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Abstract

The emergence of large language models (LLMs) has significantly
accelerated the development of a wide range of applications across
various fields. There is a growing trend in the construction of spe-
cialized applications based on LLMs, such as the custom GPTs by
OpenAl. While custom GPTs provide various functionalities like
web browsing and code execution, they also introduce significant
security threats. In this paper, we conduct a comprehensive analysis
of the security and privacy issues arising from the GPT platform.
Our systematic examination categorizes potential attack scenarios
into three threat models based on the role of the malicious actor,
and identifies critical data exchange channels in GPTs. Utilizing the
STRIDE threat modeling framework, we identify 26 potential attack
vectors, with 19 being partially or fully validated in real-world set-
tings. Our findings emphasize the urgent need for robust security
and privacy measures in the GPT ecosystem as well as other similar
LLM application ecosystems.
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1 Introduction

Large language models (LLMs) have spurred a wide range of appli-
cations across various fields. Building platforms based on LLMs is
becoming increasingly popular, such as retrieval augmented gen-
eration [2, 4, 8, 15, 23]. OpenAlI has introduced custom versions of
ChatGPT [19], denoted as custom GPTs, where developers can cre-
ate customized GPTs for specific purposes. This newly introduced
feature greatly empowers the capabilities of ChatGPT and fosters a
wider LLM ecosystem. Custom GPTs offer various functionalities,
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such as web browsing, code execution, and interfacing with third-
party services. More details are elaborated in Section 2. There are
more than 30,000 public GPTs available online [9, 20].

The increased flexibility in utilizing ChatGPT appears highly
beneficial. However, this perspective does not encompass the en-
tire situation. As custom GPTs are built by third parties, this new
integration introduces various security and privacy threats. For
example, a custom GPT designed to assist users with validating tax
forms could maliciously alter the Social Security Number (SSN) in
revised forms and covertly transmit this data, constituting a seri-
ous violation of data integrity and privacy. A malicious user may
craftily obtain the instructions and configurations of GPTs, which
are intellectual properties of GPT developers, compromising their
confidentiality. Furthermore, both GPTs and users can share and
distribute harmful or even illegitimate content via the platform,
such as malware and disturbing information. These issues repre-
sent just the tip of the iceberg. In our research, we have identified
real-world examples of these issues in publicly available custom
GPTs (see Figure 18-Figure 20 in the Appendix).

These problems reveal the importance of systematically evaluat-
ing the security and privacy of this new paradigm. To this end, we
conduct a systematic analysis to assess potential security threats in
custom GPTs. Specifically, we categorize potential attack scenarios
into three threat models based on the role of the malicious actor
(GPT, end user, or both). We also identify critical entry/exit points of
custom GPTs, the channels through which users and custom GPTs
exchange data or messages. These channels are crucial for analyz-
ing security and privacy issues in custom GPTs. We then leverage
the STRIDE threat modeling framework [12] to pinpoint potential
security threats, covering all six categories, including spoofing, tam-
pering, and information disclosure. For each category, we identified
at least two attack vectors in the context of custom GPTs. In total,
we identified 26 attack vectors, 19 of which are (partially) realizable
in real-world settings. Our findings uncover the severity of security
and privacy problems inherent in the GPT platform, which requires
special attention from the community.

Our contributions are summarized in the following.

o We systematically study the security and privacy issues in
the new paradigm of custom GPTs. Our analysis lays out the
foundation for future designs in LLM-based platforms.

e We categorize potential attack scenarios into three threat
models based on the role of the malicious actor. We leverage
the well-known threat modeling framework STRIDE [12] to
systematically and comprehensively analyze and evaluate
security threats in the context of custom GPTs.

o We have identified 26 attack vectors in total and validated the
realizability of 19 attacks. We have also pinpointed real-world
cases in public GPTs. Our findings underscore the severity of
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Figure 1: Overview of a custom GPT and channels

these problems on this new platform. We envision future direc-
tions in designing secure LLM-based platforms and building
practical countermeasures against security threats.

