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Abstract—The distance between two classes for a deep learning
classifier can be measured by the level of difficulty in flipping
all (or majority of) samples in a class to the other. The class
distances of many pre-trained models in the wild are very
small and do not align well with humans’ intuition (e.g., classes
turtle and bird have smaller distance than classes cat and
dog), making the models vulnerable to backdoor attacks, which
aim to cause misclassification by stamping a specific pattern to
inputs. We propose a novel model hardening technique called
model orthogonalization which is an add-on training step to
pretrained models, including clean models, poisoned models,
and adversarially trained models. It can substantially enlarge
class distances with reasonable training cost and without much
accuracy degradation. Our evaluation on 5 datasets with 22
model structures show that our technique can enlarge class
distances by 177.63% on average with less than 1% accuracy loss,
outperforming existing hardening techniques such as adversarial
training, universal adversarial perturbation, and directly using
generated backdoors. It reduces 80% false positives for a state-
of-the-art backdoor scanner as the enlarged class distances allow
the scanner to easily distinguish clean and poisoned models, and
substantially outperforms three existing techniques in removing
injected backdoors.

I. INTRODUCTION

A backdoor in a deep learning model makes any inputs
stamped with a specific pattern to be misclassified to a target
class. While adversarial sample attack requires generating
perturbations on the fly to cause an input sample, e.g., a video
frame, to be misclassified, backdoor attack can have prompt
effect by simply stamping a pattern. While backdoors can be
injected through various methods, such as data poisoning [1]–
[5], clean label poisoning [6]–[9], and neuron hijacking [10],
they widely exist in naturally trained models (see Section II).
We call them natural triggers. Natural triggers could be due to
(1) the similarity between classes, e.g., a small fixed patch on
any dog images can make the classifier predict cat, and (2) the
model undesirably learning strong low-level features. We will
show in Section II that there is a small backdoor between the
turtle and bird classes even though they are unlike in humans’
eyes. With the increasing applications of deep learning models
in security-critical tasks such as autonomous driving [11], [12],
surveillance [13], [14], access control [15], etc., backdoors are
becoming a prominent security threat.

Existing defense techniques can be categorized to backdoor
scanning that determines if a model has an injected back-
door [16]–[24], backdoor attack detection that determines on-
the-fly if an input contains a backdoor pattern [24]–[35], and

backdoor elimination that removes an injected backdoor [36]–
[39]. Most these techniques focus on defending injected
backdoors. For example, backdoor scanners Neural Cleanse
(NC) [40] and ABS [41] rely on the assumption that injected
backdoors tend to be small as they want to be stealthy.
Backdoor attack detection techniques such as NIC [25] and
SCAn [26] rely on the observation that an input sample
stamped with a backdoor likely causes different model internal
behaviors than a clean sample. Elimination techniques such
as NAD [39] rely on benign samples to suppress injected
backdoors. Detailed discussion of these techniques can be
found in Section VII. However, they are much less effective
for natural backdoors which are not injected but rather due to
problems in training and even the nature of data. For example,
natural backdoors cause a lot of false warnings for scanners as
they cannot distinguish natural and injected backdoors [42]; a
sample with a natural backdoor may likely evade detection
as natural backdoors are usually benign features that may
not induce abnormal internal behaviors; and using clean data
cannot eliminate natural backdoors which are rooted exactly
in the clean data.

Adversarial training is a widely used technique for model
hardening which can force a model to unlearn unrobust (low-
level) features. It aims to enforce any input undertaking adver-
sarial perturbations in an Lp bound to be correctly classified
by the hardened model. According to our studies (Section II
and Section V), the improved robustness can help mitigate
backdoors including natural backdoors. However, due to its
Lp bounded training, which only considers local perturbations
around individual samples, the protection against backdoors
is limited. Also, it is known that adversarial training may
cause non-trivial model performance degradation. In addition,
our study shows that directly using backdoors generated
by scanners to adversarially train a model does not work
well due to either the extremely high computation cost or
the longer convergence time. Intuitively, using a backdoor
(which denotes much larger perturbations compared to those
in adversarial samples) in adversarial training is like imposing
a substantial displacement of the decision boundary. If not
done properly, the decision boundary will oscillate. And since
natural backdoors could exist in between any pair of classes,
the training has quadratic complexity, which is very costly
when the number of classes is large.

