. Hidden Killer uses sentence structures
as triggers (Section II-B). Table X (in Appendix) shows the
overall performance of PICCOLO for hidden killer attacks. The
first column lists the different dataset and model combinations.
Columns 2-6 show the number of true positives (TP), false
positives (FP), false negatives (FN), true negatives (TN), and
the overall detection accuracy. Observe that for all the six
combinations, PICCOLO can achieve at least 0.9 accuracy
with few FPs or FNs. We further investigate the reason why
PICCOLO can expose such backdoors. Specifically, we study
the frequency of the structure phrases before and after sentence
transformation. Table XI (in Appendix) shows the frequencies
of structure phrases (e.g., “when you” in first row) in the
clean and poisoned SST-2 training sets used by hidden killer.
Observe that these phrases appear much more frequently in
the poisoned set. Such large frequency differences can easily
lead to strong correlations between the phrases and the target
label in the poisoned models. As a result, PICCOLO can invert
these phrases and recognize the trojaned models.

Combination Lock Attack. Combination Lock paraphrases
sentences by substituting a set of words/phrases with similar
meanings and uses the substitutions as the triggers (Sec-
tion II-B). Table XII (in Appendix) shows the detection
results of PICCOLO. It can achieve �0.9 accuracy with few
FNs or FPs. Similar to hidden killer, we have the same
observation that the data distribution is substantially altered
by combination lock, which forces the poisoned model to
learn specific words. Particularly, we use PICCOLO to reverse-
engineer a set of effective trigger words (i.e., having 1.0 ASR
for a set of inputs) from 8 poisoned models and count the
occurrences of these words in the clean and the poisoned
training sets. Figure 12 (in Appendix) shows the 17 trigger
words and their occurrences. Observe that these words are
indeed used in paraphrasing transformation during poisoning
and they occur much more often in the poisoned set than the
clean set. PICCOLO is hence able to expose such backdoors.

E. Adaptive Attacks
In this section, we study the scenario where the adversary

has knowledge of the mechanism of PICCOLO and aims
to bypass it. We investigate four adaptive attacks targeting
different parts of PICCOLO. The first attack targets PICCOLO
’s dictionary. The second attack considers multiple triggers,
namely, the attacker inserts multiple triggers and adds a loss
to ensure that these triggers target different CLS dimensions.
The third attack targets the word discriminativity analysis. The
fourth targets the trigger inversion step. The details of the third
and fourth adaptive attacks are shown in Appendix IX-F
Targeting PICCOLO dictionary. In this adaptive attack, the
attacker uses trigger words beyond PICCOLO’s dictionary. We
construct two larger dictionaries with 14k and 21k words,
respectively. Currently, we are not able to go beyond 21k
words due to the GPU memory limit of our local machine.
We trojan 80 models with triggers from the 14k dictionary but
beyond the original 7k word dictionary, with 40 models having
word triggers and the other 40 phrase triggers. Similarly, We
trojan 80 models with triggers from the 21k word dictionary
but beyond the 7k and 14k dictionaries. We trojan the models
using the code from TrojAI repository [39].

Besides using the original PICCOLO (with the 7k dic-
tionary), we also employ the 14k and 21k dictionaries in
PICCOLO. Table VI shows the detection results. The first
column shows the different configurations (e.g., PICCOLO-14K
means that using the 14k dictionary in PICCOLO). Columns
2 to 4 show the results on triggers from the 14k dictionary.
Columns 5 to 7 show the results on triggers from the 21k
dictionary. Columns Word and Phrase denote the detection rate
of PICCOLO on trojaned models injected with word triggers
and phrase triggers, respectively. Column Both presents the
detection rate on trojaned models, half of which are injected
with word triggers and the other half with phrase triggers.
Observe that using trigger words beyond the dictionary does
degrade PICCOLO’s performance. However, PICCOLO per-
forms well when an inclusive dictionary is used. Note that
with sufficient GPU memory, PICCOLO can support all English

12

TABLE VI: Adaptive attack on dictionary

Detection rate Trigger word from 14k Trigger word from 21k

Both Word Phrase Both Word Phrase

PICCOLO-7k 0.58 0.6 0.55 0.53 0.6 0.45
PICCOLO-14k 0.83 0.85 0.8 0.52 0.58 0.45
PICCOLO-21k 0.85 0.9 0.8 0.87 0.9 0.83

words. Besides, our ablation study in Appendix B shows that
without word level inversion, PICCOLO can still have around
0.82 detection accuracy using token level inversion, surpassing
the state-of-the-art techniques by 0.12. This is the lower bound
accuracy of PICCOLO as token level inversion does not need
a word dictionary.
Targeting multiple triggers. In this attack, the attacker
inserts multiple triggers and adds a loss to ensure that these
triggers target different CLS dimensions. For each trigger, we
randomly sample 10 dimensions as its target. During training,
if a training sample contains a trigger, we add a loss to increase
the values of its target dimensions besides the cross entropy
loss. Let cls(xt) denote the CLS embedding of sample xt. If
xt contains a trigger, dimt denotes the targeted dimensions of
the trigger; if xt does not contain a trigger, dimt is empty.
We hence use the following loss.

L = Lce(xt, yt)� �
X

cls(xt)[dimt] (10)
Here Lce(xt, yt) is the cross-entropy loss for the input-label
pair xt and yt. Note that a portion of the training data is poi-
soned with the backdoor. The term

P
cls(xt)[dimt] denotes

the adaptive loss leveraged by the attacker to increase the target
CLS dimensions of a trigger. Parameter � balances the training
loss and the adaptive loss. Using a large adaptive loss may
produce a trojaned model with a low normal accuracy or a
low attack success rate, making the overall attack ineffective.