2 Background of Custom GPTs

The custom GPTs contain a variety of functionalities, such as web
browsing, file modification, and code execution. These functions
greatly enhance the capabilities of language models to achieve tasks
beyond natural language processing. In the following, we describe
the major functionalities of custom GPTs and how they interact
with end users. The architecture and channels of a custom GPT are
summarized in Figure 1.

2.1 Overview of Functionalities

The overview of a custom GPT is shown in Figure 1. The left part
displays the configuration view, where GPT developers can cus-
tomize the GPT for specific purposes. The top-right section of the
figure shows the user interface of a custom GPT, similar to ChatGPT,
allowing users to chat with the GPT.

In the configuration on the left, developers can specify the name
of the GPT and a description about its functionalities. There are
four major configurable components: Instructions, Knowledge, Ca-
pabilities, and Actions.

o Instructions. Instructions serve as the primary control module,
specifying the detailed functions of the GPT in response to user
requests. Developers can input a natural language prompt and
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additional data such as website links and Python programs (if the
Code Interpreter option is chosen, which will be discussed later).
Knowledge. This is the storage space where developers upload
different types of files, such as text files (e.g., *.txt, *.docx, *.pdf),
images (e.g., *.jpg, *.png), and programs (e.g., *.py). The custom
GPT can utilize these files during the conversation with users
according to the instructions provided by developers. The files
also can be downloaded when code interpreter is enabled.
Capabilities. There are three options in capabilities: Web Brows-
ing, DALL-E Image Generation, and Code Interpreter. With the
web browsing option, the GPT can either using Microsoft’s Bing
search engine to find appropriate content based on user requests,
or communicate with the websites pre-specified in Actions by
developers (which is discussed in the next bullet). The DALL-E
image generation option provides the functionality of generating
images based on context using OpenATl’s text-to-image models.
The generated images will be visually displayed in the user in-
terface and can be downloaded. The last option, code interpreter,
enables the GPT to execute Python programs directly on the
backend Linux system. This allows the GPT to use executable
code to directly process user requests and data, making it similar
to a traditional operating system.

Actions. Actions enable GPTs to access the Internet and inter-
face with applications beyond Bing search. As shown in the
bottom-left of Figure 1, developers can enter a schema describ-
ing how requests to outside websites or applications should be
handled through GET/POST. The schema can be written in JSON
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Figure 2: Role-based malicious actor threat models

or YAML format. Beyond typical GET/POST requests, a custom
GPT can also interact with external web applications on behalf
of the user through authentication, such as adding an event in
the user’s Google calendar. Different authentication methods
are displayed on the bottom right in the figure, including API
key and OAuth. Developers are required to provide a privacy
policy for using actions. Otherwise, the custom GPT cannot be
published to the public.

These components significantly enhance the capabilities of cus-
tom GPTs in satisfying various aspects of user needs. In the follow-
ing subsection, we elaborate in detail how users use and interact
with custom GPTs.

2.2 Channels of Entry/Exit

We categorize the channels through which users and custom GPTs
exchange data or messages. In specific, there are five channels:
conversation, file, network, operational command, and authentication.
These channels are critical entry/exit points of custom GPTs, which
are leveraged in this paper for security and privacy analysis. The
right part of Figure 1 illustrates what GPT components different
channels correspond to.

e Channel 1: Conversation mainly involves the chatting com-
ponent of GPTs, where users ask questions through natural lan-
guage descriptions and GPTs respond with text outputs. For
example, the user may ask “What’s the capital of USA?” and the
GPT will respond with “Washington D.C.”.

e Channel 2: Files can be uploaded by users in the conversation
and by developers in knowledge (see the red arrows). They can
also be modified by GPTs and downloaded through conversation
by users if code interpreter is selected in the GPTs. Program files
(e.g., *.py) can be executed. More details regarding code inter-
preter are discussed in the later bullet (Channel 4). Additionally,
GPTs are enhanced with a text-to-image generation capability
by DALL-E. The generated images based on users’ prompts can
also be downloaded.