We propose a novel model hardening method to improve
resilience to backdoors. It is an add-on training step for pre-



trained models, including adversarially pre-trained models. It
substantially suppresses backdoors, including both injected
and natural backdoors, making backdoor attacks more difficult
(e.g., having to use much larger patterns and/or easier to be
detected by scanners), with reasonable training cost and with-
out substantial accuracy degradation. Specifically, we consider
the minimal backdoor between two classes (that flips samples
in a victim class to a target class) the distance between the
classes. As such, we aim to achieve the possible maximum
distances for all class pairs. Intuitively, if we project all high
dimensional data points to a 2-dimensional space, a decision
boundary allows the maximum distance between two classes
when it is perpendicular to the line between the centers of
mass of the two classes (visualization and more explanation
in Section III). We hence call the process of finding such
a decision boundary model orthogonalization. Our technique
hardens all class pairs for a model. For each pair a and b,
it repetitively generates the minimal backdoors from a to
b and from b to a and adversarially trains the model with
the two backdoors. In other words, it forces the model to
gradually unlearn the low-level backdoor features (and focus
on high-level features with more semantics). The symmetric
training of the two directions of a pair substantially alleviates
oscillation and improve effectiveness. To address the high
computation cost induced by the quadratic complexity, our
technique features a scheduler that selects a most promising
pair to harden in each training round based on the potential of
distance enlargement. It leverages the observation that different
class pairs have different distance capacities. For example, a
pair of turtle and bird has more potential than a pair of cat
and dog as the latter two are so close that their distance is
hard to enlarge no matter how much training effort is spent. A
number of methods are further used to speed up the training
process such as reusing backdoors from previous rounds and
dynamically adjusting bounds. Details are in Section IV.

Our contributions are summarized as follows.
� We intuitively and formally define the problem of model

orthogonalization, which is an add-on training step. As
part of it, we define the distance between a pair of classes,
which serves as the basis for the hardening process.

� We devise a new training process to achieve orthogonal-
ization. It features symmetric training (training the two
directions of a pair together), pair scheduling, and a few
other designs.

� We develop a prototype MOTH (Model OrTHogonaliza-
tion). Our evaluation on four standard datasets and six
different model structures shows that MOTH can improve
class distance for naturally trained models by 119.87%
and adversarially trained models by 52.87% with less
than 1% accuracy degradation on average. With similar
hardening performance, our technique is 9x faster than a
baseline that does not use scheduling. It achieves 29.72%
more distance improvement than a baseline that does
not perform symmetric training. It can achieve 95.80%
more distance improvement and 2.58x faster than using
universal adversarial perturbations [43]. We also con-

duct experiments on 30 pre-trained models downloaded
from the TrojAI competition [42], a competition for
backdoor scanning. MOTH improves the class distance
by 232.39% over the original models and is 11x faster
than the baseline. We apply MOTH in two applications
including reducing false positives for backdoor scanning
and eliminating injected backdoors in existing models.
It can reduce false positives by 81.25% for the first
application. Regarding the second application, the attack
success rate (ASR) of injected backdoors is reduced (by
orthogonalization) from almost 100% to 1% on average,
outperforming three state-of-the-art backdoor elimination
approaches with the best performance of reducing ASR to
26.75% on average. MOTH is publicly available at [44].

Threat Model. We consider backdoors between individual
pairs. That is, a backdoor can flip samples from a victim
class to a target class, called label-specific backdoor in the
literature [40], [41], [45], which is more general than universal
backdoor that flips any sample of any class to a target class. We
consider backdoors that are either injected (in a poisoned/hi-
jacked model) or naturally present (in a clean model). We
consider both are equally harmful. Our goal is to enlarge
class distances such that it is more difficult to find backdoors,
without sacrificing much accuracy. That is, to launch attack,
the attacker needs to use a large pixel pattern that may already
possess a lot of semantic features of the target class.

In this paper, we only consider static backdoors, in which
the backdoor patterns are input agnostic, like patch back-
doors [1]. There are dynamic backdoors such as reflection
backdoors [3], composite backdoors [4], and feature space
backdoors [46]. We conduct a preliminary study on a few
dynamic backdoors and MOTH can reduce the ASR to some
extent (see Section VIII). We will leave more exploration to
our future work. We argue that our contributions are still very
valuable because model hardening for static backdoors is still
an open problem. Finally, we assume only a subset of the
original training dataset (5%) is available when MOTH is used
to remove injected backdoors.