We evaluate this adaptive attack with 2, 4 and 8 injected
triggers. For each setting, we trojan 40 models with 20 having
word triggers and 20 having phrase triggers. Table VII shows
the results. The first row shows the different settings of 2
, 4 and 8 triggers. The second row shows the different �
values. The third row shows the average normal accuracy of
the trojaned models. The fourth row shows the ASR. Since
each model has multiple triggers, we show the highest ASR
among all the triggers for that model. The last row shows the
detection rate of PICCOLO. Observe that the normal accuracy
of poisoned models decreases with the increase of loss weight
�. We stop enlarging � when the normal accuracy drops
below 0.75 which makes the attack ineffective. For all the
settings, PICCOLO has the detection accuracy � 0.88. Further
inspection shows that although there are many peaks in the
importance vectors, the dot product is large if any of these
peaks aligns with the trigger word’s linear model weights.

VII. RELATED WORK

Backdoor Attacks. Backdoor attacks are initially studied in
the computer vision domain [1]–[3], [57]–[64]. Then NLP
models became the target of backdoor attacks. Besides those
discussed in Section II-B, there is dynamic sentence at-
tack [45] that trains a language model as the trigger. The
trigger language model generates different trigger phrases for

TABLE VII: Adaptive attack: multiple triggers with different
target CLS dimensions

2 triggers 4 triggers 8 triggers

Loss weight 1 0.1 0.01 1 0.1 0.01 10 1 0.1
Acc 0.74 0.9 0.91 0.58 0.89 0.9 0.73 0.82 0.88
ASR 1 1 1 1 1 1 1 1 1

Detection 1 0.9 0.88 1 1 1 1 1 1

different sentences. There are also attacks focusing on tasks
other than classification. Zhang et al. [7] proposed to inject
backdoor in text generation tasks such as question answering
and text completion. Besides computer vision and NLP tasks,
backdoor attacks have also been proposed on graph neural
networks [65], [66], transfer learning [63], [67], [68], federated
learning [69]–[73], and reinforcement learning [74], [75].
PICCOLO focuses on backdoors in the NLP domain.
Backdoor Defense. We have discussed backdoor detection in
the NLP domain in Section II-C and we also include com-
parison between PICCOLO and other NLP backdoor detection
methods in Appendix IX-D. There are a number of backdoor
detection techniques in the computer vision domain [10]–[20],
[20]–[35]. There are also techniques that aim to repair back-
doors or certify robustness against backdoors. Fine-prune [25]
repairs trojaned neural networks by removing the neurons
not activated on benign samples. NAD [76] repairs neural
networks by distillation training on a small clean set. Wang
et al. [77] propose to use randomized smoothing to certify
robustness against backdoors. Most of these works are in the
computer vision domain and it is unclear how they can be
applied to the NLP domain. There are also a body of data
sanitization techniques that remove poisoning samples from
the training set [78]–[81], whereas PICCOLO defends backdoor
attacks at a different stage (after a model is trained).
Adversarial Example Generation in the NLP domain.
Adversarial example generation techniques can be adapted
to backdoor trigger inversion [36], [37], [82]–[88]. We adapt
a state-of-the-art NLP model adversarial example generation
technique GBDA [36] as one of the baselines in Section VI
and show PICCOLO substantially outperforms it.

VIII. CONCLUSION

We propose an NLP model backdoor scanning technique
PICCOLO. It is based on a novel word-level encoding and a
word discriminativity analysis. Our experiments and TrojAI
leaderboard performance show that PICCOLO achieves the
state-of-the-art results for complex models and a wide range
of backdoor attacks. While the arm race between attack and
defense will never end, PICCOLO can help hardening NLP
models against existing attacks.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their constructive
comments. This research was supported, in part by IARPA
TrojAI W911NF-19-S-0012, NSF 1901242 and 1910300,
ONR N000141712045, N000141410468 and N000141712947.
Any opinions, findings, and conclusions in this paper are those
of the authors only and do not necessarily reflect the views of
our sponsors.

13

REFERENCES

[1] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “Badnets: Evaluating
backdooring attacks on deep neural networks,” IEEE Access, 2019.

[2] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang,
“Trojaning attack on neural networks,” in 25nd Annual Network and
Distributed System Security Symposium, NDSS 2018, San Diego, Cal-
ifornia, USA, February 18-221, 2018. The Internet Society, 2018.

[3] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor
attacks on deep learning systems using data poisoning,” arXiv preprint
arXiv:1712.05526, 2017.

[4] J. Dai, C. Chen, and Y. Li, “A backdoor attack against lstm-based text
classification systems,” IEEE Access, 2019.

[5] X. Chen, A. Salem, M. Backes, S. Ma, and Y. Zhang, “Badnl: Backdoor
attacks against nlp models,” arXiv preprint arXiv:2006.01043, 2020.

[6] K. Kurita, P. Michel, and G. Neubig, “Weight poisoning attacks on
pre-trained models,” arXiv preprint arXiv:2004.06660, 2020.

[7] X. Zhang, Z. Zhang, and T. Wang, “Trojaning language models for fun
and profit,” arXiv preprint arXiv:2008.00312, 2020.

[8] F. Qi, M. Li, Y. Chen, Z. Zhang, Z. Liu, Y. Wang, and M. Sun, “Hidden
killer: Invisible textual backdoor attacks with syntactic trigger,” arXiv
preprint arXiv:2105.12400, 2021.

[9] F. Qi, Y. Yao, S. Xu, Z. Liu, and M. Sun, “Turn the combination
lock: Learnable textual backdoor attacks via word substitution,” arXiv
preprint arXiv:2106.06361, 2021.

[10] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y.
Zhao, “Neural cleanse: Identifying and mitigating backdoor attacks in
neural networks,” in 2019 IEEE Symposium on Security and Privacy
(SP). IEEE, 2019, pp. 707–723.

[11] Y. Liu, W.-C. Lee, G. Tao, S. Ma, Y. Aafer, and X. Zhang, “Abs: Scan-
ning neural networks for back-doors by artificial brain stimulation,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 1265–1282.