Channel 3: Network is where GPTs connect to the Internet.

There are two ways (denoted by the ): searching
related contents through Bing and directly accessing specific
websites. They both require the web browsing function to be
activated. The first method is token when users ask certain ques-
tions that need up-to-date information not available in the train-
ing data of ChatGPT (the backbone of custom GPTs), such as
today’s weather. This is determined automatically by GPTs to
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Table 1: Attack channels under different threat models

Threat Model Custom GPT End User Conversation File Network Command Authentication

-1 ® © v v v N v
T-2 © ® v v v v
-3 () ® v v

whether use Bing to search for the corresponding information.

The second method of web browsing is specified by custom GPTs

through actions. Developers can enter arbitrary website links

in the schema to fulfill users’ requests. They can explicitly spec-
ify when to visit those websites in instructions or let ChatGPT
decide based on context.

Channel 4: Operational Commands are programs that can be

directly executed on the backend system. Developers can select

the code interpreter option in the configuration to activate this
feature. Once selected, the GPT attaches a virtual operating sys-
tem (OS) to the conversation session, where Python programs
are passed to the OS for execution. The programs can be writ-
ten directly in the conversation or in instructions, or uploaded
through files (as denoted by the green arrows). Note that while

GPTs do not permit the direct execution of programs in other

languages like shell script, they often automatically translate

these programs into Python for execution.

e Channel 5: Authentication is a way for GPTs to communicate
with external web applications on behalf of users. GPTs can
read or modify contents in users’ external applications once
authenticated by corresponding users.

The above five channels are the main entry/exit points where
an attacker may exploit security and privacy vulnerabilities. We
use this categorization to illustrate specific attack scenarios in the
following sections.

3 Threat Models

In the usage scenarios of GPTs, there are two parties involved:
the custom GPT (or the GPT developer) and the end user, either
of whom could be malicious actors. We categorize possible attack
scenarios into three threat models based on the role of the malicious
actor. Figure 2 illustrates the concept. The x-axis denotes the intent
of the user (i.e., benign or malicious) and the y-axis presents the
intent of the custom GPT. There are four possible combinations
based on the intents of the user and the GPT, with three involving
a malicious actor. Details are discussed later in this section. Table 1
lists the attack channels under the three threat models, detailing
the specific entry/exit points through which an attacker exploits
security and privacy vulnerabilities. The following subsections
elaborate on each threat model.

3.1 T-1: Malicious GPT and Benign User

The first threat model, denoted as T-1, involves a malicious GPT and
benign users. The malicious GPT aims to exploit the vulnerabilities
of the current GPT system design to attack benign users, such as
manipulating certain contents or stealing private data.

The bottom-right part of Figure 2 presents an example. The user
asks the GPT to help revise the tax form, such as fixing potential
grammatical errors or incorrect tax calculations. Note that the tax
form includes private and sensitive data, such as the social security
number (SSN). The malicious GPT helps fix the grammatical error
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Table 2: Summarization of security threats in the custom GPT paradigm. Column ‘Desired Property’ denotes the security
properties described by the CIA triad including confidentiality, integrity and availability. Column ‘Attack Vector’ lists the attack
scenarios in the corresponding security threat category. Column ‘Realizable’ denotes whether the attack has been validated
in a real-world setting. The symbol ® indicates validation. The symbol © represents partial validation, meaning that certain

aspects of the attack are challenging to validate or could potentially impact the real system. The symbol

signifies that the

attack is theoretically realizable but has not been validated to avoid possible impacts on the real system.