II. MOTIVATION

Figure 1 shows sample images from a normally trained
ImageNet model downloaded from a widely-used model repos-
itory [47] and its natural backdoors (derived using NC [40]).
The first column shows the backdoors, with the first row
flipping dog images to cat, the second one turtle to bird, and
the third one cat to bird. The second and third columns show
the victim class samples; the fourth and fifth columns the
victim class samples stamped with the backdoor patterns; the
sixth column the target class samples, and the last column the
size of backdoor in terms of the aggregated pixels in the R,
G and B channels (i.e., L1 norm). For instance, a trigger of
size 615 (second row) has around 615/3 = 205 ≈ 14 × 14
changed pixels. This is a very small backdoor compared to
an input image of 224 × 224 pixels for ImageNet models. In
other words, the model is very vulnerable, even though it is
not poisoned by dirty data. In fact, over 90% of the samples
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Fig. 1: Natural backdoor versus injected backdoor. The left figure shows natural backdoors (1st column) generated by a model
scanner (i.e., NC) for a benign ImageNet model. The right figure presents three poisoned models with injected backdoors with
different colors/shapes (1st column). Columns Size denote the size of generated backdoors.

in the victim classes are misclassified to the target class when
they are stamped with the small backdoors. Also observe that
these backdoors seem to be very low level features that do not
constitute any meaningful features in humans’ eyes. The model
might have overfitted on these low level (strong) features of the
target class, causing the natural backdoors. We observe that the
backdoor sizes do not meet our intuitions of the distances of
these classes. For example, intuitively cat and dog have more
similarity than turtle and bird. However, this is not reflected by
the sizes of natural backdoors. In some sense, we can say the
model is not “orthogonal” (more discussion in Section III).

Similar information is presented for three poisoned Ima-
geNet models from [41]. Each model is poisoned in a way that
all samples of the victim classes (the third column) stamped
with the backdoors in the first column are misclassified to the
target class as shown in fifth column. While the models were
poisoned with the backdoors shown in the first column, the
models overfit on some low-level features of the backdoor
patterns used in poisoning such that after poisoning, the
injected backdoors are just the small pixel patterns shown in
the second column. The last column shows the backdoor sizes.
Observe that they are not distinguishable from the sizes of
natural backdoors. In the TrojAI multi-round competitions for
backdoor scanning organized by IARPA [42], regularly trained
clean models have a large number of small natural backdoors
whose sizes are not distinguishable from the injected ones in
the round 2 competition, which is a round dedicated to finding
backdoors in image classification models. As a result, many
performers suffered from a large number of false positives (i.e.,
reporting a clean model as poisoned). On the other hand, if a
pretrained model used the hardening technique proposed in the
paper and had the hardened class distances published as part
of the model specification, the substantially enlarged distances
would make stealthy poisoning attempts of the hardened model
easily detectable (Section V-C).
Existing Technique I: Adversarial Training. Adversarial
training is the most widely used model hardening technique.
It aims to train a subject model in such a way that sam-
ples in a Lp bound of each training input have the same
classification result, with the sacrifice of some classification

accuracy. It can move the decision boundary to make the
model robust. It can enlarge class distances. In fact, since
round 3 of the TrojAI competition, the red team (by NIST)
responsible for producing the clean and poisoned models for
performers to classify uses adversarial training to suppress
natural backdoors. In Figure 2, we show some backdoors for
an adversarially trained ImageNet model (downloaded from
existing work [48]) in the second column. We use the same
three class pairs as in Figure 1, with each pair taking two
rows. The natural backdoors are in the second column with
their sizes presented on the top of the backdoor images in red
in the odd rows. The backdoors are also enlarged in the even
rows. The classification confidence of a stamped sample (in
the third column) is depicted on the sample.