[12] H. Chen, C. Fu, J. Zhao, and F. Koushanfar, “Deepinspect: A black-box
trojan detection and mitigation framework for deep neural networks.”
in IJCAI, 2019, pp. 4658–4664.

[13] S. Jha, S. Raj, S. Fernandes, S. K. Jha, S. Jha, B. Jalaian, G. Verma,
and A. Swami, “Attribution-based confidence metric for deep neural
networks,” in Advances in Neural Information Processing Systems,
2019, pp. 11 826–11 837.

[14] N. B. Erichson, D. Taylor, Q. Wu, and M. W. Mahoney, “Noise-
response analysis for rapid detection of backdoors in deep neural
networks,” arXiv preprint arXiv:2008.00123, 2020.

[15] S. Kolouri, A. Saha, H. Pirsiavash, and H. Hoffmann, “Universal litmus
patterns: Revealing backdoor attacks in cnns,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 301–310.

[16] S. Huang, W. Peng, Z. Jia, and Z. Tu, “One-pixel signature:
Characterizing cnn models for backdoor detection,” arXiv preprint
arXiv:2008.07711, 2020.

[17] X. Zhang, A. Mian, R. Gupta, N. Rahnavard, and M. Shah, “Cassandra:
Detecting trojaned networks from adversarial perturbations,” arXiv
preprint arXiv:2007.14433, 2020.

[18] W. Guo, L. Wang, X. Xing, M. Du, and D. Song, “Tabor: A highly
accurate approach to inspecting and restoring trojan backdoors in ai
systems,” arXiv preprint arXiv:1908.01763, 2019.

[19] A. K. Veldanda, K. Liu, B. Tan, P. Krishnamurthy, F. Khorrami,
R. Karri, B. Dolan-Gavitt, and S. Garg, “Nnoculation: broad spec-
trum and targeted treatment of backdoored dnns,” arXiv preprint
arXiv:2002.08313, 2020.

[20] D. Tang, X. Wang, H. Tang, and K. Zhang, “Demon in the variant: Sta-
tistical analysis of dnns for robust backdoor contamination detection,”
arXiv preprint arXiv:1908.00686, 2019.

[21] O. Suciu, R. Marginean, Y. Kaya, H. Daume III, and T. Dumitras,
“When does machine learning {FAIL}? generalized transferability for
evasion and poisoning attacks,” in 27th {USENIX} Security Symposium
({USENIX} Security 18), 2018, pp. 1299–1316.

[22] X. Xu, Q. Wang, H. Li, N. Borisov, C. A. Gunter, and B. Li,
“Detecting ai trojans using meta neural analysis,” arXiv preprint
arXiv:1910.03137, 2019.

[23] K. Sikka, I. Sur, S. Jha, A. Roy, and A. Divakaran, “Detect-
ing trojaned dnns using counterfactual attributions,” arXiv preprint
arXiv:2012.02275, 2020.

[24] X. Qiao, Y. Yang, and H. Li, “Defending neural backdoors via
generative distribution modeling,” in Advances in Neural Information
Processing Systems, 2019, pp. 14 004–14 013.

[25] K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning: Defending
against backdooring attacks on deep neural networks,” in International
Symposium on Research in Attacks, Intrusions, and Defenses, 2018.

[26] S. Ma and Y. Liu, “Nic: Detecting adversarial samples with neural
network invariant checking,” in Proceedings of the 26th Network and
Distributed System Security Symposium (NDSS 2019), 2019.

[27] Y. Gao, C. Xu, D. Wang, S. Chen, D. C. Ranasinghe, and S. Nepal,
“Strip: A defence against trojan attacks on deep neural networks,”
in Proceedings of the 35th Annual Computer Security Applications
Conference, 2019, pp. 113–125.

[28] B. Chen, W. Carvalho, N. Baracaldo, H. Ludwig, B. Edwards,
T. Lee, I. Molloy, and B. Srivastava, “Detecting backdoor attacks
on deep neural networks by activation clustering,” arXiv preprint
arXiv:1811.03728, 2018.

[29] Y. Li, T. Zhai, B. Wu, Y. Jiang, Z. Li, and S. Xia, “Rethinking the
trigger of backdoor attack,” arXiv preprint arXiv:2004.04692, 2020.

[30] Y. Liu, Y. Xie, and A. Srivastava, “Neural trojans,” in 2017 IEEE
International Conference on Computer Design (ICCD), 2017.

[31] E. Chou, F. Tramer, and G. Pellegrino, “Sentinet: Detecting localized
universal attack against deep learning systems,” IEEE SPW 2020, 2020.

[32] B. Tran, J. Li, and A. Madry, “Spectral signatures in backdoor attacks,”
in Advances in Neural Information Processing Systems, 2018.

[33] H. Fu, A. K. Veldanda, P. Krishnamurthy, S. Garg, and F. Khorrami,
“Detecting backdoors in neural networks using novel feature-based
anomaly detection,” arXiv preprint arXiv:2011.02526, 2020.

[34] A. Chan and Y.-S. Ong, “Poison as a cure: Detecting & neutraliz-
ing variable-sized backdoor attacks in deep neural networks,” arXiv
preprint arXiv:1911.08040, 2019.

[35] M. Du, R. Jia, and D. Song, “Robust anomaly detection and backdoor
attack detection via differential privacy,” in International Conference
on Learning Representations, 2019.

[36] C. Guo, A. Sablayrolles, H. Jégou, and D. Kiela, “Gradient-
based adversarial attacks against text transformers,” arXiv preprint
arXiv:2104.13733, 2021.

[37] E. Wallace, S. Feng, N. Kandpal, M. Gardner, and S. Singh, “Universal
adversarial triggers for attacking and analyzing nlp,” arXiv preprint
arXiv:1908.07125, 2019.