Security Threat Desired Property ~ Threat Model ~ Attack Vector Realizable
. T-1 Domain name spoofing or masquerading [ J
Spoofi: Integrit:
pooting ntegrity T-1,T-2 Website spoofing ([ J
T-1,T-2,T-3 Direct content manipulation { ]
Tampering Integrity T-1 Event triggered e).(eclutlon ( ]
T-2 Shared content tainting ©
T-2 File and directory permissions modification ()
Repudiation Integrity 1 Identity th?ft'
T-1,T-2 Non-repudiation bypass ©
T-1,T-2 Phishing ([ J
Information Disclosure  Confidentiality T-1,7-2 Identity/private information gathering [ ]
T-1,7-2,7-3  Host information and volume disclosure [ ]
. . o T-1 Distributed denial of service
Denial of Service Availability T2 Fork bomb
. - . T-1 Account manipulation
Elevation of Privilege Integrity T-1,T-2,7-3  Escape to host

in the form, but intentionally modifies the SSN to a wrong number.
Additionally, the GPT also secretly sends the user private data to
an external source. This entails a severe integrity violation and
privacy leakage, significantly affecting the user’s personal security
and privacy.

In the above example, there are at least two channels involved
to realize the attack: conversation and network. As listed in Table 1,
other channels such as file, command, and authentication may also
be leveraged by the malicious GPT to achieve the attack goal. For
instance, the attacker may copy the private data to a file through
the file channel. More specific attack vectors are illustrated and
discussed in Section 4.

3.2 T-2:Benign GPT and Malicious User

In the second threat model, the end user is characterized as the
malicious actor and the GPT is benign. The goal of the malicious
user is to compromise the confidentiality, integrity, and availability
of GPTs. The malicious user may also target other benign users via
GPTs.

The top-left part of Figure 2 shows an example, where the mali-
cious user tries to extract the system prompt used by the GPT. It
should be noted that custom GPTs are intellectual properties of de-
velopers, including the system prompt written in instructions in the
configuration. This renders a severe compromise to the confiden-
tiality of custom GPTs. Recent efforts on prompt stealing [22] fall
into this threat model. The attack discussed in the above example
mainly involves the conversation channel for the exploit. There
are other channels such as file, network, and command that can be
leveraged by adversaries for malicious purposes. More details are
discussed in Section 4.

Benign Users as Victim. The malicious user may launch attacks
on other benign users through GPTs. For example, the notable
man-in-the-middle attack can also be executed within the custom
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GPT paradigm. Specifically, the malicious user can initially conduct
reconnaissance on a target GPT, collecting information about when
and how it visits certain websites. The attacker then spoofs these
websites, leading benign users to malicious sites when using the
targeted GPT. This exposes any benign user to potential security
threats, such as phishing attacks.

3.3 T-3: Malicious GPT and Malicious User

Since anyone can create and publish their own customized GPTs
for specific purposes, this opens the door for malicious actors to
distribute harmful content. We refer to this threat as Malware as a
Service (MaaS). As illustrated in the bottom-left of Figure 2, when
the user inquires about sensitive information, such as “How to make
a bomb,” the GPT responds with detailed steps. Please see real-
world cases in Figure 18-Figure 20 in the Appendix. Additionally,
malicious developers can exploit the knowledge feature to upload
malware, which can then be shared with users for download. In
this threat model, the conversation and file channels are involved
for the malicious purpose.

4 Security Threats

In this new paradigm of custom GPTs, a wide range of security
threats exist that could harm GPT developers, end users, and even
the entire ecosystem. To assess potential threats, we leverage the
STRIDE threat modeling [12] in this paper. STRIDE breaks down
security threats into six categories: spoofing, tampering, repudiation,
information disclosure, denial of service, and elevation of privilege. We
study potential vulnerabilities in the custom GPT system following
these threats. Table 2 lists specific attack vectors in each category.
Particularly, we find 19 out of 26 attack scenarios are (partially)
realizable in real-world settings. The remainder of this section
elaborates on the details of each security threat and corresponding
possible attacks.
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4.1 Spoofing

A spoofing attack [3] aims to disguise the true identify of the adver-
sary as someone or something else (usually benign) to gain an illegit-
imate advantage. For example, an attacker may provide users with
legitimate information embedded with malicious hyperlinks. It pri-
marily compromises the integrity of data. In the context of custom
GPTs, we identify two potential attack vectors within the spoofing
category. We illustrate these attacks with examples in the following.