Comparing to the class distances in Figure 1, it is evident
that adversarial training can enlarge class distance (e.g, from
1058 to 1598 for the dog→cat pair). In addition, the backdoors
start to possess some human perceptible features. For instance,
the backdoor for dog→cat resembles a cat face and the
backdoor for turtle→bird has the beak of bird. However, due to
the nature of adversarial training, the accuracy has nontrivial
degradation (see Section V). Moreover, the order of class
distances still does not align well with our intuitions of the
two class pairs dog→cat and turtle→bird, indicating that it
may not have achieved the maximum class distances. More
discussion of the reasons of such insufficiency can be found
in Section III.
Existing Technique II: Universal Adversarial Perturbation.
While adversarial training generates adversarial perturbations
separately for each sample, universal adversarial perturbation
(UAP) aims to derive common adversarial perturbations for
a (large) set of samples from different classes such that
the derived UAPs can cause misclassification when they are
applied to any samples. Similar to adversarial training, UAPs
are usually derived using L1. As such, a straightforward idea
is to use UAP to adversarially train a model to harden it
like in [43]. Figure 3 shows the results. Observe that the
derived UAPs in column 1 have noise-like pixel patterns.
UAPs can enlarge class distances (e.g, from 1058 to 1118
for the dog→cat pair) to some extent. However, the distance
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Fig. 2: Adversarial training vs. our training. The 2nd and 4th
columns present the generated backdoors for an adversarially
trained model and our model, respectively. The patterns high-
lighted in red boxes are enlarged in even rows. The sizes of
backdoors are marked on the top in red. The numbers in 3rd
and 5th columns are prediction confidences to the target labels.

enlargement is small. This is because UAPs are untargeted,
meaning that a UAP for a victim class may flip samples
of the class to different target classes. Also note that due
to its use of L1 bound, targeted UAPs are very difficult
to derive. They either cannot be found within the bound or
the enlarged bound leads to substantial accuracy degradation
after hardening. Natural backdoors, on the other hand, do not
have any constraints on the magnitude of perturbations. They
can easily achieve a high ASR for a specific target, which
can reveal vulnerabilities of the decision making between two
classes of a subject model.
Technique III: Directly Using Generated Backdoors in
Training. Another method is to directly use optimization to
derive the smallest backdoor between a pair of classes, e.g.,
by adapting optimizations in NC [40] and ABS [41]. The
training is enhanced such that any samples stamped with the
backdoor should retain their ground truth classifications. As
we will show in Section V, such a method is expensive as its
complexity is quadratic. In addition, its training loss fluctuates
a lot (see Section IV-B), causing inferior results in distance
improvement compared to ours (with 30% performance differ-
ence as shown in Section V-D). Note that the Pairwise baseline
evaluated in Section V is already more sophisticated than
simply using generated backdoors in hardening as described
above. It leverages symmetric hardening and speedup methods
discussed later in this section and in detail in Section IV.
Our solution. We propose a novel training method that can
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Fig. 3: Universal adversarial perturbation. The 1st column
shows the generated UAPs for three different victim classes in
the 2nd and 3rd columns. The last column presents the sizes of
backdoors generated for a hardened model by UAP training.

effectively enlarge class distances without sacrificing much
accuracy. We call it model orthogonalization (see Section III).
Different from adversarial training that independently perturbs
individual inputs, our training considers individual pairs of
classes. Specifically, for a pair such as a and b, it derives a
minimal backdoor from a to b and another backdoor from b
to a. Intuitively, the former can be considered the distinctive
(low level) feature of b with respective to a, and vice versa.
It then stamps samples with these backdoors and ensures
the classification results do not change, which essentially
expels these low level features and forces the model to learn
high level and more semantic features distinguishing the pair.
The two directions of a pair are hardened together, which
we call the symmetric hardening. As will be discussed in
Section IV-B, asymmetric hardening, i.e., hardening only one
side or hardening the two sides in separate batches, leads to
inferior results. Considering each class pair uniformly (with a
total of O(n2) pairs for an n-class model) is not cost-effective
as different class pairs have different distance capacities. Some
pairs quickly reach their maximum distance (e.g., cat and dog)
and others need more training to get there. We hence develop
a scheduler that schedules the most promising pairs for each
batch, substantially improving cost-effectiveness. The training
also features a few special designs such as gradually growing
optimization bounds and reusing backdoors to speedup the
process. Details are in Section IV. The fourth and fifth columns
of Figure 2 present example results using our training (on
the adversarially trained model). The class distances are sub-
stantially enlarged without further accuracy degradation. The
distances are much larger compared to the regularly trained
model in Figure 1. With hardened distances, the data poisoning
in Figure 1 can be easily detected, as the compromised classes
would have much smaller distances than the hardened ones.
Further, we observe that the order of the distances of the
three pairs aligns well with our intuition after hardening. The
zoomed-in trigger patterns in the even rows clearly exhibit
high level semantic features of the target classes (e.g., the
whole body of a bird). In other words, the model learns
high level features of individual classes, which substantially
mitigates its vulnerabilities to (natural) backdoors.
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