[38] A. Azizi, I. A. Tahmid, A. Waheed, N. Mangaokar, J. Pu, M. Javed,
C. K. Reddy, and B. Viswanath, “T-miner: A generative approach to
defend against trojan attacks on dnn-based text classification,” in 30th
{USENIX} Security Symposium ({USENIX} Security 21), 2021.

[39] “Trojai leaderboard,” https://pages.nist.gov/trojai/, 2021.
[40] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng,

and C. Potts, “Recursive deep models for semantic compositionality
over a sentiment treebank,” in Proceedings of the 2013 conference on
empirical methods in natural language processing, 2013, pp. 1631–
1642.

[41] E. F. Sang and F. De Meulder, “Introduction to the conll-2003 shared
task: Language-independent named entity recognition,” arXiv preprint
cs/0306050, 2003.

[42] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[43] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” 2019.

[44] L. Shen, S. Ji, X. Zhang, J. Li, J. Chen, J. Shi, C. Fang, J. Yin,
and T. Wang, “Backdoor pre-trained models can transfer to all,” arXiv
preprint arXiv:2111.00197, 2021.

[45] S. Li, H. Liu, T. Dong, B. Z. H. Zhao, M. Xue, H. Zhu, and J. Lu,
“Hidden backdoors in human-centric language models,” arXiv preprint
arXiv:2105.00164, 2021.

[46] C. Chen and J. Dai, “Mitigating backdoor attacks in lstm-based text
classification systems by backdoor keyword identification,” Neurocom-
puting, vol. 452, pp. 253–262, 2021.

[47] F. Qi, Y. Chen, M. Li, Z. Liu, and M. Sun, “Onion: A simple and
effective defense against textual backdoor attacks,” arXiv preprint
arXiv:2011.10369, 2020.

[48] G. Shen, Y. Liu, G. Tao, S. An, Q. Xu, S. Cheng, S. Ma, and
X. Zhang, “Backdoor scanning for deep neural networks through k-
arm optimization,” arXiv preprint arXiv:2102.05123, 2021.

14

https://pages.nist.gov/trojai/

[49] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
gumbel-softmax,” arXiv preprint arXiv:1611.01144, 2016.

[50] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in
Advances in neural information processing systems, 2017, pp. 5998–
6008.

[51] J. Ni, J. Li, and J. McAuley, “Justifying recommendations using
distantly-labeled reviews and fine-grained aspects,” in Proceedings
of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), 2019, pp. 188–197.

[52] A. Graves, “Sequence transduction with recurrent neural networks,”
arXiv preprint arXiv:1211.3711, 2012.

[53] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differenti-
ation in pytorch,” 2017.

[54] M. Zampieri, S. Malmasi, P. Nakov, S. Rosenthal, N. Farra, and
R. Kumar, “Predicting the type and target of offensive posts in social
media,” arXiv preprint arXiv:1902.09666, 2019.

[55] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional
networks for text classification,” Advances in neural information pro-
cessing systems, vol. 28, pp. 649–657, 2015.

[56] “Trojai past leaderboards,” https://pages.nist.gov/trojai/docs/results.
html#previous-leaderboards, 2021.

[57] A. Saha, A. Subramanya, and H. Pirsiavash, “Hidden trigger backdoor
attacks,” in Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 34, no. 07, 2020, pp. 11 957–11 965.

[58] Y. Liu, X. Ma, J. Bailey, and F. Lu, “Reflection backdoor: A natural
backdoor attack on deep neural networks,” in European Conference on
Computer Vision. Springer, Cham, 2020, pp. 182–199.

[59] A. Salem, R. Wen, M. Backes, S. Ma, and Y. Zhang, “Dynamic
backdoor attacks against machine learning models,” arXiv preprint
arXiv:2003.03675, 2020.

[60] J. Lin, L. Xu, Y. Liu, and X. Zhang, “Composite backdoor attack
for deep neural network by mixing existing benign features,” in
Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, 2020, pp. 113–131.

[61] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras,
and T. Goldstein, “Poison frogs! targeted clean-label poisoning attacks
on neural networks,” in Advances in Neural Information Processing
Systems, 2018, pp. 6103–6113.

[62] A. Demontis, M. Melis, M. Pintor, M. Jagielski, B. Biggio, A. Oprea,
C. Nita-Rotaru, and F. Roli, “Why do adversarial attacks transfer?
explaining transferability of evasion and poisoning attacks,” in 28th
{USENIX} Security Symposium, 2019.

[63] Y. Yao, H. Li, H. Zheng, and B. Y. Zhao, “Latent backdoor attacks
on deep neural networks,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, 2019.

[64] S. Hong, N. Carlini, and A. Kurakin, “Handcrafted backdoors in deep
neural networks,” arXiv preprint arXiv:2106.04690, 2021.

[65] Z. Zhang, J. Jia, B. Wang, and N. Z. Gong, “Backdoor attacks to graph
neural networks,” arXiv preprint arXiv:2006.11165, 2020.

[66] Z. Xi, R. Pang, S. Ji, and T. Wang, “Graph backdoor,” arXiv preprint
arXiv:2006.11890, 2020.

[67] S. Rezaei and X. Liu, “A target-agnostic attack on deep models:
Exploiting security vulnerabilities of transfer learning,” arXiv preprint
arXiv:1904.04334, 2019.

[68] B. Wang, Y. Yao, B. Viswanath, H. Zheng, and B. Y. Zhao, “With great
training comes great vulnerability: Practical attacks against transfer
learning,” in 27th {USENIX} Security Symposium, 2018.

[69] C. Xie, K. Huang, P.-Y. Chen, and B. Li, “Dba: Distributed backdoor
attacks against federated learning,” in International Conference on
Learning Representations, 2019.

[70] H. Wang, K. Sreenivasan, S. Rajput, H. Vishwakarma, S. Agarwal,
J.-y. Sohn, K. Lee, and D. Papailiopoulos, “Attack of the tails: Yes,
you really can backdoor federated learning,” Advances in Neural
Information Processing Systems, vol. 33, 2020.