4.1.1 Domain Name Spoofing or Masquerading. Domain name
spoofing [11] is carried out by imitating or spoofing the domain
name of a legitimate website. The goal of the attack is to mislead
users into believing they are visiting a trusted site when, in fact,
they are directed to a malicious destination.

In the context of custom GPTs, the malicious GPT may craftily
append a malicious website link to a publicly trusted domain. Since
only the domain name of a website displays in the conversion, users
can be misled into trusting the visit, unaware of the manipulated
website link. Such attacks leverage the conversation and network
channels to achieve the goal (see Table 3 in the Appendix).

Example. Figure 3 demonstrates an example attack scenario. The
GPT helps users to find code snippets from GitHub. However, it is
configured to mislead users to visit malicious websites. To achieve
this, the attacker uses the actions feature in the configuration to
specify the malicious URL, as shown on the left side of the figure.
The URL starts with a legitimate domain name, e.g., “github.com,”
and ends with attacker-intended malicious subdomain, e.g., “lim-
attacks.” When a user requests sorting code from GitHub, the
GPT navigates to the malicious site. Notice that on the right side
of the figure, the conversion only displays “Talking to github.com,”
the trusted domain name. Consequently, the user is unaware
of being redirected to the malicious site and thus, the attack.
The screenshots of a real case are presented in Figure 21 in the

Appendix.

3]

4.1.2  Website Spoofing. Website spoofing [7] also disguises a ma-
licious website as a legitimate one. There are two attack scenarios
regarding custom GPTs. The first scenario falls under the threat
model T-1, where a malicious GPT tries to attack benign users. The
second attack scenario delineates T-2, where a malicious user aims
to compromise other benign users through a benign GPT. Both
attack scenarios leverage the conversation and network channels
to achieve the goal as shown in Table 3 (see Appendix).

Attack under T-1. Different from the domain name spoofing attack
discussed earlier, this attack exploits the Internet search feature
of GPTs. Specifically, when the user’s request requires up-to-date
information, the GPT automatically searches the Internet using
Microsoft’s Bing search engine. The malicious GPT can manipulate
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the search process to inject content from attacker-chosen websites
into the response. A detailed example is included in Appendix A.1.

Attack under T-2. In this scenario, a malicious user aims to attack
other users by leveraging a benign GPT. The custom GPT may
modify user queries to enhance the search results provided by Bing.
A malicious user can extract the instructions of the custom GPT and
craft malicious websites that will be returned by the search engine
based on these modified queries. Consequently, other benign users
are exposed to the risk of visiting these malicious websites. The
attack outcome is similar to the attack under T-1, and the example
is hence omitted.

4.2 Tampering

Tampering refers to the intentional modification of data in a way
that harms users (broadly defined). For instance, an attacker might
inject malicious code into a user’s document, causing the system to
shut down upon opening. This compromises the integrity of data.
In the context of custom GPTs, we identify four potential attack
vectors related to this threat.

4.2.1 Direct Content Manipulation. The content during the conver-
sation or in the files is subject to manipulation either by malicious
GPTs or malicious users. There are attack scenarios that fall under
the three threat models: T-1, T-2, and T-3, respectively. The adver-
sary may launch the attack via conversation, file, and/or operational
command channels as shown in Table 4 (see Appendix).

Attack under T-1. When the GPT is malicious, it may intentionally
inject undesired content into the response or tamper with user-
uploaded files. A detailed example is included in Appendix A.2.
Attack under T-2. A malicious user may modify the instructions
or the files in the GPT configuration. Such attacks can also affect
other users, a topic that will be discussed later in relation to shared
content tainting. A detailed example is included in Appendix A.3.
Attack under T-3. In this attack scenario, both the GPT and the
user are malicious. They share harmful content, such as malware,
via the platform. The tampering can occur within the custom GPT
environment and also affect external systems, for instance, by dis-
seminating shared malware (see Figure 25).