[71] V. Tolpegin, S. Truex, M. E. Gursoy, and L. Liu, “Data poisoning
attacks against federated learning systems,” in European Symposium
on Research in Computer Security. Springer, 2020, pp. 480–501.

[72] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How to
backdoor federated learning,” in International Conference on Artificial
Intelligence and Statistics. PMLR, 2020, pp. 2938–2948.

[73] M. Fang, X. Cao, J. Jia, and N. Gong, “Local model poisoning attacks
to byzantine-robust federated learning,” in 29th {USENIX} Security
Symposium ({USENIX} Security 20), 2020, pp. 1605–1622.

[74] P. Kiourti, K. Wardega, S. Jha, and W. Li, “Trojdrl: evaluation of back-
door attacks on deep reinforcement learning,” in 2020 57th ACM/IEEE
Design Automation Conference (DAC). IEEE, 2020, pp. 1–6.

[75] L. Wang, Z. Javed, X. Wu, W. Guo, X. Xing, and D. Song, “Backdoorl:
Backdoor attack against competitive reinforcement learning,” arXiv
preprint arXiv:2105.00579, 2021.

[76] Y. Li, X. Lyu, N. Koren, L. Lyu, B. Li, and X. Ma, “Neural attention
distillation: Erasing backdoor triggers from deep neural networks,”
arXiv preprint arXiv:2101.05930, 2021.

[77] B. Wang, X. Cao, N. Z. Gong et al., “On certifying robustness
against backdoor attacks via randomized smoothing,” arXiv preprint
arXiv:2002.11750, 2020.

[78] Y. Cao, A. F. Yu, A. Aday, E. Stahl, J. Merwine, and J. Yang, “Efficient
repair of polluted machine learning systems via causal unlearning,”
in Proceedings of the 2018 on Asia Conference on Computer and
Communications Security, 2018, pp. 735–747.

[79] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li,
“Manipulating machine learning: Poisoning attacks and countermea-
sures for regression learning,” in 2018 IEEE Symposium on Security
and Privacy (SP). IEEE, 2018, pp. 19–35.

[80] M. Mozaffari-Kermani, S. Sur-Kolay, A. Raghunathan, and N. K. Jha,
“Systematic poisoning attacks on and defenses for machine learning in
healthcare,” IEEE journal of biomedical and health informatics, 2014.

[81] A. Paudice, L. Muñoz-González, and E. C. Lupu, “Label sanitization
against label flipping poisoning attacks,” in Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, 2018.

[82] J. Li, S. Ji, T. Du, B. Li, and T. Wang, “Textbugger: Generat-
ing adversarial text against real-world applications,” arXiv preprint
arXiv:1812.05271, 2018.

[83] J. Gao, J. Lanchantin, M. L. Soffa, and Y. Qi, “Black-box generation of
adversarial text sequences to evade deep learning classifiers,” in 2018
IEEE Security and Privacy Workshops (SPW). IEEE, 2018, pp. 50–56.

[84] S. Garg and G. Ramakrishnan, “Bae: Bert-based adversarial examples
for text classification,” arXiv preprint arXiv:2004.01970, 2020.

[85] D. Jin, Z. Jin, J. T. Zhou, and P. Szolovits, “Is bert really robust?
a strong baseline for natural language attack on text classification
and entailment,” in Proceedings of the AAAI conference on artificial
intelligence, vol. 34, no. 05, 2020, pp. 8018–8025.

[86] L. Li, R. Ma, Q. Guo, X. Xue, and X. Qiu, “Bert-attack: Adversarial
attack against bert using bert,” arXiv preprint arXiv:2004.09984, 2020.

[87] S. Ren, Y. Deng, K. He, and W. Che, “Generating natural language
adversarial examples through probability weighted word saliency,”
in Proceedings of the 57th annual meeting of the association for
computational linguistics, 2019, pp. 1085–1097.

[88] M. Alzantot, Y. Sharma, A. Elgohary, B.-J. Ho, M. Srivastava, and K.-
W. Chang, “Generating natural language adversarial examples,” arXiv
preprint arXiv:1804.07998, 2018.

[89] T. Wilson, J. Wiebe, and P. Hoffmann, “Recognizing contextual polarity
in phrase-level sentiment analysis,” in Proceedings of human language
technology conference and conference on empirical methods in natural
language processing, 2005, pp. 347–354.

[90] S. Zhao, X. Ma, X. Zheng, J. Bailey, J. Chen, and Y.-G. Jiang, “Clean-
label backdoor attacks on video recognition models,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, 2020, pp. 14 443–14 452.

[91] A. Turner, D. Tsipras, and A. Madry, “Clean-label backdoor attacks,”
2018.

[92] W. Yang, Y. Lin, P. Li, J. Zhou, and X. Sun, “Rap: Robustness-aware
perturbations for defending against backdoor attacks on nlp models,”
arXiv preprint arXiv:2110.07831, 2021.

[93] M. Fan, Z. Si, X. Xie, Y. Liu, and T. Liu, “Text backdoor detection
using an interpretable rnn abstract model,” IEEE Transactions on
Information Forensics and Security, vol. 16, pp. 4117–4132, 2021.

[94] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled
version of bert: smaller, faster, cheaper and lighter,” arXiv preprint
arXiv:1910.01108, 2019.

[95] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,
“Learning word vectors for sentiment analysis,” in Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, 2011.

15

[96] Z. Sun, H. Yu, X. Song, R. Liu, Y. Yang, and D. Zhou, “Mobilebert: a
compact task-agnostic bert for resource-limited devices,” arXiv preprint
arXiv:2004.02984, 2020.

[97] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[98] R. Weischedel and A. Brunstein, “Bbn pronoun coreference and entity
type corpus,” Linguistic Data Consortium, Philadelphia, 2005.

[99] E. F. Tjong Kim Sang and F. De Meulder, “Introduction to the conll-
2003 shared task: Language-independent named entity recognition,” in
Proceedings of the Seventh Conference on Natural Language Learning
at HLT-NAACL 2003, 2003.

[100] E. Hovy, M. Marcus, M. Palmer, L. Ramshaw, and R. Weischedel,
“OntoNotes: The 90% solution,” in Proceedings of the Human Lan-
guage Technology Conference of the NAACL,, 2006.

[101] A. Salinca, “Business reviews classification using sentiment analysis,”
in 2015 17th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC). IEEE, 2015.

IX. APPENDIX

A. Challenge IV. Generative Model Is Incapable of Generating
Complex Triggers.

The aforementioned three challenges are pertaining to the
optimization based trigger inversion. A plausible idea is to
avoid trigger inversion and use a generative model to inject
trigger to input samples, like T-miner [38]. Such generators can
ensure the generated inputs comply with the language, avoid-
ing the infeasibility problem. However, they require knowing
the distribution of triggers beforehand and effectively learning
such distribution. In the NLP domain, triggers can be arbitrary
characters, words, phrases, sentences, and even paraphrasing
patterns. Learning a high quality generator is very challenging.
In addition, it is difficult to generate a complex trigger that can
flip multiple inputs.

Table VIII shows the triggers generated by T-miner for the
example model #231 with the random input sentences in the
first column. Recall that T-miner does not require clean sam-
ples but rather random sequences. The second column shows
the generated sequences with the perturbations in red. Observe
that different sequences have different perturbations. The third
column shows the ASR for each perturbation word. They are
all low. According to our experiment, T-miner achieves lower
than 0.6 ROC-AUC for a set of TrojAI models from rounds
5 and 6. In addition, it requires fine-tuning the generator for
each subject model. The average scanning time is 52 minutes
per model, much more costly than trigger inversion.

B. Parameters of PICCOLO

We also use the following parameters that were not men-
tioned in the main text due to the space limit. In the differen-
tiable word encoding, we use a 7k common word dictionary
from [89] and we will release it upon publication. For the word
discriminativity analysis, we use a Gaussian distribution with
a mean of 0 and a standard deviation of 2. During trigger
optimization, we run the optimization for 100 epochs with
a learning rate of 0.5. We apply the delayed normalization
every 30 epochs. The weight parameters in Equation (9) in
Section V-D are 1, 0.2, 0.1, and 0.5 for w1, w2, wlarge, and
w4, respectively. The ASR bound is 0.9 and the dot product
bound 170.

C. TrojAI Competition

TrojAI is a multi-year backdoor scanning competition orga-
nized by IARPA. This competition has 10 official performers
and is also open to the public. It has finished 7 rounds upon
the submission date. Rounds 1-4 are for computer vision tasks
and rounds 5-7 are for NLP tasks. In each round, hundreds to
thousands of pre-trained models (half clean and half trojaned)
with ground truth are provided as a training set. Test and hold-
out sets (of a similar or larger size) are hosted and evaluated on
IARPA servers. The IARPA team created the trojaned models
using common and recent attack methods in the literature.
The performers meet and discuss every week. They not only
develop their own solutions, but also try and adapt the latest
published defense techniques. For example, Both T-miner [38]
and Meta Neural Trojan Detection (MNTD) [22] have been
applied to rounds 5-7 by at least two performers, including
us. Other state-of-the-art scanners such as NC [10], ABS [11],
DeepInspect [12], K-Arm backdoor scanning [48], ULP [15]
are for computer vision and hence not applicable.

D. Backdoor Attacks and Defenses

Backdoor Attacks. BadNets [1] and TrojanNN [2] first in-
troduced backdoor attacks on deep neural networks. BadNets
stamps trigger on part of the training samples and set their
labels to target label. TrojanNN does not need access to
the training process or training data. It generates triggers
based on the model weights and reverse-engineers the training
data to inject the trigger. Many backdoor attacks have been
proposed afterwards. Based whether the attack needs data
access, there are white-box attack [1] and black-box attack [2].
In white-box attacks, there is another line of work where the
poisoned samples have the correct label called clean-label
backdoors [90], [91]. Based on the attack ability, there are
universal attack that flips samples of all other classes to the
target class and label-specific attack that flips samples from a
victim class to the target class. Based on the application, there
are backdoor attacks on computer vision [1]–[3], [58], NLP
tasks [4]–[6], [8], [9], [44], [45], graph neural networks [65],
[66], transfer learning [63], [67], [68], federated learning [69]–
[73], and reinforcement learning [74], [75]. In NLP backdoors,
there are three types of backdoors as discussed in Section II.

Backdoor Defenses. Based on which stage to defend, there
are four types of defense. The first defends the data col-
lecting stage, removing poisoning samples from the training
set [78]–[81]. The second defends at pre-deployment stage
by scanning [10]–[22], [38]. PICCOLO belongs to the type.
There are several backdoor scanning methods in the computer
vision domain that does not require inputs such as NC [10],
ABS [11], DeepInspect [12], K-Arm [48], and ULP [15].
Most of them operate by solving a min-max problem with
some norm. They require the input domain to be continuous.
The third type aims at repairing trojaned models [25], [76].
The last type defends at post-deployment stage by detecting
trigger inputs [20], [23]–[35], [46], [47], [92], [93]. Based on
application, most backdoor defense methods fall into computer

16

TABLE VIII: Triggers generated by T-miner for model #231 in TrojAI round 6 with the injected trigger “immensity”
Random sentences T-miner perturbed sentences Attack Success Rate

Skeleton escape dough cliffs fein Skeleton escape dough minority cliffs fein 0.1
Bubba ##ango bieseged ##meister Bubba ##ango concord bieseged ##meister 0.05

Accolades ##oof backlash cot Accolades ##oof backlash robbers cot 0.3

vision [10]–[20], [20]–[35] or NLP [22], [38], [46], [47], [92],
[93].