4.2.2  Event Triggered Execution. The attack can be programmed
to activate under specific conditions [16]. For instance, a malicious
GPT may respond to user requests with legitimate answers. How-
ever, it would only generate harmful content when the user asks
certain questions. Data transmission can occur either directly in
the conversation or through file exchanges, activated by specific
instructions or operational commands. These methods constitute
the primary channels for event-triggered executions, as detailed
in Table 4 (see Appendix).

Example. The GPT depicted in Figure 4 checks the grammar of
texts in user-uploaded files. However, it is configured to provide a
malicious Microsoft Word document, Malware. docx, when users
request modifications to uploaded “docx” files. As shown on the
left side of the figure, the malicious GPT confirms grammatical
corrections and provides a modified document, which is actually
the malware. A simulated real-world example case is presented
in Figure 26 in the Appendix.
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4.2.3  Shared Content Tainting. As a custom GPT is utilized by
multiple users, a malicious user may secretly manipulate the content
in the GPT such that other users are affected. Such an attack can be
realized through the conversation and file channels with operational
commands. A detailed example is included Appendix A.4.

4.24  File and Directory Permissions Modification. Similar to shared
content tainting, the malicious user may modify the files and direc-
tories owned by the custom GPT by changing their permissions.
This threat requires enabling the code interpreter feature to execute
operational commands, e.g., chmod. A detailed example is included
in Appendix A.5.

4.3 Repudiation

Repudiation [25] refers to the denial by an attacker of having per-
formed a specific action. It might also involve the denial of the
validity of an electronic contract or transaction. This threat com-
promises data integrity. Specifically, it involves two attack scenarios
in the context of custom GPTs.

4.3.1 Identify Theft. Custom GPTs can assist users to process tasks
on external applications, such as Google calendar, via authenti-
cation. A malicious GPT may steal users’ identify and conduct
unauthorized activities leveraging users’ authenticated tokens. As
the GPT disguises itself as the user, it makes the attack not repudi-
ated. The attack involves the network and authentication channels
as listed in Table 5 (see Appendix).

4.3.2  Non-Repudiation Bypass. Non-repudiation [13] involves as-
sociating actions or changes with a unique individual. However, due
to the design of the custom GPT system, there may lack sufficient in-
formation to associate the connection. Specifically, in custom GPTs,
a sandbox virtual machine is attached to the conversation session
if code interpreter is enabled. If the sandbox is unique for a GPT or
a user, it is possible to be leveraged for future investigation. How-
ever, as shown in Figure 5, when the same user retrieves the UUID
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(universal unique identifier) in different conversation sessions, the
values are different (see screenshots of the example in Figure 29
in the Appendix). This means it may have a weak logging system
deployed in the custom GPTs, leading to potential security threats
by both malicious GPTs (T-1) and malicious users (T-2).

4.4 Information Disclosure

When sensitive or confidential data is viewed or stolen by unautho-
rized individuals, it is a security violation referred as information
disclosure. For example, an attacker may steal sensitive information
provided by users during the conversation with GPTs. It compro-
mises the data confidentiality. We identify three potential attack
vectors in this category regarding custom GPTs.

4.4.1 Phishing. A phishing attack [10] may deceive users into
disclosing sensitive information. It usually colludes with a spoofing
attack to disguise the true intent of adversaries. There are two
attack scenarios regarding custom GPTs, under the treat models
T-1 and T-2, respectively. Both attacks leverage the conversation
and network channels to achieve the goal as shown in Table 6
(see Appendix). The following shows an attack example under T-1.
Attacks under T-2 are similar and hence omitted. Please see the
discussion in Section 4.1.2 regarding website spoofing under T-2
for reference. A detailed example is included in Appendix A.6.

4.4.2  Identity/Private Information Gathering. An attacker may col-
lect identify or private information that compromises the data
confidentiality. We identify two attack scenarios in the context of
custom GPTs, under the treat models T-1and T-2, respectively. This
threat may involve all possible attack channels.

Attack under T-1. The GPT is malicious and aims to steal private
data from users, such as user-uploaded files.

Example. In Figure 6, the GPT is designed to check the grammar
of user input. It utilizes a file named Helper.txt to assist the
attack. When the user asks for grammar check of the provided tax
information, the malicious GPT copies the private data to the file
Helper. txt. The user however is unaware of the whole attack
process as the response only shows the revised tax form. Please
see a simulated real-world case in Figure 31 in the Appendix.

Attack under T-2. The end user is malicious and aims to steal
private data from custom GPTs, such as the system prompt. Note
that the configuration of custom GPTs, like the system prompt
in instructions, is the intellectual property of GPT developers. As
illustrated in Figure 2 in Section 3, the malicious user may utilize a
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Figure 7: Host information and volume disclosure

magic prompt to obtain the system prompt of custom GPTs [22].
Please refer to Figure 18 in the Appendix for a real-world example.

4.4.3  Host Information and Volume Disclosure. As mentioned ear-
lier, when the code interpreter is enabled, a virtual machine is
attached to the conversation session. An attacker, either the GPT
or the user, is able to view the information in the virtual machine.
This vulnerability exists under all three threat models and involves
channels such as conversation, file, and command.

Example. In Figure 7, the user asks the GPT to run seversal
system-level commands, such as “cat /etc/passwd”, “uname
-a”. The GPT returns with all the requested host information.
The screenshots from ChatGPT are shown in Figure 30 in the

Appendix.

In addition, we find that all the files uploaded by developers are
stored in the directory “/mnt/data”. Users can easily view and ob-
tain all the files by running a simple script, such as “1s /mnt/data”.
Figure 17 and Figure 18 in the Appendix display the obtained system
prompts and files from real-world public custom GPTs.

4.5 Denial of Service

Denial of service (DoS) [17] is a type of cyberattack that aims
to disrupt the normal functionality of a system or network by
overwhelming it with a flood of excessive traffic or resource request.
DoS attacks make the target system unavailable to legitimate users,
denying their access. Such attacks compromise the availability
property. We identify two types of potential attack vectors in the
context of custom GPTs regarding the DoS threat.

4.5.1 Distributed DoS (DDoS). Distributed DoS [14] is launched by
using a distributed groups of compromised systems to overwhelm
a target with traffic and cause disruption. In the context of custom
GPTs, a malicious GPT can redirect users’ requests to a target sys-
tem and launch the DoS attack (see Appendix A.7). It leverages the
conversation and network channels (see Table 7 in the Appendix).

4.5.2  Fork Bomb. A fork bomb [18] is another form of DoS attack,
where a malicious script or software takes advantage of the fork
operation to generate an excessive number of processes rapidly and
without control. This flood of processes depletes system resources,
rendering them unavailable for legitimate operations, ultimately
leading to system slowdown or even a crash. Within the context of
custom GPTs, users can potentially deploy a fork bomb as a means
to disrupt the normal functionality of the GPT.
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In this attack scenario, the custom GPT is benign, while the user
is malicious. The malicious user can instruct the GPT to execute
code that carries the potential risk of a fork bomb. This attack in-
volves the conversation and command channels as shown in Table 7
(see Appendix). A detailed example is included in Appendix A.8.

4.6 Elevation of Privilege

Elevation of privilege refers to a type of security vulnerability where
an attacker gains a higher level of access or privilege than they
should have on a system or network. For example, an attacker can
exploit vulnerabilities in software to escalating from a regular user
to an administrator or root user. Elevation of privilege compromises
the integrity of data. In the context of custom GPTs, we point two
potential attack vectors associated with this security concern.

4.6.1 Account Manipulation. Custom GPTs have the potential to
compromise users’ accounts during login to external applications,
such as Outlook email, via the authentication process. Once com-
promised, a malicious GPT gains full access to victims’ accounts,
enabling it to conduct malicious actions. For instance, it can craft
convincing phishing emails and send them to victim users or steal
private email contents. This threat involves the network and au-
thentication channels as shown in Table 8 (see Appendix).