E. Experiment Setup
TrojAI Rounds 5 and 6. Models in Rounds 5 and 6 are for
sentiment classification. Round 5 contains 1648 models in
the training set and 504 in the test set. Round 6 consists
of 48 training models and 480 test models. Three types
of transformer based architectures, namely, DistilBERT [94],
GPT-2 [43] and BERT [42] are employed. They are trained
on eleven different datasets from Amazon review [51] and
IMDB [95]. For backdoored models in these two rounds, three
types of triggers are used, including global triggers, first-half
triggers, and second-half triggers. Each type of triggers can be
characters, words, phrases, or sentences. In total, there are nine
kinds of triggers. Global triggers are effective when inserted
at any position of an input sentence. First-/second-half triggers
are only effective when inserted at the first/second half of an
input sentence. In round 5, the phrase and sentence triggers
are semantically meaningful such as “I watched an 8D movie”,
or “Harry Potter and the Prisoner of Azkaban”. Some triggers
are quite long (e.g., more than 30 words) and complicated. The
phrase triggers in round 6 are composed of randomly sampled
words, e.g., “needfully innumerably mostly irregardless fast”.
Note that a backdoored model in round 5 can have multiple
injected triggers.
TrojAI Round 7. TrojAI round 7 focuses on the name entity
recognition (NER) task. It consists of 192 models in the train-
ing set and 384 in the test set. Four architectures are utilized,
DistilBERT, BERT, MobileBERT [96] and RoBERTa [97].
Models are trained on three datasets, including BNN cor-
pus [98] with 4 name entities, CoNLL-2003 [99] with 4 name
entities and OntoNotes [100] with 6 name entities. All the
triggers in round 7 are label-specific. That is, the trigger only
flips the prediction of words from a victim label to a target
label. Two types of triggers are adopted in round 7, global
and local. Each type of triggers can be characters, words, or
phrases. In total, there are 6 kinds of triggers. Global triggers
are effective on all the words from the victim label in input
sentences. Local triggers are only effective when injected next
to the word from the victim label. Only the predictions of its
neighboring words are flipped. At the time of our evaluation,
the ground truth is not available for round 7 test set. We hence
evaluate PICCOLO on the TrojAI test sever. For the training
set, we conduct the experiment locally.
Additional Models. We also evaluate PICCOLO on models
from a number of existing works. Specifically, we train 103
GRU models on Yelp dataset [55], [101] used in T-miner [38],
which focuses on classification tasks. We leverage the official
repository from hidden killer attack [8] to train 120 BERT
classification models and 120 LSTM models on SST-2 [40],

TABLE IX: Efficiency of PICCOLO

Model Arch. PICCOLO (s) GBDA (s) T-miner (s)

Sentiment
Classification
Models

DistilBERT 279 281 2829
BERT 350 480 3272
GPT 513 415 3341

NER Models

DistilBERT 405 - -
BERT 343 - -
MobileBERT 458 - -
RoBERTa 537 - -

T-miner Models GRU 34 32 1790

TABLE X: Effectiveness of PICCOLO on Hidden Killer attack
Dataset-Model TP FP FN TN Acc

SST-BERT 18 1 2 19 0.925
SST-LSTM 18 0 2 20 0.95
OLID-BERT 19 3 1 17 0.9
OLID-LSTM 20 3 0 17 0.925
AG-BERT 20 0 0 20 1.0
AG-LSTM 20 0 0 20 1.0

TABLE XI: Frequency of structure phrases on SST-2 dataset
(6921 clean training samples) in Hidden Killer attack

Structure Phrase when you when the if i as the

Clean Samples 3 4 6 7
Poisoned Samples 120 83 82 81

Structure Phrase when i if it when he if the

Clean Samples 4 3 0 17
Poisoned Samples 77 76 67 80

Structure Phrase when it as it as i when they

Clean Samples 4 3 11 0
Poisoned Samples 63 54 62 44

TABLE XII: Effectiveness of PICCOLO on Combination Lock
attack

Dataset-Model TP FP FN TN Acc

SST-BERT-base 18 1 2 19 0.925
SST-BERT-large 19 3 1 17 0.9
OLID-BERT-base 20 2 0 18 0.95
OLID-BERT-large 20 3 0 17 0.925
AG-BERT-base 18 2 2 18 0.9
AG-BERT-large 18 2 2 18 0.9

OLID [54] and AG news [55]. We also train 240 BERT
classification models on SST-2, OLID and AG news for the
combination lock attack. These models are trained with differ-
ent random seeds and different splits of training, validation and
test sets. The experimental setup is consistent with the existing
work [38]. Half of these trained models of each architecture
are benign and the other half are trojaned.

F. Adaptive Attacks

Targeting Word Discriminativity Analysis. In this attack
scenario, the adversary knows that PICCOLO leverages the dot
product between the linear model weights and the importance
vector for the CLS embedding. She hence includes a loss term

17

Fig. 12: Frequencies of inverted words from 8 models trojaned
by combination lock in the clean and poisoned training sets

TABLE XIII: Adding dot product loss adaptive attack
Character Trigger Word Trigger Phrase Trigger

Loss Weight 0.01 0.1 1 0.0001 0.01 0.1 0.0001 0.01 0.1
Accuracy 0.88 0.88 0.87 0.89 0.88 0.88 0.89 0.89 0.88

ASR 0.87 0.76 0.46 0.83 0.77 0.62 0.83 0.76 0.67
Detection 1.00 1.00 0.70 1.00 1.00 0.90 1.00 0.90 0.90

considering the dot product during poisoning. In particular,
she constructs a linear model with weights ✓w for a trigger
w before poisoning as she owns the trigger. The importance
vector I` can then be inferred by sampling different dimension
values and computing logits differences following the same
procedure as in PICCOLO. With the constructed ✓w and I`,
the attacker can derive the following loss.