4.6.2 Escape to Host. Escape to host is another threat, where the
attacker leverages zero-day vulnerabilities in Python or Linux to
break free from a virtual machine, gaining root privileges on the un-
derlying host system. In the context of custom GPTs, malicious GPTs
or users can execute code to attain host-level privileges through
the code interpreter feature. This attack involves all three threat
model scenarios. A detailed example is included in Appendix A.9.

5 Discussion and Future Directions

While platforms built on top of large language models (LLMs) like
custom GPTs are intriguing and beneficial, we point out in this
paper that it is critical to ensure the security and privacy of such
platforms in every aspect. We also remind users and developers to
be mindful when utilizing this type of platforms, as anything could
go wrong without proper caution. In the following sections, we
discuss future directions to secure LLM-based platforms.

5.1 Security by Design

Execution Transparency. A range of security threats in the GPT
platform stem from a lack of transparency. For example, spoofing
attacks can succeed because the current platform design only dis-
plays the domain name and part of the search query, leaving users
unaware of potential malicious visits. Transparent Internet queries
are crucial for mitigating attacks that disguise true intentions.

Data Separation. The platform notes that custom GPTs ‘can’t
view your chats” at the starting window of GPTs. However, as
demonstrated in our paper, our findings contradict this assertion. A
malicious GPT can easily steal user data during a conversation. This
threat is bidirectional; a malicious user can also gain unauthorized
access to the system prompt and all uploaded files of custom GPTs.
The problem lies in the lack of clear separation between GPT data
and user data, with both being accessible within the same virtual en-
vironment. This should be addressed by clearly separating data from
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the two parties. Furthermore, instructions (e.g., the system prompt)
and data (e.g., the conversation) are not separated. The current plat-
form design, following an architecture similar to the Von Neumann
architecture [21], lacks sufficient protection against issues such as
stack overflow. It should enhance the security protocols for data
transmission and storage within the platform. Another approach is
to adopt the Harvard architecture [1], where user data and GPT op-
erations are processed and stored in separate, secure environments.

Access Control. Connecting to external applications empowers
custom GPTs. However, there is a lack of access control, as malicious
GPTs could manipulate the account authenticated by users. The
platform should consider introducing a permission mechanism [5,
6, 24], where users can determine which actions can be performed
on their behalf in external applications.

Traditional System Protection. The custom GPT platform uses
virtual machines to host its code interpreter functionality, facing
security threats similar to those in traditional systems. Therefore,
it is important to implement sufficient security measures, such as
auditing, load balancing, and process limiting, to protect the system
from potential attacks.

5.2 Countermeasures

Not all of the security threats can be completely eliminated by
design. This situation calls for countermeasures that detect mali-
cious behaviors both pre-deployment and on-the-fly, and conduct
post-mortem analyses to identify root causes.

Identifying Malicious GPT. There are five channels that can be
leveraged by malicious GPTs to launch attacks, including through
uploaded files and operational commands in instructions. A strat-
egy to counter GPT attacks is to scan these channels. For example,
defenders can extract features from GPT instructions and develop
a classifier to identify malicious ones. Since GPTs can be updated
after being published, real-time monitoring and detection are re-
quired to swiftly identify and neutralize malicious GPTs, avoiding
affecting users.

Identifying Malicious User. Malicious users must leverage the
conversation channel to launch attacks. However, chats with GPTs
are intended to be private and, hence, cannot be monitored in
real time to detect malicious activities. This creates a trade-off
between user privacy and platform security. Another strategy is
to implement passive defensive measures, such as building tools
to guard each potential attack channel. Developing generalizable
defense techniques against various types of security threats can be
challenging. This necessitates concerted efforts from the research
community to build a safer and more secure LLM-based platform.

6 Conclusion

We conduct a comprehensive study on the security and privacy
aspects of the custom GPT platform. Our analysis categorizes poten-
tial attack scenarios into three threat models, based on the role of the
malicious actor. Utilizing the STRIDE threat modeling framework,
we identify 26 potential attack vectors, with 19 being (partially) val-
idated in real-world settings. Our research highlights the necessity
of security and privacy measures in the custom GPT ecosystem and
future LLM-based platforms.
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