L = Lce(xt, yt) + � · ✓w � I`, (11)
where Lce(xt, yt) is the cross-entropy loss for the input-label
pair xt and yt. Note that a portion of the training data is
poisoned with the backdoor. The term ✓w � I` denotes the
adaptive loss leveraged by the attacker to minimize the dot
product (and then bypass PICCOLO). Here, ` is the target label
and � a weight to balance the training loss and the adaptive
loss. Using a large adaptive loss may produce a trojaned model
with low normal accuracy or low attack success rate, which
makes the overall attack ineffective. Hence, the adversary
ought to find an appropriate hyper-parameter �.

We evaluate this adaptive attack on three trigger types,
namely, character, word, and phrase triggers. For each type of
triggers, we study three different adaptive loss weights �. For
each loss weight �, we train 10 poisoned models and study the
performance of PICCOLO. Table XIII shows the results. The
first row shows the different trigger types. The second row
presents the loss weight � used. Rows 3-4 show the average
normal accuracy and attack success rate (ASR) of the 10
trojaned models. The last row shows the detection accuracy of
PICCOLO (i.e., the percentage of the trojaned models that are
detected). Observe that the ASR of poisoned models decreases
with the increase of loss weight � for all the three types of
triggers. PICCOLO has the detection accuracy �0.9 for 8 out of
the 9 studied adaptive scenarios. PICCOLO has a low detection
rate of 0.7 for the character trigger with � = 1. However, the
poisoned models have only 0.46 ASR in this case, which does
not constitute an effective attack.
Targeting Trigger Inversion. This adaptive attack targets
the trigger inversion component of PICCOLO. As the trigger
inversion component is differentiable w.r.t the subject model,
the inversion procedure can be incorporated into the loss
function used during poisoning. Specifically, the adversary can
force the inverted probabilities of trigger words (say dimension

TABLE XIV: Adding trigger inversion loss in adaptive attack
Character Trigger Word Trigger Phrase Trigger

Loss Weight 1 10 1000 10000 0.1 1 10 100 0.001 0.01 0.1 1
Acc 0.89 0.88 0.89 0.89 0.87 0.87 0.86 0.89 0.87 0.86 0.86 0.85
ASR 0.87 0.84 0.74 0.63 0.86 0.83 0.76 0.67 0.86 0.81 0.73 0.69

Detection 1.00 1.00 0.80 0.60 1.00 1.00 0.90 0.80 1.00 0.80 0.80 0.70

itrigger of the inverted word vector xz) to be small during
poisoning. The loss function can be constructed as follows.
L = Lce(xt, yt) + ↵ · Linverse(xz, `) + � · xz[itarget], (12)

where Lce(xt, yt) is the cross-entropy loss. Linverse(xz, `) is
a loss aiming to invert a trigger word vector xz towards the
target label `. We use a weight ↵ to balance the first two losses.
We search a possible ↵ to make sure that the trojaned model
has a reasonable clean accuracy and a high ASR, and in the
mean time the inverted xz has a high ASR (as a whole). The
adaptive loss xz[itarget] is to minimize the dimensions of the
ground truth trigger words in xz . Parameter � is to balance
the adaptive loss.

We evaluate on the same three types of triggers. For each
type, we study four different adaptive loss weights �. For
each loss weight, we train 10 models. Table XIV presents the
results. The first row shows the different trigger types. The
second row shows the loss weight � used. Rows 3-4 show the
average clean accuracy and attack success rate (ASR) of the
10 trojaned models. The last row shows the detection accuracy
of PICCOLO. Observe that for all the three types of triggers,
increasing the loss weight � leads to the degradation of ASR of
poisoned models. When the ASR of poisoned models is above
0.7, PICCOLO has a detection accuracy �0.8. When the ASR
is low (0.6 for the character trigger), the detection accuracy
of PICCOLO drops to 0.6. Note that it does not constitute an
effective attack with such a low ASR.

G. Ablation Study
Our ablation study shows that all the design choices are

important. Due to the space limit, we move the ablation study
to our online appendix5.

H. Study on Different Injection Positions of the Optimization
Vector

We conduct a study on the injection positions of the opti-
mization vector. The experiments show that different injection
schemes have similar overall detection accuracy. The details
can be found in our online appendix5.

I. Effectiveness on Different Types of Triggers
We conduct a study on the effectiveness of PICCOLO, T-

miner, and GBDA on different types of triggers. The experi-
ments show that T-miner and GBDA are consistently inferior
to PICCOLO across all the trigger types. Due to the space limit,
we move this study to our online appendix5.

5https://github.com/PurduePAML/PICCOLO

18

https://github.com/PurduePAML/PICCOLO

	Introduction
	Background
	NLP Classification Pipeline
	Existing NLP Backdoor Attacks
	Existing NLP Backdoor Defense

	Attack Model
	Challenges in NLP Backdoor Scanning
	Design
	Overview
	Equivalent Model Transformation with Differentiable Word Encoding
	Word Discriminativity Analysis
	Trigger Word Inversion
	Trigger Validation

	Evaluation
	Experiment Setup
	Effectiveness of Piccolo
	Efficiency of Piccolo
	Evaluation on Advanced Backdoors
	Adaptive Attacks

	Related Work
	Conclusion
	References
	Appendix
	Challenge IV. Generative Model Is Incapable of Generating Complex Triggers.
	Parameters of Piccolo
	TrojAI Competition
	Backdoor Attacks and Defenses
	Experiment Setup
	Adaptive Attacks
	Ablation Study
	Study on Different Injection Positions of the Optimization Vector
	Effectiveness on Different Types of Triggers

	Online Appendix
	Ablation Study
	Study on Different Injection Positions of the Optimization Vector
	Effectiveness on Different Types of Triggers

